
7 Appendix

7.1 Do-calculus rules for soft interventions

A recent work developed an extension of the do-calculus rules to soft interventions in structural
causal models (SCMs) [4]. We reproduce a variation of this result for CBNs for completeness.

Proof of Theorem 1. Note that a soft-intervention does not change the underlying causal graph. Since
interventional distribution factorizes with respect to the original graph, any m-separation statement in
graph D implies conditional independence. Under the strict positivity, conditional independence is
equivalent to the invariance given in the rule, which concludes the proof.

For the proof of next two rules, similar to [18], we introduce F-nodes as random variables. Notice
that this is different than the augmented graph construction we have in the main text, where we treat
F-nodes as parameters. This is allowed as only a single F-node is introduced to show the result here,
which is explained next.

Construct the probability distribution p∗ on V ∪ {F} as follows: p∗(V |F = 0) = px,z(V), p∗(V |F =
1) = px(V), where px,z is the interventional distribution after a soft intervention on the set X ∪ Z
and px is the interventional distribution after a soft intervention on the set X is performed. Marginal
distribution of p∗(F) can be picked arbitrarily from the set of strictly positive distribuitons for our
purposes. Assume that interventions are controlled, i.e., px,z(x|pax) = px(x|pax), where pax is the set
of parents of node X.

The desired equality in Rule 2 can be rewritten as p∗(y|z,w, F = 0) = p∗(y|z,w, F = 1). Under the
assumption of strictly positive distributions, this invariance is implied by the conditional independence
statements (Y ⊥⊥ Z |W )p∗ . Therefore, we need to show that the graph separation statement given in
the rule implies the desired conditional independence statement.

For this, observe that p∗ can be factorized as follows:

p∗(V, F) = p∗(F)p∗(V |F) = p∗(F)p∗(z|paz, F)
∏
u,z

p(u|pau). (3)

where pax are the parents of x in D. Note that in G the set of parents of Z is paZ ∪ F. Therefore,
p∗ factorizes according to the graph G. This implies that any d-separation statement on G implies
conditional independence [16][Theorem 1.2.4]. Therefore, we only need to show that the separation
statement given in the rule on mutilated graph implies d-separation statement between Fz and Y given
Z,W.

If Y ⊥⊥ Z |W in DZ , this means there is no backdoor path from Z to Y that is active conditioned on W.
Since Fz only has an edge into Z, conditioned on W,Z any d-connecting path to Y must go through a
backdoor from Z. However the statement Y ⊥⊥ Z |W in DZ implies this cannot happen, implying that
Fz ⊥⊥ Y |Z,W in G, completing the proof.

For the proof of rule 3, we use a similar argument under strict positivity. Consider the same p∗
construction. Similarly, this distribution factorizes with respect to graph G which means and d-
separation statement implies conditional independence. Therefore we only need to show that the
given separation statement in the mutilated graph implies the desired d-separation statement in G.
Suppose Y ⊥⊥ Z |W in DZ(W). This implies that given W, there is no active path from the nodes
in Z − Z(W) to Y . Moreover there is no front-door path from the elements of Z(W) to Y given W.
Suppose for the sake of contradiction that FZ 6⊥⊥ Y |W in G. Since FZ only has edges into Z, any
active path must go through an element in Z. Suppose it goes through an element in Z(W). Since no
descendant of Z(W) is conditioned on, the active path must go through a backdoor in Z(W). However
this would imply Y 6⊥⊥ Z |W in DZ(W), which leads to contradiction. Now suppose active path goes
through an element in Z − Z(W). However, these nodes are not mutilated in G, hence the same active
path would persist in D as well, contradicting with the statement Y ⊥⊥ Z |W in DZ(W). Therefore we
have FZ ⊥⊥ Y |W in G which concludes the proof. �
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7.2 Generalized Do-calculus Rules

In this section, we extend the do-calculus rules to be able to apply them across two arbitrary
interventions. This is essential for the characterizing of our equivalence class, when arbitrary sets of
interventional distributions are available.
Proposition 2 (Generalized do-calculus for soft interventions). Let (D = (V ∪ L, E), p) be a CBN
with latents. Then for any set of strictly positive soft-interventional distributions {pI}I∈I ,I ⊆ 2V the
following holds.

