
A Unifying Framework for Spectrum-Preserving
Graph Sparsification and Coarsening: Appendix

A Empirical validation of the approximation in equation (10)

In order to derive our graph reduction algorithm, we assume that the entries of the Me associated to different
edges are approximately entrywise uncorrelated (Main Text Section 3.3). Similar to how the variance of the
sum of independent random variables is the sum of their individual variances, this assumption allows us to
approximate the expected squared Frobenius error of the final reduced graph E

⇥��L†
eG � L†

G

��2

F

⇤
as a sum over the

sequence of probabilistic actions to individual edges:

E
���
X

�L†
���

2

F

�

| {z }
true error

⇡

X
E
h���L†��2

F

i

| {z }
estimated error

. (18)

In Figure SI 1, we empirically validate this assumption for networks with a variety of structures. In fact, the
true error is statistically equal to or less than the estimated error. Thus, the estimated error may be used by
StopCriterion in Algorithm 1.
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Figure SI 1: The approximation of uncorrelated changes to L† is nearly exact or a conservative estimate.
We test the validity of equation (18) using a variety of datasets: Top left: a triangular mesh of the text “NeurIPS”
(567 nodes and 1408 edges); Top middle: an Erdős–Rényi model (256 nodes and p = 1/16); Top right: a
weighted social network of face-to-face interactions between primary school students, with initial edge weights
proportional to the number of interactions between pairs of students (236 nodes and 5899 edges) from [53];
Bottom left: a transportation network of European cities and roads between them (1039 nodes and 1305 edges)
from [56]; Bottom middle: the C. elegans posterior nervous system connectome (269 nodes and 2902 edges)
from [52]; and Bottom right: a collaboration network of Jazz musicians (198 nodes and 2742 edges) from [51].
We applied Algorithm 1, prioritizing edge reduction (allowing for deletion, contraction, and reweighting), and
setting q = 1/16 and d = 1/4. We recorded the estimated error and the true error in L† as a function of amount
of reduction. Shading denotes one standard deviation about the mean for 32 runs of the algorithm. In general,
the estimated error serves as an approximate upper bound of the true error in L† (although it is nearly exact for
graphs with a geometric quality). The validity of the approximation allows one to use a bound on the estimated
error as a StopCriterion in Algorithm 1.

B Derivation of the optimal probabilistic action to an edge

As discussed in Section 3.4, we seek to minimize:

C = E
h���L†��2

F

i
� �2E[r] , (19)
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subject to
E
⇥
�L†⇤ = 0 . (20)

When reducing multiple edges, E[r] is additive and E
h���L†��2

F

i
is approximately additive (see Appendix

Section A). Thus, we partition this minimization into a sequence of subproblems, treating each perturbation to
an edge individually.

Recall that

�L† = f
⇣

�w
we

, we⌦e

⌘

| {z }
nonlinear scalar

⇥ Me

|{z}
constant matrix

, where f = �

�w
we

1 + �w
we

we⌦e
.

We now derive the optimal probability of deleting (pd), contracting (pc), or reweighting (1 � pd � pc) a given
edge e, along with the change to its weight (�w) in the case of the latter.

The constraint (20) requires that this reweight satisfies
pd

1 � we⌦e
�

pc

we⌦e
+ (1 � pd � pc)E[f |reweight] = 0, (21)

where we have used the following limits:

deletion: �w
we

! �1, f ! (1 � we⌦e)
�1

contraction: �w
we

! +1, f ! � (we⌦e)
�1 .

(22)

Likewise, the cost function (19) for acting on the edge e becomes:

C =

✓
pd

(1 � we⌦e)
2 +

pc

(we⌦e)
2 + (1 � pd � pc)E

⇥
f2

|reweight
⇤◆

m2
e � �2 (rdpd + rcpc), (23)

where rd and rc are the number of prioritized items that would be removed by a deletion or contraction,
respectively.

