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Abstract

Natural images are virtually surrounded by low-density misclassified regions that
can be efficiently discovered by gradient-guided search — enabling the generation
of adversarial images. While many techniques for detecting these attacks have
been proposed, they are easily bypassed when the adversary has full knowledge
of the detection mechanism and adapts the attack strategy accordingly. In this
paper, we adopt a novel perspective and regard the omnipresence of adversarial
perturbations as a strength rather than a weakness. We postulate that if an image
has been tampered with, these adversarial directions either become harder to find
with gradient methods or have substantially higher density than for natural images.
We develop a practical test for this signature characteristic to successfully detect
adversarial attacks, achieving unprecedented accuracy under the white-box setting
where the adversary is given full knowledge of our detection mechanism.

1 Introduction

The advance of deep neural networks has led to natural questions regarding its robustness to both
natural and malicious change in the test input. For the latter scenario, the seminal work of Biggio et
al. [3] and Szegedy et al. [48] first suggested that neural networks may be prone to imperceptible
changes in the input — the so-called adversarial perturbations — that alter the model’s decision
entirely. This weakness not only applies to image classification models, but is prevalent in various
machine learning applications, including object detection and image segmentation [10, 54], speech
recognition [8], and deep policy networks [2, 21].

The threat of adversarial perturbations has prompted tremendous effort towards the development
of defense mechanisms. Common defenses either attempt to recover the true semantic labels of
the input [5, 12, 19, 38, 41, 45] or detect and reject adversarial examples [17, 28, 31, 33-35, 55].
Although many of the proposed defenses have been successful against passive attackers — ones that
are unaware of the presence of the defense mechanism — almost all fail against adversaries that have
full knowledge of the internal details of the defense and modify the attack algorithm accordingly
[1, 6]. To date, the success of existing defenses have been limited to simple datasets with relatively
low variety of classes [24, 29, 39, 44, 52].

Recent studies [ 13, 42] have shown that the existence of adversarial perturbations may be an inherent
property of natural data distributions in high dimensional spaces — painting a grim picture for
defenses. However, in this paper we propose a radically new approach to defenses against adversarial
attacks that turns this seemingly insurmountable obstacle from a weakness into a strength: We use
the inherent property of the existence of valid adversarial perturbations around a natural image as a
signature to attest that it is unperturbed.
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Concretely, we exploit two seemingly contradicting properties of natural images: On one hand,
natural images lie with high probability near the decision boundary to any given label [13, 42]; on the
other hand, natural images are robust to random noise [48], which means these small “pockets” of
spaces where the input is misclassified have low density and are unlikely to be found through random
perturbations. To verify if an image is benign, we can test for both properties effectively:

1. We measure the degree of robustness to random noise by observing the change in prediction after
adding i.i.d. Gaussian noise.

2. We measure the proximity to a decision boundary by observing the number of gradient steps
required to change the label of an input image. This procedure is identical to running a gradient-based
attack algorithm against the input (which is potentially an adversarial image already).

We hypothesize that artificially perturbed images mostly violate at least one of the two conditions.
This gives rise to an effective detection mechanism even when the adversary has full knowledge of
the defense. Against strong L,-bounded white-box adversaries that adaptively optimize against
the detector, we achieve a worst-case detection rate of 49% at a false positive rate of 20% on
ImageNet [ 1] using a pre-trained ResNet-101 model [20]. Prior art achieves a detection rate of
0% at equal false positive rate under the same setting. Further analysis shows that there exists a
fundamental trade-off for white-box attackers when optimizing to satisfy the two detection criteria.
Our method creates new challenges for the search of adversarial examples and points to a promising
direction for future research in defense against white-box adversaries.

2 Background

Attack overview. Test-time attacks via adversarial examples can be broadly categorized into either
black-box or white-box settings. In the black-box setting, the adversary can only access the model
as an oracle, and may receive continuous-valued outputs or only discrete classification decisions
[9, 18, 22,23, 30, 37, 49-51]. We focus on the white-box setting in this paper, where the attacker
is assumed to be an insider and therefore has full knowledge of internal details of the network. In
particular, having access to the model parameters allows the attacker to perform powerful first-order
optimization attacks by optimizing an adversarial loss function.