Rule 1 (conditional independence): For any I ⊆ V and disjoint Y,Z,W ⊆ V

pI(y|w, z) = pI(y|w) if Y ⊥⊥ Z |W in D. (4)

Rule 2 (do-see): For any I, J ⊆ V and disjoint Y,W ⊆ V\K, where K B I4J

pI(y|w, k) = pJ(y|w, k) if Y ⊥⊥ K |W in DK . (5)

Rule 3 (do-do): For any I, J ⊆ V and disjoint Y,W ⊆ V\K, where K B I4J

pI(y|w) = pJ(y|w) if Y ⊥⊥ K |W in DK(W). (6)

Rule 4 (mixed do-do/do-see): For any I, J ⊆ V and disjoint Y,W ⊆ V, where K B I4J

pI(y|w) = pJ(y|w) if Y ⊥⊥ K |W \Wk in DWk ,R(W), (7)

where Wk C W ∩ K and R B K\Wk.

Note that Rule 2 and Rule 3 are special cases of Rule 4. We present all three to make the connection
to standard causal calculus rules more explicit.

Proof. Let KI B I\J,KJ B J\I,T B I ∩ J.

Rule 1: The result follows from the rule 1 of Theorem 1.

Rule 2: We have the following lemma:

Lemma 1. If Y ⊥⊥ K |W in GK then Y ⊥⊥ KI |W,KJ in GKI and Y ⊥⊥ KJ |W,KI in GKJ .

Proof. Suppose for the sake of contradiction that Y ⊥⊥ KI |W,KJ in GKI does not hold, then there
exist a corresponding active path, denoted p. If every collider along p is active due to a node in W
and not KJ , then p is active in GK as well which contradicts the input. Otherwise, let K∗J ∈ KJ be
the node activating the last collider S along p (where possibly K∗J = S ) starting from KI . The path
p′ composed of the directed path from S to K∗J concatenated with the subpath of p from S to Y is
active in GK which contradicts the input. Hence, Y ⊥⊥ KI |W,KJ in GKI . Similarly, we can show that
Y ⊥⊥ KJ |W,KI in GKJ . �

Therefore we can apply rule 2 of Theorem 1 to obtain pI(y|w, k) = pT (y|w, k). Furthermore, we can
apply rule 2 of Theorem 1 once more to obtain pT (y|w, k) = pJ(y|w, k), which concludes the proof.

Rule 3: We have the following lemma:

Lemma 2. If Y ⊥⊥ K |W in GK(W), then Y ⊥⊥ KI |W in GKI (W) and Y ⊥⊥ KJ |W in GKJ (W).

Proof. If Y ⊥⊥ K |W in GK(W), then clearly Y ⊥⊥ KI |W in GK(W). Suppose for the sake of contra-
diction, we have Y 6⊥⊥ KI |W in GKI (W). Notice that the only difference between GK(W) and GKI (W)
are the incoming edges into KJ(W). Therefore, the active path p between KI and Y in GKI (W) must
include a vertex S ∈ KJ(W) and also must pass through an edge that is into S . Otherwise, p would be
active in the graph GK(W) which contradicts the input.Since no descendant of KJ(W) is conditioned
on by definition, no descendant of S is conditioned on. Also, since p is active, then S cannot be
a collider on p. This implies that the other edge that is adjacent to S must be out of it. Moreover,
along the subpath of p that is out of S , denoted p′, none of the nodes is a collider. Suppose otherwise
for the sake of contradiction and let X be the first collider. since p is active, then we condition on a
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descendant of X. Since the path from S to X is a directed path out of S , this contradicts the condition
that S is not an ancestor of a node in W. Therefore, p′ is a directed path out of KJ and can be either
into KI or into Y . If p′ is into A ∈ KI , then it must be that A < KI(W).So, S is an ancestor of A and A
is an ancestor of some node in W which contradicts the condition S ∈ KJ(W). Hence, p′ must be
a directed path out of S and into Y . This path is active in GKI (W) and consequently in GK(W) which
contradicts the separation statement in the assumption. Hence, Y ⊥⊥ KI |W in GKI (W). Similarly, we
can show that Y ⊥⊥ KJ |W in GKJ (W). �

Since, Y ⊥⊥ KI |W in GKI (W), then we have pI(y|w) = pT (y|w) by rule 3 of Theorem 1. Similarly,
since Y ⊥⊥ KJ |W in GKJ (W) we have pT (y|w) = pJ(y|w). This concludes the proof.

Rule 4: In addition to the notation defined in rule 4, let WI B Wk ∩ I, WJ B Wk ∩ J, RI B R ∩ I,
RJ B R ∩ J. The following venn diagram summarizes those relations.

I J

RI RJWI WJT

First, we establish the following. Note that RI ∪ RJ = R and WI ∪WJ = Wk.

Lemma 3. If Y ⊥⊥ K |W \Wk in DWk ,R(W), then Y ⊥⊥ R |W in DR(W) and Y ⊥⊥ Wk |W \Wk in DWk .

Proof. If Y ⊥⊥ K |W \Wk in DWk ,R(W), then Y ⊥⊥ R |W \Wk in DWk ,R(W) since R ⊂ K. Suppose for
the sake of contradiction that Y 6⊥⊥ R |W in DR(W) and let p be one active path between Y and R. The
difference between DWk ,R(W) and DR(W) is cutting the edges out of Wk. Hence, p is discontinued or
blocked in DWk ,R(W) conditioned on W \Wk due to one of two conditions: (1) p includes a non-collider
node in Wk, or (2) p has a collider S that is active because it has a descendant in Wk (possibly S ∈ Wk).
Case (1) is not possible because Wk ⊂ W and p would be blocked in DR(W) which contradicts the
assumption that p is active. Consider the collider along p closest to Y that is consistent with case (2).
The directed path from S to the node in Wk concatenated with the subpath of p from S to Y is active
given W \Wk in DWk ,R(W) which contradicts the input condition. Thus, Y ⊥⊥ R |W in DR(W) and this
concludes the proof of first part.

If Y ⊥⊥ K |W \Wk in DWk ,R(W), then Y ⊥⊥ Wk |W \Wk in DWk ,R(W) since Wk ⊂ K. Suppose for the sake
of contradiction that Y 6⊥⊥ Wk |W \Wk in DWk and let p denote any active path. The only difference
between the two graphs is the set of incoming edges to R(W). Therefore, p contains an edge into
a node S ∈ R(W) so that p is active in DWk and blocked in DWk ,R(W). Since R(W) are by definition
non-ancestors of W, S cannot be a collider in DWk otherwise it would be blocked. Since S is a
non-collider, the other edge adjacent to S must be out of S . Moreover, along the subpath of p that is
out of S , denoted p′, none of the nodes is a collider. Suppose otherwise for the sake of contradiction
and let X be the first collider. since p is active, then we condition on a descendant of X. Since the
path from S to X is a directed path out of S , this contradicts the condition that S is not an ancestor
of a node in W (S ∈ R(W)). Therefore, p′ is a directed path out of S and can be either into Y or
into a node in Wk. It p′ is into Wk, then S is an ancestor of a node in W which is a contradiction
since S ∈ R(W). If p′ is into Y then p′ is active in DWk ,R(W) which contradicts the input condition that
Y ⊥⊥ K |W \Wk . This concludes the proof of the second claim. �

We establish the following equivalences which prove rule 4. Note that the first and the last equivalences
follows by definition.

pI(y|w) = pRI∪WI∪T (y|w) = pRJ∪WI∪T (y|w) = pRJ∪WJ∪T (y|w) = pJ(y|w)
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The second equality is an application of rule 3 since Y ⊥⊥ R |W in DR(W) and the third equality is an
application of rule 2 since Y ⊥⊥ Wk |W \Wk in DWk . This concludes the proof. �

Proof of Corollary 1. The correctness follows by Rule 4 of Proposition 2. �

We have the following lemma which plays an important role in the proof of our graphical characteri-
zation of the equivalence class. The proof can be found within the proof of Theorem 2.
Lemma 4. Consider a causal graph with latent variables where either of the graphical conditions in
Rules 1,2,3,4 does not hold. Then there exists a tuple of interventional distributions (pI)I∈I that is
I-Markov to D and the corresponding invariance relation does not hold.

In other words, the lemma above shows that the causal calculus rules are tight: For graphs where
the graph separation statement does not hold, one can obtain interventional distributions where the
corresponding invariance fails.

7.3 Generalized do-calculus Graph Mutilations and F-node Equivalence

We show graphical conditions on the augmented graph that are equivalent to those given in the
generalized causal calculus rules.
Proposition 3. Consider a CBN (D = (V ∪ L, E), p) with latent variables L and its augmented graph
AugI (D) = (V ∪ L ∪ F , E ∪ E) with respect to an intervention set I , where F = {Fi}i∈[k]. Let S i be
the set of nodes adjacent to Fi,∀i ∈ [k]. We have the following equivalence relations:

Suppose Y,Z,W are disjoint subsets of V. We have

(Y ⊥⊥ Z |W )D ⇐⇒ (Y ⊥⊥ Z
∣∣∣W, F[k] )Aug(D) (8)

For each S i, suppose Y,W are disjoint subsets of V \ S i. We have

(Y ⊥⊥ S i |W )DS i
⇐⇒ (Y ⊥⊥ Fi

∣∣∣W, S i, F[k]\{i} )Aug(D) (9)

(Y ⊥⊥ S i |W )DS i (W)
⇐⇒ (Y ⊥⊥ Fi

∣∣∣W, F[k]\{i} )Aug(D) (10)

For each S i, let Y ⊆ V and W ⊆ V. Let Wi B W ∩ S i,R B S i \Wi. Then we have

(Y ⊥⊥ S i |W \Wi )DWi ,R(W)
⇐⇒ (Y ⊥⊥ Fi

∣∣∣W, F[k]\{i} )Aug(D) (11)

Proof. Conditioning on a source node is equivalent to removing it from the graph in terms of the
graph separation statements. Hence, conditioning on F[k]\{i} in the right-hand side eliminates them.
Therefore, equations (8), (9), and (10) follow from [18, Proof of Th. 4.1] by Pearl. In what follows,
we prove (11).

We first consider the case when Y ∩ S i , ∅. Then the relation is trivially true since it implies that for
some U ∈ S i, U and Fi are adjacent in Aug(D) and Y is dependent with U since U ⊆ Y .

In the rest of the proof, suppose Y ⊆ V \ S i.

Suppose (Y 6⊥⊥ S i |W \Wi )DWi ,R(W)
, and let p denote any active path from A ∈ S i to Y . Note that the

same path is active in Aug(D) given W, F[k]\{i}. If p is into A, then either (1) A ∈ Wi or (2) A < R(W).
Hence, the concatenation of p with Fi → A is active in Aug(D) given W, F[k]\{i} since A ∈ W for case
(1) and A has a descendant in W for case(2). Hence, (Y 6⊥⊥ Fi

∣∣∣W, F[k]\{i} )Aug(D).