For a fixed pd and pc, E[f |reweight] is fixed by equation (21). As @2f
@�w2 > 0 everywhere, the inequality

E
⇥
f2

|reweight
⇤

� E[f |reweight]2 becomes an equality under minimization of (23).

Thus, if an edge is to be reweighted, it will be changed by the unique �w satisfying

pd

1 � we⌦e
�

pc

we⌦e
� (1 � pd � pc)

�w
we

1 + �w
we

we⌦e
= 0. (24)

Clearly, the space of allowed solutions lies within the simplex S : 0  pd, 0  pc, pd + pc  1. The additional
constraint �1 

�w
we

 1 further implies that pc  we⌦e and pd  1 � we⌦e. Hence, we substitute (24) into
(23), and minimize it over this domain (given me, we⌦e, ⌧e, and �). After some careful elementary calculus,
we obtain the solution provided in Figure 1 of the Main Text.

C Lifting the matrices of a contracted graph

Here, we provide a detailed rationale for the definitions given in Section 3.5, namely, the choice of LeG and L†
eG,

and how to “lift” these matrices to the original dimension |VG| ⇥ |VG| when edges have been contracted.

Recall the following definitions:

LeG = W �1
n B>WeB , (25)

L†
eG =

�
LeG + J

��1
� J , (26)

LeG,l = C>LeGW �1
n C , (27)

L†
eG,l = C>L†

eGW �1
n C , (28)

where

J =
1

~1>~wn

~1~w>
n , (29)

C = {cij} =

⇢
1 node j in supernode i
0 otherwise. (30)

The above definitions ensure that the lifted L†
eG,l

of the contracted graph is identical to the we ! 1 limit of the
original L†

G
.
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Figure SI 2: Contracting the center edge of a line graph. Left: Original graph G with large weight we on the
center edge. Right: Reduced graph eG obtained by contracting this edge (we ! 1). Note that the weight of the
contracted nodes sum to give the weight of the resulting supernode in the reduced graph.

To illustrate the consistency of these definitions, we consider a concrete example: the line graph with 3 edges,
where the center edge is to be contracted (Figure SI 2). Let the center edge have weight we � 1, while the other
two have a fixed weight of 1.

For the original graph G, the Laplacian and its pseudoinverse are
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For the contracted graph eG, we have
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Thus, the reduced Laplacian and its pseudoinverse are
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When lifted to the original dimensions |VG| ⇥ |VG|, these become
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Note that the lifted L†
eG,l

is equal to the we ! 1 limit of the original L†
G

, as desired. In contrast, the original
L

G
diverges, while the lifted LeG,l

averages the rows and columns of the merged nodes. Moreover, regardless of
whether node weights are included in the definitions, using the standard Moore–Penrose pseudoinverse of the
reduced Laplacian will yield a lifted pseudoinverse that is not equivalent to the original in the we ! 1 limit.

Additionally, we remark that, while contraction always requires the summing of node weights, it can also lead to
the summing of edge weights (when the contracted edge participates in any triangle in the original graph, see
Figure SI 3).

D Proof of the relationship between the hyperbolic distance
and �-spectral approximation

In this section, we prove Theorem 1 from Section 5.1:
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Figure SI 3: Contracting an edge that participates in triangles. Left: Original graph G containing an edge
with large weight we that participates in two triangles. Right: Reduced graph eG obtained by contracting this
edge (we ! 1). Note that the two non-contracted edges in each triangle form a single edge in the reduced
graph with weight equal to their sum.

Theorem 1. If dh

�
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G
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�
 ln(�) , then eG is a �-spectral approximation of G.

Proof. Let G be the original graph and eG its sparse approximation (no contraction/removing of nodes). Recall
the relevant definitions:
eG is a �-spectral approximation of G [6] if
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where L
G

and LeG are the Laplacians of G and eG, respectively, and ~x is perpendicular to their kernels.

