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1 Graphon regularity

One way to define the regularity of a geometric graphon on Sd−1 is through the notion of weighted
Sobolev spaces on the interval [−1, 1]. In this context, the regularity is related to the rate at which
the eigenvalue sequence {λ∗i }∞i=0 tends to 0. Here we follow [6]. For a function of the form
f(t) =

∑
k≥0 λ

∗
kckG

γ
k(t), we define the norm

‖f‖2Zsγ =

∞∑
k=0

dk|λ∗k|2
(
1 + k(k + 2γ + 1))s

)
We will say that f belongs to weighted Sobolev space Zsγ if ‖f‖Zsγ ≤ ∞. We will refer to s as the
regularity parameter. As in the case with classical Sobolev spaces, there is a definition of weighted
Sobolev spaces that involves the integrability (with respect to the measure wγ(t)dt) of the weak
derivatives of a function. That is a function f belongs to Zsγ if it has s weak derivatives that are
integrable with respect to the weighted L2 norm in [−1, 1] with weight wγ(t) = (1− t)γ− 1

2 . In [6]
the authors prove that both definitions are in fact equivalent.

2 Geometric Graphons have λ∗
0 as the largest eigenvalue

To avoid border issues in HEiC algorithm, we use the fact that the eigenvalue λ∗0 associated to the
Gegenbauer polynomial Gγ0(t) = 1(t) := 1 for t ∈ [−1, 1] is the largest one, which in the notation
of the paper can be written as λsort

0 = λ∗0. This is true for all geometric graphons.

Lemma 1. If W : Sd−1 × Sd−1 → [0, 1] is such that

W (x, y) = f(〈x, y〉)

for f : [−1, 1]→ [0, 1], then

dW (x) :=

∫
Sd−1

W (x, y)dσ(y)

is constant.

Proof. The proof follows from a change of variable.

The following theorem is an analogous result to a classical theorem of spectral graph theory
Theorem 2. For a graphon W : Sd−1 × Sd−1 → [0, 1] we have∫

Sd−1×Sd−1

W (x, y)dσ(x)dσ(y) ≤ λ∗0 ≤ max
x∈Sd−1

d(x)
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Proof. By Courant-Fisher min-max principle we have

λ∗0 = max
f∈L2([−1,1])

〈TW f, f〉
〈f, f〉

In particular, if we take the function 1(x) := 1 for x ∈ [−1, 1] we have

λ∗0 ≥
〈TW1,1〉
〈1,1〉

=

∫
Sd−1 W (x, y)dσ(x)dσ(y)∫

Sd−1dσ(y)

= dW

the last follows form the definition of dW and the fact that σ is a probability measure on the
sphere. On the other hand, if f0 is an eigenfunction associated with λ0 we can choose x∗ such that
f0(x∗) ≥ f0(x) for x ∈ [−1, 1]. Without loss of generality, assume that f0(x∗) 6= 0. So

λ∗0 =
TW f0(x∗)

f0(x∗)

=

∫
Sd−1

W (x∗, y)
f0(y)

f0(x∗)
dσ(y)

≤
∫
Sd−1

W (x∗, y)dσ(y)

= dW (x∗)

which finish the proof

Since Gγ0(t) = 1(t) we have by Lemma 1 and Theorem 2 that the λ∗0 = λsort
0 .

3 Proof of the rate of convergence of HEiC Algorithm

This section is devoted to the proof of the main theorem, Theorem 2.2. In the sequel, the sentence
“n large enough” means that n is bigger than some n0 ≥ 1 that may depend on W and α (we will
make this explicit). Recall that the result obtained will hold with probability 1 − α with α > 0
arbitrarily small. We used through the paper, the notation X ≤α C, where X is random variable and
C a constant, to indicate that the inequality holds with probability bigger than 1− α.

The aim is to bound ‖G∗ − Ĝ‖F and we will split it into two terms as follows

‖G∗ − Ĝ‖F ≤ ‖G∗ − G‖F + ‖G − Ĝ‖F
where the matrix G will be defined later (see Proposition 3) using a subset of eigenvectors V of Tn.
We will treat these terms separately starting with ‖G − Ĝ‖F in Section 3.2 and the other will be
treated in Section 3.3.