Next, suppose (Y 6⊥⊥ Fi

∣∣∣W, F[k]\{i} )Aug(D) and let p denote any active path. Also, let A be the closest
node to Y along p such that A is active due to a node in S i, i.e., A ∈ S i is along p or A < S i is an
active collider due to a descendant in Wi ⊆ S i. If A is a non-collider along p, then A ∈ R ⊆ S i
else p is blocked. If the subpath from A to Y is out of A, then this subpath is active in DWi,R(W)

given W \ Wi and (Y 6⊥⊥ S i |W \Wi )DWi ,R(W)
. Otherwise, the subpath between A and Fi is out of A.

In this case, we argue that A < R(W), hence the subpath from A to Y along p is active in DWi,R(W)

given W \ Wi and (Y 6⊥⊥ S i |W \Wi )DWi ,R(W)
. Since all the edges incident on Fi are out of it, then

there exist at least one collider between A and Fi along p. Let X denote such a collider closest to
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A. Since X is active, then X has a descendant in W, thus A has a descendant in W through X and
A < R(W). Alternatively, A is an active collider along p. If A ∈ Wi or A < R(W), then the path from
A to Y is active and (Y 6⊥⊥ S i |W \Wi )DWi ,R(W)

. Not that A can’t be in R(W), else A would be blocked
along p. Finally, A < S i and it has a descendant in Wi. In this case, the directed path from A to the
node in Wi concatenated with the subpath of p from A to Y is active in DWi,R(W) given W \Wi and
(Y 6⊥⊥ S i |W \Wi )DWi ,R(W)

. This concludes the proof. �

Proof of Proposition 1. This follows from Proposition 3. �

7.4 Proof of Theorem 2

Suppose that MAG(AugI (D1)) and MAG(AugI (D2)) satisfy the three conditions. Then, they induce
the same m-separation statements and vice-versa [26, Prop. 1 & Def. 5]. It follows by Proposition 1
thatD1 andD2 impose the same constraints over the distribution tuples in Definition 1. Therefore,
PI (D1,V) = PI (D2,V).

For the other direction, suppose MAG(AugI(D1)) and MAG(AugI(D2)) do not satisfy the three
conditions. Then, they must induce at least one different m-separation statement. Therefore, we
need to establish that if the two graphs induce different m-separation statements, then they are not
I-Markov equivalent.

Before we show the other direction, we need to introduce some definitions and establish some results.

Define the following collections of m-separation statements on the Aug(D):

U = {(X ⊥⊥ Y |Z, F )Aug(D) : X,Y ∈ V ∪ F , Z ⊆ V − {X,Y}, F ( F − {X,Y}.} (12)
O = {(X ⊥⊥ Y |Z, F )Aug(D) : X,Y ∈ V ∪ F , Z ⊆ V − {X,Y}, F = F − {X,Y}.} (13)
T = {(X ⊥⊥ Y |Z, F )Aug(D) : X ∈ V, Y ∈ V ∪ F , Z ⊆ V − {X,Y}, F = F − {X,Y}.} (14)

U are the set of m-separation statements between any two nodes given a strict subset of all the
remaining F nodes. O are the set of m-separation statements between any two nodes given all the
remaining F nodes. T are the set of m-separation statements between an observable node and any
other node given all the remaining F nodes. Note thatU,O are disjoint, whereas T is a subset of O.
From Prop. 1 and Def. 1, we see that an m-separation statement is in T if and only if it appears as a
graphical condition in the definition of I-Markov equivalence class of distributions for D. Also, if an
m-separation between arbitrary subsets of nodes holds in D1 but not in D2, then there is at least one
pair of singletons for which the corresponding m-separation holds in D1 but not in D2. Therefore it is
sufficient to consider m-separation statements between singletons which are included inU ∪ O ∪ T .

