
- Supplementary Material -
STAR-CAPS: Capsule Networks with
Straight-Through Attentive Routing

Karim Ahmed
Department of Computer Science

Dartmouth College
karim@cs.dartmouth.edu

Lorenzo Torresani
Department of Computer Science

Dartmouth College
LT@dartmouth.edu

A. Additional Experiments

affnist dataset We trained STAR-CAPS {32, 8, 16, 16, 10} on MNIST following the data augmen-
tation as in EMCaps [2]. The test accuracy of STAR-CAPS on affNIST [1] is 93.03% vs. 93.1% for
EMCaps {32, 32, 32, 32, 10}.

Performance of STAR-CAPS vs. CNNs Although the main purpose of STAR-CAPS is to alleviate
the computational complexity of baseline capsule networks while being able to detect viewpoint
variations, STAR-CAPS models achieve accuracies nearly on par with those modern CNN models.
On CIFAR10, STAR-CAPS: 91.23%, #params=80K vs. ResNet20: 91.25%, #params=270K vs.
ResNet110: 93.57%, #params=1.7M. On CIFAR100, STAR-CAPS: 67.66% vs. ResNet38: 68.54%
vs. ResNet110: 71.21%. It is possible that scaling up STAR-CAPS models to match #params in
ResNet, would lead to better performance.

STAR-CAPS without ST-Router Removing ST-Router leads to lower performance. On MNIST,
STAR-CAPS model {32, 8, 16, 16, 10} achieves 99.41% without ST-Router and 99.59% with ST-
Router; whereas STAR-CAPS {32, 4, 64, 4, 10} achieves 98.37% without ST-Router and 99.48% with
ST-Router.

Effect of sharing weights and role of attentions We conducted experiments with two settings.
First, STAR-CAPS with separate weights with attention modules. We didn’t notice improvement on
MNIST. On CIFAR10 {32, 8, 8, 8, 10} achieved 91.31% vs. 91.23%; however, the train/test time
were significantly higher due to extra matrix multiplications as in EMCaps. Second, STAR-CAPS with
separate weights without attentions; the experiments on MNIST/CIFAR10 showed poor performance.
In conclusion, the proposed setting of STAR-CAPS provides best results in general, in terms of
accuracy and train/test time while preserving capsule properties.

B. Pseudo Code of STAR-CAPS

We provide a brief pseudo code for the forward propagation of a ConvCaps`(k, n`) layer in STAR-
CAPS architecture, following the notation and the equations presented in Section 3 in the main
paper.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



Algorithm 1 Forward pass of ConvCaps`(k, n`) layer in STAR-CAPS architecture.

Input: a set of the input pose matrices P`−1 =
{
Pi ∈ Rp×p | i ∈ {1, . . . , n`−1}

}
generated by

the lower-level capsules in layer `− 1.
Output: a set of output pose matrices P` =

{
P̃j ∈ Rp×p | j ∈ {1, . . . , n`}

}
generated by the

higher-level capsules defined in the current layer `.

1. Transform the input pose:
for all pose matrix Pi ∈ Rp×p and transformation matrix Wi ∈ Rp×p do
Vpre
i = PiWi | i ∈ {1, . . . , n`−1}

end for

2. Estimate attention matrices Aij ∈ Rp×p using Attention Estimators Tij :
for all pre-votes Vpre

i ∈ Rp×p do
Aij ← Tij(Vpre

i ) | i ∈ {1, . . . , n`−1}, j ∈ {1, . . . , n`}
end for

3. Estimate routing decisions δij ∈ {0, 1} using Straight-Through RoutersRij :
for all attention matrices Aij ∈ Rp×p do
δij ← Rij(Aij) | i ∈ {1, . . . , n`−1}, j ∈ {1, . . . , n`}

end for

4. Calculate the output pose:
for all Aij and Vpre

i do
Ãij = Aij �

∑n`−1

i=1
δij=1

Aij | i ∈ {1, . . . , n`−1}, j ∈ {1, . . . , n`}

P̃j =
∑n`−1

i=1
δij=1

Vpre
i � Ãij | i ∈ {1, . . . , n`−1}, j ∈ {1, . . . , n`}

end for

2



References
[1] affnist dataset. https://www.cs.toronto.edu/~tijmen/affNIST/.

[2] Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. Matrix capsules with em routing. ICLR, 2018.

3

https://www.cs.toronto.edu/~tijmen/affNIST/

	Additional Experiments
	Pseudo Code of Star-Caps