Consider the result of a Laplacian acting on such a vector ~x, and decompose the output as a component parallel
to ~x with magnitude `k and a component ~̀? perpendicular to ~x:
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Thus, if d~x

�
L

G
,LeG

�
 ln(�) 8~x?~1, then eG is a �-spectral approximation of G, as desired.

E Number of edges acted upon per iteration can be O(|V |)

In this section, we study the effect of varying the parameter q, the fraction of sampled edges acted upon, using
real-world datasets from different domains (Figure SI 4).

For each iteration of our algorithm, we sample a random independent edge set and act on the fraction q with
the lowest �?e (see Main Text Section 4). We find that the resulting error asymptotes around q ⇠ 1/16. We
expect that by combining this sampling method with existing algorithmic primitives (eg, [20], see Appendix
Section F), our algorithm could achieve a running time of eO(hki|E|), where hki is the average degree (see Main
Text Section 4). This would allow it to be used in large-scale applications of graph reduction.
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|Ẽ|/|E| ⇡ 1/2
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|Ẽ|/|E| ⇡ 1/12

1st e-vec (1)

20th e-vec (2)

60th e-vec (3)
(4)

Fractional error (dh) when acted
upon by L

†, normalized by RM

Fraction of nodes remaining |Ṽ |/|V |
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|Ẽ|/|E| ⇡ 1/12

1st e-vec (1)

20th e-vec (2)

60th e-vec (3)
(4)

Fractional error (dh) when acted
upon by L

†, normalized by RM

Fraction of nodes remaining |Ṽ |/|V |
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|Ẽ|/|E| ⇡ 1/2
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|Ẽ|/|E| ⇡ 1/2
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Fraction of edges remaining |Ẽ|/|E|
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Figure SI 4: Number of sampled edges acted upon per iteration can be O(|V |). We study the effect of
varying q, the fraction of the sampled edges that are acted upon per iteration, using three datasets: Left: a
transportation network of European cities and roads between them (1039 nodes and 1305 edges) from [56];
Middle: the C. elegans posterior nervous system connectome (269 nodes and 2902 edges) from [52]; and Right:
a weighted social network of face-to-face interactions during an exhibition on infectious diseases, with initial
edge weights proportional to the number of interactions between pairs of people (410 nodes and 2765 edges)
from [57]. We prioritize edge reduction (allowing for deletion, contraction, and reweighting). At each iteration,
the algorithm randomly samples a maximal independent edge set, and chooses � such that a fraction q of these
edges (with the lowest �?e) are acted upon. For each run, we compute the hyperbolic distance d~x (fractional
error) between L†

G
~x and L†

eG,l
~x, where ~x is one of three eigenvectors of the original Laplacian. Top plots display

the results when the graph has 1/2 of its original number of edges, and bottom plots when it has 1/12. Shading
denotes one standard deviation about the mean for 8 runs of the algorithm for a given value of q. Note that a
significant fraction (q ⇠ 1/16) of the sampled edges can be reduced each iteration without sacrificing much in
terms of accuracy. As, empirically, the size of the independent edge sets are typically O(|V |), the number of
edges acted upon per iteration can likewise be O(|V |).

F Efficiently computing me

As discussed in Main Text Section 4, the main computational bottleneck of our algorithm is computing ⌦e and
me. For ⌦e, we can draw on the work of [20], which describes a method for efficiently computing "-approximate
values of ⌦e for all edges, requiring eO(|E| log |V |/✏2) time. In this section, we describe an analogous procedure
to efficiently compute the me.
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Recall that the reduced Laplacian is:

LeG = W �1
n B>WeB ,

hence, the quantity cLeG
def
= W

1/2
n LeGW �1/2

n is clearly symmetric.