The white-box attack framework can be summarized as follows. Let h be the target classification
model that, given any input x, outputs a vector of probabilities h(x) with h(x),, = p(y'|x) (ie.
the 3’-th component of the vector h(x)) for every class y'. Let y be the true class of x and £ be a
continuous-valued adversarial loss that encourages misclassification, e.g.,

L(h(x"),y) = —cross-entropy(h(x'), y).

Given a target image x for which the model correctly classifies as arg max
aims to solve the following optimization problem:

y W(X)y =y, the attacker

min L(h(x'),y) , s.t. [|x = x| < 7.

Here, || - || is a measure of perceptible difference and is commonly approximated using the Euclidean
norm || - ||2 or the max-norm || - ||, and 7 > 0 is a perceptibility threshold. This optimization problem
defines an untargeted attack, where the adversary’s goal is to cause misclassification. In contrast, for
a targeted attack, the adversary is given some target label y; # y and defines the adversarial loss to
encourage classification to the target label:

L(h(x'), yr) = cross-entropy(h(x'), y7)- (1)

For the remainder of this paper, we will focus on the targeted attack setting but any approach can be
readily augmented for untargeted attacks as well.

Optimization. White-box (targeted) attacks mainly differ in the choice of the adversarial loss
functions £ and the optimization procedures. One of the earliest attacks [48] used L-BFGS to
optimize the cross-entropy adversarial loss in Equation 1. Carlini and Wagner [7] investigated the use
of different adversarial loss functions and found that the margin loss
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is more suitable for first-order optimization methods, where Z is the logit vector predicted by the
model and £ > 0 is a chosen margin constant. This loss is optimized using Adam [25], and the
resulting method is known as the Carlini-Wagner (CW) attack. Another class of attacks favors the
use of simple gradient descent using the sign of the gradient [16, 27, 32], which results in improved
transferability of the constructed adversarial examples from one classification model to another.

Enforcing perceptibility constraint. For common choices of the measures of perceptibility, the
attacker can either fold the constraint as a Lagrangian penalty into the adversarial loss, or apply a
projection step at the end of every iteration onto the feasible region. Since the Euclidean norm || - ||2
is differentiable, it is commonly enforced with the former option, i.e.,

min L(h(x'), ye) + cl|x — x|

for some choice of ¢ > 0. On the other hand, the max-norm || - || is often enforced by restricting
every coordinate of the difference x — x’ to the range [—7, 7| after every gradient step. In addition,
since all pixel values must fall within the range [0, 1], most methods also project X’ to the unit cube at
the end of every iteration [7, 32]. When using this option along with the cross entropy adversarial loss,
the resulting algorithm is commonly referred to as the Projected Gradient Descent (PGD) attack' [1].

3 Detection Methods and Their Insufficiency

One commonly accepted explanation for the existence of adversarial examples is that they operate
outside the natural image manifold — regions of the space that the model had no exposure to during
training time and hence its behavior can be manipulated arbitrarily. This view casts the problem of
defending against adversarial examples as a robust classification or anomaly detection problem. The
former aims to project the input back to the natural image manifold and recover its true label, whereas
the latter only requires determining whether the input belongs to the manifold and reject it if not.

Detection methods. Many principled detection algorithms have been proposed to date [ 17, 28, -

, 55]. The most common approach involves testing the input against one or several criteria that are
satisfied by natural images but are likely to fail for adversarially perturbed images. In what follows,
we briefly describe two representative detection mechanisms.

Feature Squeezing [55] applies a semantic-preserving image transformation to the input and measures
the difference in the model’s prediction compared to the plain input. Transformations such as median
smoothing, bit quantization, and non-local mean do not alter the image content; hence the model
is expected to output similar predictions after applying these transformations. The method then
measures the maximum L, change in predicted probability after applying these transformations and
flags the input as adversarial if this change is above a chosen threshold.