The first step is to control the probability of the following event E

E :=
{
δ2

(
λ
( 1

ρn
Tn
)
, λ(TW )

)
∨ 2

9
2

√
d

ρn∆∗
‖Tn − T̂n‖op ≤

∆∗

8

}
,

where ∆∗ is the spectral gap Gap1(W ). We will prove in Section 3.1 that this event holds with
probability 1−α/2 when n is large enough. This event ensures that the “noise level” is lower than the
spectral gap Gap1(W ) and it guarantees that our algorithm recovers the right subset of eigenvectors
as will see in Proposition 3, Section 3.1.

3.1 Event guaranteeing the algorithm convergence

Invoke Theorem 7 with Y = T̂n − Tn, which by definition have independent centered entries
(conditional to latent points {Xi}ni=1), to obtain

P
(
‖T̂n − Tn‖op ≥

3
√

2D0

n
+ C0

√
log n/α

n

)
≤ α

2



for α ∈ (0, 1/3). Note that for n large enough, one has

‖T̂n − Tn‖op ≤α/4 C max
{√ρn

n
,

√
log n

n

}
by Theorem 7, because D0 = max0≤i≤n

∑n
j=1 Θij(1 − Θij) is O(nρn), by the definition of Θ.

Thus, for n large enough we have

1

ρn
‖T̂n − Tn‖op ≤α/4 C max

{ 1
√
ρnn

,

√
log n

ρnn

}
≤ (∆∗)2

2
17
2

√
d
, (1)

provided that
√

logn
ρnn

= o(1), which is the case when ρn = Ω(log n/n), which we have called the

relatively sparse case. Let V ∈ Rn×d and V̂ ∈ Rn×d be two matrices with columns corresponding
to the eigenvectors associated to eigenvalues λi1 , λi2 , . . . , λid and λ̂i1 , λ̂i2 , · · · , λ̂id of Tn and T̂n
respectively, as in Theorem 8. We use Lemma 5 with A = V̂ Ô and B = V , where Ô is an orthogonal
matrix, and Theorem 8 assuming that the right hand side of (7) is smaller than 1, obtaining

‖V̂ V̂ T − V V T ‖F ≤ 2‖V̂ Ô − V ‖F

≤ 2
5
2 min {

√
d‖Tn − T̂n‖op, ‖Tn − T̂n‖F }

∆
(2)

where ∆ := dist({λi1 , · · · , λid}, λ(Tn) \ {λi1 , · · · , λid}). Then we have

‖V̂ V̂ T − V V T ‖F ≤
2

5
2

√
d

ρn
‖Tn − T̂n‖op

1
ρn

∆

≤α
ρn(∆∗)2

26∆
(3)

Now, we use the δ2 metric to quantify the convergence of the eigenvalues of the normalized probability
matrix 1

ρn
Tn to the eigenvalues of the integral operator TW . From Theorem 14 we have that, when n

is large enough

δ2

(
λ(

1

ρn
Tn), λ(TW )

)
≤α/4 C

( log n

n

) s
2s+d−1 ≤ ∆∗

8
, (4)

where ∆∗ is the spectral gap Gap1(W ). This and (1) ensure that E has probability 1 − α/2. In
particular, it gives the following result proving that our algorithm find the right eigenvectors.

Proposition 3. On the event E , there exists one and only one set Λ1 of d eigenvalues of 1
ρn
T̂n

separated by at least ∆∗/2 from the other eigenvalues of T̂n. These eigenvalues are at a distance
at most ∆∗/8 of 1

ρn
λ1, . . . ,

1
ρn
λd, the eigenvalues of Tn whose eigenvectors define the matrix

G := (1/c1)V V T . Furthermore, on the event E , our algorithm returns the matrix Ĝ = (1/c1)V̂ V̂ T

composed by the eigenvectors corresponding to the eigenvalues of Λ1.

Proof. When ∆∗ > 0, we remark that λ∗1 = λ∗2 = . . . = λ∗d is the only eigenvalue of TW with
multiplicity d1 = d, the others eigenvalues (except for λ∗0) having multiplicity strictly greater than d.
Now, using (4) we deduce that there exists a unique set 1

ρn
λi1 ,

1
ρn
λi2 , . . . ,

1
ρn
λid of d eigenvalues

of Tn that can be separated from the other eigenvalues by a distance at least 3∆∗/4, namely the
triangular inequality gives

∆

ρn
≥ 3∆∗

4
. (5)

To these eigenvalues correspond the eigenvectors V ∈ Rn×d defining G := (1/c1)V V T .