Lemma 5. Suppose (A ⊥⊥ B |C )Aug(D1), (A 6⊥⊥ B |C )Aug(D2), where A, B,C are arbitrary disjoint subsets
of V ∪ {F[k]}. Then at least one of the following is true:

(a) ∃X,Y,Z ⊆ V such that (X ⊥⊥ Y |Z,F )Aug(D1) AND (X 6⊥⊥ Y |Z,F )Aug(D2) (15)
(b) ∃T,W ⊆ V, Fi ∈ F such that (Fi ⊥⊥ T |W,F − {Fi} )Aug(D1) AND (Fi 6⊥⊥ T |W,F − {Fi} )Aug(D2)

(16)

Proof Sketch. The statement of the lemma can be rephrased as follows: Any difference in the truth
value of any m-separation statement from the setU ∪ O ∪ T between Aug(D1) and Aug(D2) implies
a difference between truth value of some m-separation statement in T between Aug(D1) and Aug(D2).
We show this in two steps:

1. For any Aug(D), any m-separation statement inU can be written as a deterministic function
of the m-separation statements in O. Further, this deterministic function does not depend on
the structure of D. Therefore, any difference in the truth value of any m-separation statement
from the setU ∪ O ∪ T between Aug(D1) and Aug(D2) implies a difference between the
truth values of some m-separation statement in O between Aug(D1) and Aug(D2).

2. If there is any difference in truth value of any m-separation statement in O between Aug(D1)
and Aug(D2), then this implies a difference in the truth value of some m-separation statement
in T between the augmented graphs.
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Detailed Proof of Lemma 5. We show proof of both the steps outlined in the proof sketch of the
Lemma.

Proof of Step 1:

The main result in this step is given by Corollary 2. We have the following Lemma that relates
m-separation statements fromU to other m-separation statements that are ‘closer’ to O. Recursively
applying this lemma proves the result in this step.

Lemma 6. Let Aug(D) be the augmented graph (augmented with variables in F ) with respect to a
CBN with latents (D, p). Consider an m-separation statement with respect to Aug(D) of the form
(X ⊥⊥ Y |Z, FS )Aug(D) where X,Y ∈ V ∪ F and Z ⊆ V − {X,Y} and FS ( F − {X,Y}. For any
Fi ∈ F − (FS ∪ {X} ∪ {Y}), the following statements are equivalent

(a) (X ⊥⊥ Y |Z, FS )Aug(D) (17)
(b) (X ⊥⊥ Y |Z, FS ∪ {Fi} )Aug(D)AND[(Fi ⊥⊥ Y |Z, FS )Aug(D)OR(Fi ⊥⊥ X |Z, FS )Aug(D)] (18)

Proof. From the hypothesis in the lemma, X,Y , Fi and Fi < FS . Suppose there is a m-connecting
path between X and Y given Z, FS . Then either it does not pass through Fi, which implies (X 6⊥⊥
Y |Z, FS ∪ {Fi} )Aug(D) or it can be decomposed into two paths, one m-connecting Fi and Y given Z, FS
and another m-connecting Fi and X given Z, FS . Note that this is because all arrows are out of Fi by
construction of Aug(D) and Fi is not part of the conditioning set. On the other hand, if there is no
m-connecting path between X and Y given Z, FS all the aforementioned paths has to be m-separating
which gives the equivalence. �

Remark: Please note that Lemma 6 does not depend on the structure of D. Accordingly, we have the
following corollary:

Corollary 2. Any m-separation statement X ⊥⊥ Y |Z, FS ∈ U can be written as a deterministic
function of the m-separation statements in O. This function is independent of the structure of D.