Less obvious is the fact that cL†
eG

def
= W

1/2
n L†

eGW �1/2
n is also symmetric. This can be seen by noting that

W
1/2

n JW �1/2
n is symmetric, and using the definition of the inverse (equation (26)):

cL†
eG = W

1/2
n L†

eGW �1/2
n

= W
1/2

n

⇣�
LeG + J

��1
� J

⌘
W �1/2

n

= W
1/2

n

�
LeG + J

��1
W �1/2

n � W
1/2

n JW �1/2
n

=
⇣
W

1/2
n LeGW �1/2

n + W
1/2

n JW �1/2
n

⌘�1
� W

1/2
n JW �1/2

n .

We also remark that cL†
eG is indeed the pseudoinverse of cLeG:

cL†
eG
cLeG = cLeG

cL†
eG = I � W

1/2
n JW �1/2

n

The change to the reduced Laplacian LeG is given by

�LeG = W �1
n

~be�we
~b

>

e

Thus, by the Woodbury matrix identity, the change to its inverse is

�L†
eG = fweL

†
eGW �1

n
~be~b

>

e L†
eG

where f is given by equation (5).

Lifting this change back to the original dimension via equation (28) gives

�L†
eG,l = fweC

>L†
eGW �1

n
~be~b

>

e L†
eGW �1

n C

In particular, as L†
eGW �1

n is symmetric, �L†
eG,l

is also symmetric, thus we can write the Frobenius norm as
����L†

eG,l

���
F

= fwe
~b

>

e L†
eGW �1

n CC>L†
eGW �1

n
~be (37)

= fme (38)

Note that the definition of me provided in Section 3.3 of the Main Text (equation (9)) applies to the case of unit
node weights, and the general expression is given by

me = we
~b

>

e L†
eGL†

eGW �1
n

~be, (39)

where we have used CC> = Wn.

Thus, we can express me in terms of cL†
eG:

me = we
~b

>

e W �1/2
n

cL†
eG
cL†

eGW �1/2
n

~be

= we

���cL†
eGW �1/2

n
~be
���

2

2
.

We can now use the Johnson–Lindenstrauss lemma to build a structure from which one can efficiently compute
approximations of me. Let Q be a random projection matrix of size k ⇥ n, where k = O(log n/"2), then one
can compute "-approximations of me as follows:

me ⇡ we

���QcL†
eGW �1/2

n
~be
���

2

2
.

Let Z = QcL†
eG, and denote the ith rows of Q and Z by ~qi and ~zi, respectively. Then, one can make k calls to

an efficient algebraic multigrid solver (we used the pyamg package [58]) to obtain approximate solutions to
cLeG~zi = ~qi for the k rows of Z . An approximation to the me of any edge can now be computed by taking the
difference between the columns of ZW �1/2

n corresponding to the two nodes jointed by this edge, and taking the
squared 2-norm of the result.
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F.1 Constructing the projection matrix

Care must be taken in constructing the projection matrix Q . In particular, its rows must be orthogonal to the null
space of cLeG, namely ~w

1/2
n . In addition, the columns must be nearly unit length. To this end, we initialize Q as a

random matrix with entries {1/
p

k, �1/
p

k} with equal probability and iterate the following steps:

1. For each column, scale its values such that it has unit length
2. For each row, subtract its weighted mean ~q>

i ~w
1/2
n /~1

>
~w

1/2
n

We iterate this procedure until the columns have nearly unit lengths, to within a factor sufficiently smaller than ".

As a proof of concept, in Figure SI 5, we show the approximate me as a function of their exact values.
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Figure SI 5: Efficient approximation of me. As a proof of concept, we compare the approximation of me

(computed using the procedure described in this section) with their exact values. Here, we consider a 64 ⇥ 64
torus graph (4096 nodes and 8192 edges), where the edge weights are randomly distributed as exp(U(�2, 2)),
where U(a, b) is the uniform distribution. To calculate the approximate me, we project from 4096 to 33
dimensions, resulting in approximations that are typically within a factor of 1.27 of the exact value.