Furthermore, using (3) we get that there exists eigenvalues λ̂i1 , λ̂i2 , . . . , λ̂id and eigenvectors V̂ ∈
Rn×d of T̂n such that ‖V̂ V̂ T − V V T ‖F ≤ ∆∗/48. We define Λ1 := {λ̂i1 , · · · , λ̂id}. By Hoffman-
Wielandt inequality [2, Thm.VI.4.1], it holds( d∑

k=1

(λ̂sort
k − λsort

k )2
)1/2

≤ ‖V̂ V̂ T − V V T ‖F ≤ ∆∗/8 ,
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where λ̂sort
1 ≥ λ̂sort

2 ≥ · · · ≥ λ̂sort
d (resp. λsort

1 ≥ λsort
2 ≥ · · · ≥ λsort

d ) is the sorted version of the
eigenvalues λ̂i1 , · · · , λ̂id (resp. λi1 , · · · , λid ). By triangular inequality, we deduce that

∆̂ := dist(Λ1, λ(T̂n) \ Λ1) ≥ ∆∗

2
,

namely λ̂i1 , λ̂i2 , . . . , λ̂id is a set of d eigenvalues at distance at least ∆∗/2 from the other eigenvalues
of T̂n.

This analysis can be also done for the other eigenvalues as follows. Eq. (4) shows that there exists
a set of dk eigenvalues of Tn which concentrate around µ∗k, and such that it has diameter smaller
than ∆∗/4. Recall that dk is the size of the Spherical Harmonics space k and dk > d1 = d. Weyl’s
inequality [2, P.63] shows that there exists a set Λk of dk eigenvalues of T̂n around µ∗k of size ∆∗/4.
Now, consider a subset L of d eigenvalues which is different from Λ1 then the previous discussion
shows that there exists an eigenvalue λ̂ which is not in L and that belongs to same cluster to one of
the eigenvalues in L. In particular λ̂ is at a distance less than ∆∗/4 of L. By (5) we deduce that, on
the event E , Algorithm 1 returns Ĝ = (1/c1)V̂ V̂ T composed by the eigenvectors corresponding to
the eigenvalues of the aforementioned cluster of d eigenvalues.

We now prove the following lemma, which is stated in the article

Lemma 4. On the event E , the following equality holds

Gap1(T̂n) = max
{

max
1≤i≤n−d

min {left(i), right(i+ d)}, left(n− d+ 1)
}

Proof. The lemma follows from Proposition 3. Indeed, on the event E there exist only one set Λ1 of
eigenvalues of T̂n with cardinality d , whose distance to the rest of the spectrum is larger that ∆∗

and its diameter is smaller that ∆∗. When sorting the eigenvalues of T̂n in decreasing order, those
belonging to Λ1 will appear in consecutive order. The lemma follows from this observation and from
the fact Gap1(T̂n; in−d−1, · · · , in−1) = left(n− d− 1).

3.2 Sampling error control

We have by (2) that

‖Ĝ − G‖F =
1

c1
‖V̂ V̂ T − V V T ‖F ≤α C

(d− 2)√
dn

, (6)

whenever n is large enough and ∆∗ > 0, where C may depend on W . In the last inequality we used
that c1 = d/(d− 2).

3.3 Sampled eigenvectors convergence

We are left to control ‖G∗−G‖F . We begin by recalling some basic definitions we have made through
the paper and introducing some notation. SetR = O((n/ log n)

1
2s+d−1 ) and R̃ := d0 +d1 + . . .+dR

the total size of the R + 1 first Harmonic spaces. It is well known that R̃ = O(Rd−1) = o(n) for
s > 0. If WR is the rank R′ approximation of W , we have

TR =
( 1

n
WR(Xi, Xj)

)
i,j

= Φ0,RΛ∗0,RΦ0,R

where Φ0,R is the matrix with columns Φk ∈ Rn, for 0 ≤ k ≤ R′, such that (Φk)i = φk(Xi) and
Λ∗0,R = diag(λ∗0, λ