Proof. We keep repeatedly applying (18) until all the formulas begin to lie in O. In each of the
expansions using (18), either an unconditioned Fi is added to the conditioning set or it appears as
a new conditional independence statement between Fi and X and Y given the current conditioning
set. �

Proof of Step 2: We only need to focus on the m-separation statements in O that are not in T .
Those are precisely the m-separation statements between two F-nodes given a subset of the observed
variables and all the other F-nodes. Suppose in Aug(D1), Fi ⊥⊥ F j |W,F − {i, j} and in Aug(D2)
Fi 6⊥⊥ F j |W,F − {i, j} for some W ⊂ V . Since F-nodes are source nodes, the active path between Fi
and F j must contain at least one collider. Consider the shortest path that is active in Aug(D2) but
not in Aug(D1). Suppose the active path between Fi and F j contains a single collider. This can only
happen if in Aug(D2), ∃t ∈ W s.t. t ∈ De(Fi) ∩ De(F j), otherwise no descendant of any collider on
the path would be conditioned on, and in Aug(D1) @t ∈ W s.t. t ∈ De(Fi) ∩ De(F j). This means in
Aug(D1), t is either not a descendant of Fi or it is not a descendant of F j. Suppose without loss of
generality, t is not a descendant of Fi in Aug(D1) but it is in Aug(D2). This implies that in Aug(D1),
Fi ⊥⊥ t |F − {i} and in Aug(D2), Fi 6⊥⊥ t |F − {i} . This shows that some m-separation statement
belonging to T is different in the two graphs.

Now suppose that the active path between Fi, F j contain at least two colliders. Consider the collider
on the path that is closest to Fi, and call this node Ti. Similarly, let us call the collider closest to F j on
the active path as T j. Ti and T j must have descendants that are in W since the path is active. Consider
the subpath between Fi and T j and call this p1. Consider the subpath between Ti and F j and call this
path p2. Note that in Aug(D2), the union p1 ∪ p2 is active and p1, p2 are overlapping since colliders
are distinct. Since p is active, the subpaths p1, p2 should also be active in Aug(D2). Now note that this
path is not active in Aug(D1). This means that either p1 or p2 is not active because otherwise, since
p1 and p2 are overlapping, if they were active, their union would be active as well. Therefore either
p1 or p2 create different m-separation statements in Aug(D1) compared to Aug(D2). Suppose without
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loss of generality that p1 is active in Aug(D2) but not in Aug(D1). Therefore (Fi 6⊥⊥ T j |F − Fi )Aug(D2)
and (Fi ⊥⊥ T j |F − Fi )Aug(D1), both of which are testable statements. This concludes the proof.

We can finally prove Lemma 5. Suppose (A ⊥⊥ B |C )Aug(D1), (A 6⊥⊥ B |C )Aug(D2). Any m-separation
statement belongs to one of O,U,T . Note also that vertex set of a graph determines which set it
belongs to. Therefore the same m-separation statement for Aug(D1), Aug(D2) belong to the same set
since both have the same vertex set.

(a) If it belongs to T , we are done.

(b) If it belongs to O, then by Step 2, any m-separation statement with different truth values imply
that an m-separation statement has different truth values in T and result follows from (a).

(c) If it belongs to U, then by Step 1, the m-separation statement is a deterministic function of
m-separation statements of O. Since m-separation statements inU have different truth values, at least
one of the m-separation statements in O that determines the original m-separation statement inU via
this function must be different. The result follows from (b). �

We showed that if MAG(Aug(D1)) and MAG(Aug(D2)) are not Markov equivalent, then there is an
m-separation statement that appears as a condition in the definition of I-Markov equivalence that
is different in the two graphs: There is an m-separating path in Aug(D1) that is m-connecting in
Aug(D2). In order to complete the proof, we need to show that PI(D2) contains tuples of distributions
that are not in PI(D1). This is shown in the following Lemma, which concludes the proof.

Proof of Lemma 4:

For this, we leverage a key result of Meek which he used to show that the set of unfaithful distributions
has Lebesgue measure zero, combining it with a jointly Gaussian structural causal model construction
including the latent variables. We first state Meek’s result as a standalone lemma:
Lemma 7 (Meek). Consider a causal DAG D = (V, E), where (A 6⊥⊥ B |C )D. Let Ds = (Vs, Es) be the
subgraph that contains all the nodes in the m-connecting path that induce (A 6⊥⊥ B |C )D. Then any
distribution p over Vs where every adjacent pair of variables are dependent satisfies (A 6⊥⊥ B |C )p.