G Perturbations to eigenvalues of the Laplacian pseudoinverse

We first provide the lowest order change in the eigenvalues of L†
G

. Then, we show how it relates to the Frobenius
norm of the perturbation, explicitly relating it to our graph reduction algorithm.

Consider an inverse Laplacian L†, which has an eigenvector ~x (without loss of generality, assume k~xk2 = 1)
with associated eigenvalue �. If we perturb L† by "�L†, we can solve for the first-order corrections to this
“eigenpair” as follows:

(L† + "�L†)(~x + "�~x) = (� + "��)(~x + "�~x)

(L†
� �)�~x = (�� � �L†)~x + O("),

where we have used L†~x = �~x.

Taking the inner product with ~x gives

~x>(L†
� �)�~x = ~x>(�� � �L†)~x

�~x>(L†
� �)~x = ��~x>~x � ~x>L†~x

0 = �� � ~x>L†~x,

where we have used the symmetry of L†.

This provides the first-order correction to the eigenvalues of L† + "�L†:

�� = x>�L†~x. (40)

The correction in (40) is controlled by the operator norm of �L†,

�� = ~x>�L†~x  sup
k~xk2=1

���L†~x
��

2
=
���L†��

op .

19



Thus, bounding the first-order correction to the eigenvalues,

|��| 
���L†��

op . (41)

As the operator norm is bounded by the Frobenius norm (by the Cauchy–Schwarz inequality), the estimated
error (ie,

P
E
h���L†��2

F

i
, equation (18)) provides a conservative bound for the change in the eigenvalues of the

resulting reduced graph.

Moreover, as the bound is the same for all eigenvalues of the perturbed L†, the relative error is more tightly
bounded for its largest eigenvalues (those associated with large-scale structure).

H Comparison of graph reduction methods
using typical similarity measures

Our proposed hyperbolic distance is not usually used as a measure of similarity. Hence, in this section, we show
that other more commonly used measures yield similar results when comparing graph reduction algorithms.

H.1 Sparsification

Figure SI 6 compares our algorithm (prioritizing edge reduction, and excluding the possibility of contraction)
with the spectral sparsification algorithm of [20] using a stochastic block model (SBM) with four distinct
communities. We choose a highly associative SBM due to the clear separation between the eigenvectors
associated with global structure (ie, the communities) and the bulk of the spectrum. Note that these algorithms
have different objectives (preserving L† and L, respectively), and both accomplish their desired goal.
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Figure SI 6: Our sparsification algorithm preferentially preserves global structure. We compare our
algorithm without contraction (in red) with that of Spielman & Srivastava [20] (in blue) using a symmetric
stochastic block model (256 nodes, 4 communities, and intra- and inter-community connection probabilities of
2�2 and 2�6, respectively). We ran both algorithms 16 times on the same initial graph. For each eigenvector of
the original Laplacian, we compute the mean and standard deviation of its quadratic forms (with LeG and with
L†

eG) as a function of edges remaining. We divide the eigenvectors into two groups: the 3 nontrivial eigenvectors
(“global structure”) and the remaining eigenvectors (“local details”), and compute the average mean and average
standard deviation for each group. Shading denotes one (average) standard deviation about the (average) mean.
Left: Laplacian pseudoinverse quadratic form. Right: Standard Laplacian quadratic form. Note that the upward
bias of the “reciprocal” quadratic form is expected for both algorithms (as E[X]  1/E[1/X] for any random
variable X > 0).

H.2 Coarsening

Figure SI 7 replicates the results of Figure 3, but uses the Laplacian pseudoinverse quadratic form to measure
the reduction quality instead of our proposed hyperbolic distance.

Figure SI 8 compares our method with that of Loukas [55], using the average relative error of the k lowest
non-trivial eigenvalues of the Laplacian (ie, 1

k

Pk+1
i=2

��e�i � �i

����i) to measure the reduction quality.