∗
2, · · · , λ∗R̃). Similarly Λ0,R = diag(λ0, λ2, · · · , λR̃). Let Ṽ be the matrix that

contains as columns the eigenvectors of the matrix Tn and ṼR contains as columns the eigenvectors
TR so we have the eigenvalue decomposition

Tn = Ṽ ΛṼ T

TR = ṼRΛRṼ
T
R

4



Let V be the matrix that contains the columns 1, · · · , d of Ṽ , VR contains the columns 1, · · · , d of
ṼR and V ∗ contains φk for 1 ≤ k ≤ d as columns. Then G∗,G,GR,G∗proj are defined by

G∗ : =
1

c1
V ∗(V ∗)T

G : =
1

c1
V V T

GR : =
1

c1
VRVR

T

G∗proj : = V ∗(V ∗TV ∗)−1V ∗T

Note that G∗proj is the projection matrix for the column span of the matrix V ∗, that is, it is the
projection matrix onto the space span{Φ1, · · · ,Φd}.
We have by triangle inequality

‖G∗ − G‖F ≤ ‖G∗ − G∗proj‖F + ‖G∗proj − GR‖F + ‖GR − G‖F

We call truncation error to the last term in the right hand side, because it is related to the fact that WR

is a rank R′ approximation of W .

To bound ‖G − GR‖F we will use Theorem 8 noting that G and GR have as columns the eigenvectors
of matrices Tn and TR. So

‖G − GR‖F ≤
2

3
2 ‖Tn − TR‖F

∆
≤ C (n/ log n)−s/(2s+d−1)

∆

where we recall that R = O((n/ log n)
1

2s+d−1 ). In order to bound ‖G∗ − G∗proj‖F we use Lemma 6
with B = V ∗ obtaining

‖G∗ − G∗proj‖F ≤ ‖Idd − V ∗
TV ∗‖F

On the other hand, we have

‖Idd − V ∗TV ∗‖F ≤
√
d‖Idd − V ∗TV ∗‖op

≤α
d√
n

where we used Theorem 15 to obtain the last inequality.

It only remains to bound the term ‖G∗proj−GR‖F . We concentrate first in bounding the term G∗projG⊥R .
We use Theorem 10, with E = G∗proj , F = G⊥R , B = TR and A = TR +H , where

H := Φ̃0,RΛ∗0,RΦ̃T0,R − Φ0,RΛ∗0,RΦ0,R

the matrix Φ̃0,R has column Φ̃k for k ∈ {1, · · · , R′} where the Φ̃k are obtained from Φk by
a Gram-Schmidt orthonormalization process. In other words, there exists a matrix L such that
Φ̃0,R = Φ0,R(L−1)T . The matrix L comes from the Cholesky decomposition of ΦT0,RΦ0,R, that is,
L satisfy ΦT0,RΦ0,R = LLT .

Note that A and B are symmetric, hence normal matrices, so Theorem 10 applies. Also, in the event
E , we can take S1 = (λ1 − ∆∗

8 , λ1 + ∆∗

8 ) and S2 = R \ (λ1 − 7∆∗

8 , λ1 + 7∆∗

8 )). By Theorem 10
we have

‖G∗projG⊥R‖F ≤
‖A−B‖F

∆∗
=
‖H‖F

∆∗

where ∆ := mink,` 6=1,...,d {|λ∗k − λ∗1|, |λ∗d − λ∗` |}. It remains to bound H .

We have that

‖H‖F ≤ ‖L−TΛ∗0,RL
−1 − Λ∗0,R‖F ‖ΦT0,RΦ0,R‖op

≤ ‖Λ∗0,R‖F ‖L−1L−T − IdR′‖op‖ΦT0,RΦ0,R‖op

5



where in the last line we used Corollary 12. It is easy to see that

‖L−1L−T − IdR′‖op = ‖(ΦT0,RΦ0,R)−1 − IdR′‖op
which, using [4, Lem.12], implies that