Artifacts [14] uses the empirical density of the input and the model uncertainty to characterize benign
and adversarial images. The empirical density can be computed via kernel density estimation on
the feature vector. For the uncertainty estimate, the method evaluates the network multiple times
using different random dropout masks and computes the variance in the output. Under the Bayesian
interpretation of dropout, this variance estimate encodes the model’s uncertainty [15]. Adversarial
inputs are expected to have lower density and higher uncertainty than natural inputs. Thus, the method
predicts the input as adversarial if these criteria are below or above a chosen threshold.

Detectors that use multiple criteria (such as Feature Squeezing and Artifacts) can combine these
criteria into a single detection method by either declaring the input as adversarial if any criterion
fails to be satisfied, or by training a classifier on top of them as features to classify the input. Other
notable useful features for detecting adversarial images include convolutional features extracted from
intermediate layers [28, 34], distance to training samples in pixel space [17, 31], and entropy of
non-maximal class probabilities [36].

Bypassing detection methods. While the approaches for detecting adversarial examples appear
principled in nature, the difference in settings from traditional anomaly detection renders most
techniques easy to bypass. In essence, a white-box adversary with knowledge of the features used for
detection can optimize the adversarial input to mimic these features with gradient descent. Any non-
differentiable component used in the detection algorithm, such as bit quantization and non-local mean,

!Some literature also refer to the iterative Fast Gradient Signed Method (FGSM) [16] as PGD [32].



can be approximated with the identity transformation on the backward pass [!], and randomization
can be circumvented by minimizing the expected adversarial loss via Monte Carlo sampling [!].
These simple techniques have proven tremendously successful, bypassing almost all known detection
methods to date [6]. Given enough gradient queries, adversarial examples can be optimized to appear
even “more benign” than natural images.

4 Detection by Adversarial Perturbations

In this section we describe a novel approach to detect adversarial images that relies on two principled
criteria regarding the distribution of adversarial perturbations around natural images. In contrast to
the shortcomings of prior work, our approach is hard to fool through first-order optimization.

4.1 Criterion 1: Low density of adversarial perturbations

The features extracted by convolutional neural networks (CNNs) from natural images are known to
be particularly robust to random input corruptions [19, 48, 53]. In other words, random perturbations
applied to natural images should not lead to changes in the predicted label (i.e. an adversarial image).
Our first criterion follows this intuition and tests if the given input is robust to Gaussian noise:

C1: Robustness to random noise. Sample ¢ ~ N (0,021) (where o is a hyperparameter) and
compute A = ||h(x) — h(x + €)||1. The input x is rejected as adversarial if A is sufficiently large.

This style of reasoning has indeed been successfully applied to de- |
fend against black-box and gray-box” attacks [19, 40, 53]. Figure 1
shows a 2D cartoon depiction of the high dimensional decision
boundary near a natural image x. When the adversarial attack per-
turbs x slightly across the decision boundary from A to an incorrect
class B, the resulting adversarial image x’ can be easily randomly .
perturbed to return to class A and will therefore fail criterion C1.

However, we emphasize that this criterion alone is insufficient
against white-box adversaries and can be easily bypassed. In or-
der to make the adversarial image also robust against Gaussian noise,
the attacker can optimize the expected adversarial loss under this
defense strategy [|] through Monte Carlo sampling of noise vectors
during optimization. This effectively produces an adversarial image
x" (see Figure 1) that is deep inside the decision boundary.

Figure 1: Schematic illustra-
tion of the shape of adversarial
regions near a natural image X.

More precisely, for a natural image x with correctly predicted label y and target label y;, let h(x) be
the predicted class-probability vector. Let us define p*®" to be identical to h(x) in every dimension,
except for the correct class y and the target y;, where the two probabilities are swapped. Consequently,
dimension y; is the dominant prediction in p*?¥. We redefine the adversarial loss of the (targeted)
PGD attack to contain two terms:

L* = L1 + L where: £1 = L(h(xX'),p""), and L3 = Econ (0,021 [|A(X) — h(x' + €)[1], 3)
—_————

misclassify x” as y; bypass C1

where L(-, ) denotes the cross-entropy loss. For the first term, we deviate from standard attacks
by targeting the probability vector p*®" instead of the one-hot vector corresponding to label ;.
Optimizing against the one-hot vector would cause the adversarial example to over-saturate in
probability, which artificially increases the difference A = ||h(x’) — h(x’ + €)||1 and makes it easier
to detect using criterion Cl1.