20
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Figure SI 7: Our coarsening algorithm performs even better when using the quadratic form with L†. Here
we replicate the experiments in Figure 3. However, instead of using our proposed hyperbolic distance, we
consider the logarithm of the fractional change in the Laplacian pseudoinverse quadratic form for ~x the lowest
non-trivial eigenvector of the original Laplacian:

��log
�
~x>L†

eG~x
�
~x>L†

G
~x
���. As before, for each algorithm, we plot

the mean of this quantity normalized by that obtained by random matching (RM). Shading denotes one standard
deviation about the mean for 16 runs of the algorithms. The results are remarkably similar to those obtained
using our proposed hyperbolic distance (Figure 3). The most notable deviation is that our algorithm appears to
perform better when compared using this quadratic form.
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Figure SI 8: Our algorithm preferentially preserves the lower portion of the Laplacian spectrum. We com-
pare our coarsening algorithm (Ours) with that of Loukas [55] (LV) using the same three datasets as in Figure 3.
We use the relative error in the k lowest non-trivial eigenvalues of the Laplacian: 1

k

Pk+1
i=2

��e�i � �i

����i, a
measure of spectral similarity considered in [55]. Shading denotes one standard deviation about the mean for
8 runs of the algorithms. Note that our algorithm performs considerably better when applied to graphs with a
geometric quality.

I Applications to graph visualization

Data visualization is an important (and aesthetically pleasing) application of graph reduction. As such, we
generated videos of our algorithm reducing several real-world datasets. Figure SI 9 displays several stages of our
algorithm applied to a temporal social network. A video of this reduction can be found here; an application to
an airport network (a case with both geometric and scale-free aspects) can be found here; an application to the
European road network can be found here, and a reduction of a “hierarchical meta-graph” can be found here.1

1Explicit urls for the non-hyperlinked:
youtube.com/watch?v=qqLJclVUML8; youtube.com/watch?v=tXUr6RBRaEI;
youtube.com/watch?v=UVhT0y4Uae0; and youtube.com/watch?v=i3u4kkxMK40.
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Combining nodes means we have to assign a weight to

them, according to the “amount” of nodes they repre-

sent. Let C be the |V �
| ⇥ |V | projection matrix, mapping

from the original nodes V to the contracted nodes V �.

3If multiple edges are reduced at once, one must use the (more
general) Woodbury matrix identity.

Figure 2: Laplacian quadratic form x>L eGx for sev-

eral choices of eigenfunctions of the original Laplacian.

Left: Spielman and collaborators’ sparsification method.

Right: Our method, using only edge deletion.

Figure 3: Fractional error in the inverse Laplacian,

kL†
eG
x � L†

Gxk2/kL†
Gxk2. Left: Spielman and collabora-

tors’ sparsification method. Right: Our method, using

both deletion and contraction.
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tant. Di�erential geometry o�ers a prescription for how

to incorporate node weights into the Laplacian; treating

a graph as a simplicial complex, the Hodge Laplacian for
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Thus, in cases where the nodes have an additive measure
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use the projection matrices: C>LW�1
n C.

|V | = 410

|E| = 2765

|V | = 25

|E| = 17
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Figure SI 9: Visualization of our graph reduction algorithm preserving global structure. We applied our
algorithm (prioritizing edge reduction, and allowing for deletion, contraction, and reweighting) to a weighted
social network of face-to-face interactions during an exhibition on infectious diseases, with initial edge weights
proportional to the number of interactions between pairs of people (410 nodes and 2765 edges) from [57]. Node
color indicates the lowest nontrivial eigenvector of the reduced Laplacian, which in this case is aligned with the
temporal direction. This graph displays a notable amount of hierarchical clustering (owing to its social nature),
which is reflected in the reduced graphs. Eg, our algorithm begins by collapsing small, tightly-knit clusters of
several people into one “supernode”, corresponding to groups of people who visited the exhibition together. A
video of this reduction can be found here.
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https://www.youtube.com/watch?v=PW8szpzatEU