‖Z‖F ≤α/4 2C1
Rd−1

√
n

which, since R = O((n/ log n)
1

2s+d−1 ), becomes

‖Z‖F ≤α/4 C ′
( log n

n

) s
2s+d−1

for a constant C ′ > 0. Collecting terms we obtain

‖G∗projG⊥R‖F ≤α/4
C ′′

∆∗

( log n

n

) s
2s+d−1

Since G∗proj and GR are projectors we have, see [2, p.202]

‖G∗proj − GR‖F = 2‖G∗projGR
⊥‖F

which implies that

‖G∗proj − GR‖F ≤α/4
2C ′′

∆∗
(
n

log n
)
−s

2s+d−1

To conclude, we have that

‖Idd − V ∗TV ∗‖F ≤
√
d ‖Idd − V ∗TV ∗‖op

≤α/4
d√
n

where we use Theorem 15 in the second inequality. Collecting terms we conclude that

‖G∗ − G‖F ≤α/4
Cd
∆∗

( log n

n

) s
2s+d−1

where Cd is a constant that depends on d and α.

4 Useful results

Lemma 5. Let A, B be two matrices in Rn×d then

‖AAT −BBT ‖F ≤ (‖A‖op + ‖B‖op)‖A−B‖F
‖AAT −BBT ‖op ≤ (‖A‖op + ‖B‖op)‖A−B‖op .

If it holds that ATA = BTB = Id then

‖AAT −BBT ‖F ≤ 2‖A−B‖F

Proof. We begin with the first inequality

‖AAT −BBT ‖F = ‖(A−B)AT +B(AT −BT )‖F
≤ ‖(A⊗ In)vec(A−B)‖2 + ‖(Id ⊗B)vec(A−B)T ‖2
≤ (‖A⊗ In‖op + ‖Id ⊗B‖op)‖A−B‖F
= (‖A‖op + ‖B‖op)‖A−B‖F .

Here vec(·) represent the vectorization of a matrix, that its transformation into a column vector. The
second inequality is given by

‖AAT −BBT ‖op = ‖(A−B)AT +B(AT −BT )‖op
≤ (‖A‖op + ‖B‖op)‖A−B‖op .

The third statement is an elementary consequence of the above inequalities.

6



Lemma 6. Let B a n× d matrix with full column rank. Then we have

‖BBT −B(BTB)−1BT ‖F = ‖Idd −BTB‖F

Proof. We have

‖BBT −B(BTB)−1BT ‖F = ‖B
(
(BTB)−1 − Idd

)
BT ‖F

and by definition of the Frobenious norm and cyclic property of the trace

‖B
(
(BTB)−1 − Idd

)
BT ‖2F = tr

(
B((BTB)−1 − Idd)B

TB((BTB)−1 − Idd)B
T
)

= tr
(
(Idd −BTB)2

)
= ‖Idd −BTB‖2F

4.1 Bandeira-Van Handel theorem

The following theorem is a slight reformulation of the [1, Cor.3.12]
Theorem 7 (Bandeira-Van Handel). Let Y be a n × n symmetric random matrix whose entries
Yij are independent centered random variables. There exists a universal constant C0 such that for
α ∈ (0, 1)

P
(
‖Y ‖op ≥ 3

√
2D0 + C0

√
log n/α

)
≤ α

where D0 = max0≤i≤n
∑n
j=1 Yij(1− Yij).

Proof. By [1, Rmk.3.13] we have the tail concentration bound (taking their ε equal to 1/2)

P
(
‖Y ‖op

)
≥ 3
√

2D0 + max
ij
|Yij |C0

√
log n/α

the result follows, because maxij |Yij | ≤ 1.

Using the previous theorem with Y = T̂n − Tn, which is centered and symmetric, we obtain the tail
bound

P
(
‖T̂n − Tn‖op ≥

3
√

2D0

n
+ C0

√
log n/α

n

)
≤ α

4.2 Davis-Kahan sin θ theorem

For n large enough, the eigenspace associated to the eigenvalue λ̂1 is close to the eigenspace
associated to the eigenvalue λ1. This is precised by the Davis-Kahan sin θ theorem. We use the
following version which is proved in [9]