We evaluate this white-box attack against criterion C1 using a pre-trained ResNet-101 [20] model on
ImageNet [ 1] as the classification model. We sample 1,000 images from the ImageNet validation
set and optimize the adversarial loss £* for each of them using Adam [25] with learning rate 0.005
for a maximum of 400 steps to construct the adversarial images.

Figure 2 (left) shows the effect of the number of gradient iterations on A when optimizing the
adversarial loss £*. The center line shows median values of A across 1,000 sample images, and

?In gray-box attacks, the adversary has full access to the classifier k but is agnostic to the defense mechanism.
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Figure 2: The variation in A under Gaussian perturbations (C1; left plot) and numbers of steps K to
the decision boundary (C2t; right plot) for adversarial images constructed using different numbers of
gradient iterations. Gray-box attacks (orange) can be detected easily with criterion C1 alone (left
plot, the orange line is significantly higher than the gray line). For white-box attacks (blue), C1 alone
is not sufficient (the blue line overlaps with the gray line) — however C2 (right plot) separates the
two lines reliably when C1 does not.

the error bars show the range of values between the 30th and 70th quantiles. When the attacker
is agnostic to the detector (orange line), i.e., only optimizing £, A does not decrease throughout
optimization and can be used to perfectly separate adversarial and real images (gray line). However,
in the white-box attack, the adversarial loss explicitly encourages A to be small, and we observe that
indeed the blue line shows a downward trend as the adversary proceeds through gradient iterations.
As aresult, the range of values for A quickly begins to overlap with and fall below that of real images
after 100 steps, which shows that criterion C1 alone cannot be used to detect adversarial examples.

4.2 Criterion 2: Close proximity to decision boundary

The intuitive reason why the attack strategy described above in section 4.1 can successfully fool
criterion C1 is that it effectively pushes the adversarial image far into the decision boundary of the
target class (e.g. x” in Figure 1) — an unlikely position for a natural image, which tends to be close
to adversarial decision boundaries. Indeed, Fawzi et al. [13] and Shafahi et al. [42] have shown that
adversarial examples are inevitable in high-dimensional spaces. Their theoretical arguments suggest
that, due to the curse of dimensionality, a sample from the natural image distribution is close to the
decision boundary of any classifier with high probability. Hence, we define a second criterion to test
if an image is close to the decision boundary of an incorrect class:

C2(t/u): Susceptibility to adversarial noise. For a chosen first-order iterative attack algorithm A,
evaluate A on the input x and record the minimum number of steps K required to adversarially
perturb x. The input is rejected as adversarial if K is sufficiently large.

Criterion C2 can be further specialized to fargeted attacks (C2t) and untargeted attacks (C2u), which
measures the proximity (i.e. number of gradient steps) to either a chosen target class or to an arbitrary
but different class. We denote these quantities as K; and K, respectively. In this paper we choose .4
in C2 to be the targeted/untargeted PGD attack, but our framework can plausibly generalize to any
first-order attack algorithm. Figure 2 (right) shows the effect of optimizing the adversarial loss £*
on K. Again, the center line shows the median value of K; across 1,000 images and the error bars
indicate the 30th and 70th quantiles. As expected, real images (gray line) require very few steps to
reach the decision boundary of any random target class. When the adversary does not seek to bypass
criterion C1 (orange line), the constructed adversarial images lie very close to the decision boundary
and are indistinguishable from real images with C2 alone (however here Cl1 is already sufficient).

On the other hand, when the attacker minimizes A to fool criterion C1, the adversarial image moves
away from the decision boundary in order to be robust to random Gaussian noise. This results in
an increase in the number of steps K to reach the decision boundary of a random target class. At
400 steps, there is almost no overlap between the 30-70th quantiles of values of K for real and
adversarial images. This separation begins almost precisely as the value of A for adversarial images
(left plot) begins to overlap with that of natural images at 100 steps. Thus, C2t becomes an effective
criterion to detect adversarial images that optimize against C1.
