Theorem 8. Let Σ and Σ̂ be two symmetric Rn×n matrices with eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λn and λ̂1 ≥ λ̂2 ≥ · · · λ̂n respectively. For 1 ≤ r ≤ s ≤ n fixed, we assume that
min {λr−1 − λr, λs − λs−1} > 0 where λ0 :=∞ and λn+1 = −∞. Let d = s− r + 1 and V and
V̂ two matrices in Rn×d with columns (vr, vr+1, · · · , vs) and (v̂r, v̂r+1, · · · , v̂s) respectively, such
that Σvj = λjvj and Σ̂v̂j = λ̂j v̂j . Then there exists an orthogonal matrix Ô in Rd×d such that

‖V̂ Ô − V ‖F ≤
23/2 min {

√
d‖Σ− Σ̂‖op, ‖Σ− Σ̂‖F }

min {λr−1 − λr, λs − λs+1}
(7)

Also, we need the following perturbation result [2, Thm.VII.2.8]
Theorem 9. Let A and B two the normal matrices and define δ = dist(λ(A), λ(B)). If X satisfies
the Sylvester equation AX −XB = Y , then

‖X‖F ≤
1

δ
‖Y ‖F

7



Another useful perturbation theorem [2, Thm.VII.3.1]
Theorem 10. Let A and B be two normal operators and S1 and S2 two sets separated by a strip of
size δ. Let E be the orthogonal projection matrix of the eigenspaces of A with eigenvalues inside S1

and F be the orthogonal projection matrix of the eigenspaces of B with eigenvalues inside S2. Then

‖EF‖F ≤
1

δ
‖E(A−B)F‖F ≤

1

δ
‖A−B‖F

4.3 Ostrowski theorem

The following eigenvalue perturbation theorem is due to Ostrowski [5, Thm.4.5.9] and [3, Cor.3.54]
Theorem 11. Let A ∈ Rn×n be a Hermitian matrix and S ∈ Rn×n be a nonsingular matrix. Then
for each 1 ≤ i ≤ n there exists θi > 0 such that

λi(SAS
∗) = θiλi(A)

In addition, it holds
|λi(SAS∗)− λi(A)| ≤ |λi(A)|‖S∗S − Idn‖op

Remark 1. The previous theorem is also valid for S singular [5, Cor.4.5.11].

The previous theorem can be extended to the case where S is not necessarily a square matrix [3,
Cor.3.59]
Corollary 12. Let A ∈ Rn×n be a Hermitian matrix and S ∈ Rd×n matrix then

|λi(SAS∗)− λi(A)| ≤ |λi(A)|‖S∗S − Idn‖op

From the previous result we deduce the following corollary
Corollary 13. Under the same conditions of Corollary 12 we have

‖SAS∗ −A‖F ≤ ‖A‖F ‖S∗S − Idn‖op

4.4 Convergence rate of regular graphon estimation

We use the following result, which can be found in [4]
Theorem 14. Let W be a graphon on the sphere of the form W (x, y) = f(〈x, y〉). If f belongs to
the weighted Sobolev space Zswγ

(
(−1, 1)

)
then we have

δ2(λ
( 1

ρn
Tn
)
, λ(TW )) ≤α C

( log n

n

) s
2s+d−1

where ≤α means that the inequality holds with probability greater than 1− α for α ∈ (0, 1/3) and
n large enough.

While Theorem 7 gives a bound for the difference of the eigenvalues of the observed matrix with
respect to the eigenvalues of the probability matrix, Proposition 14 ensures that the eigenvalues of the
empirical matrix are close to these of the integral operator.

4.5 Covariance matrix approximation

Given a set of independent random vectors X1, · · · , Xn uniformly distributed on the sphere Sd−1

we are interested in the concentration properties of the quantity 1
n

∑n
k=1XiX

T
i around its mean,

which is E(XiX
T
i ) = Idd for 1 ≤ i ≤ n (in other words, the vectors Xi are isotropic). Since the

uniform distribution on the sphere is sub-gaussian [8, Thm.3.4.6], we can use the following theorem
[7, Prop.2.1].
Theorem 15. If X1, · · · , Xn are independent random vectors in Rd with d ≤ n which have sub-
gaussian distribution. Then for any α ∈ (0, 1) it holds∥∥ 1

n

n∑
k=1

XkX
T
k − Idd

∥∥
op
≤α

√
d

n

8
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