Proof. Proof uses weak transitivity and an inductive argument and can be found in [14]. �

Suppose that X,Y,Z ⊆ V such that (X ⊥⊥ Y |Z,F )Aug(D1) AND (X 6⊥⊥ Y |Z,F )Aug(D2). Suppose that
both X,Y are observed variables. In this case, any tuple of interventional distribution obtained from
an observational distribution that is faithful to the causal graph with latent variables constitute a valid
example.

Suppose X = Fi for some i ∈ [k] and Y ∈ V . Therefore, an F-node is m-connected to an observed
node in Aug(D2) but not in Aug(D1).

Consider the causal graph D2 = (V ∪ L, E) with latents. Focus on the subgraph of D2 that includes
all the variables that contribute to the m-connecting path of (X 6⊥⊥ Y |Z,F )Aug(D2). An example is in
[14]. Let us call this subgraph Dpath = (Vpath, Epath). Consider a jointly Gaussian distribution on
Vpath that is faithful to Dpath. One exists by construction of Meek (Theorem 7 of [14]). Let us call
this distribution ppath. We will only focus on this distribution only to finally expand it by adding the
remaining variables as jointly independent and independent from the variables in Dpath. Consider two
interventions I, J on the causal Bayesian network (Dpath, ppath), where I4J = S i, i.e., the distributions
pI , pJ are responsible for the graphical separation of Fi. Different from the rest of the paper, for this
proof we will treat Fi as a regime variable that indicates when we switch to pI and when we switch
to pJ . Note that we can do this since we only add this single F node and no others. Consider the
distribution p∗ defined as follows: p∗(.|Fi = 0) = pI(.), p∗(.|Fi = 1) = pJ . Also pick the uniform
distribution for Fi. We need to show that the invariances that are implied by the graph separation in
question in the generalized causal calculus rules fails for pI , pJ . This is equivalent to showing that
the variable Fi is dependent with Y given Z on the distribution p∗. We construct the interventional
distributions through an SCM which implies the CBN in question. This is done by the simply adding
extra noise terms to the structural equations describing the CBN.

Let x be a vector representing all the variables in the graph including the latents. Consider the
following structural equation model: Let x = Ax + e, where A is the lower triangular matrix that
captures the graph structure and parental relations in Dpath and e is the exogenous noise vector. Let
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pI be the distribution obtained by adding the noise vector eJ to the system. eI is non-zero in the rows
i if xi ∈ I. Therefore pI is a valid soft interventional distribution. Similarly, let eJ be the noise vector
added for intervention on J. Next, we show that in the combined distribution q using these pI , pJ
every adjacent variable are dependent. Clearly, when e1 and e2 are different, F-variable is dependent
with the variables in K B I4J, since p(K|F = 0) , p(K|F = 1), which implies (K 6⊥⊥ F |∅ )p∗ .
Therefore, we focus on establishing that every pair of variables that are adjacent are correlated except
for the F variable. The correlation of the variables in Dpath matrix can be calculated as follows:

x = Ax + e + eI ⇒ (I − A)x = e1 ⇒ x = (I − A)−1e1 (19)

x = Ax + e + eJ ⇒ (I − A)x = e2 ⇒ x = (I − A)−1e2 (20)
where e1 = e + eI and e2 = e + eJ . The correlation matrix between the observed variables with respect
to p∗(.) can be calculated as follows (since the binary regime variable will be marginalized out):

E[xxT ] = 0.5(I − A)−1E[e1eT
1 ](I − A)−1T

+ 0.5(I − A)−1E[e2eT
2 ](I − A)−1T

(21)

= 0.5(I − A)−1(D1 + D2)(I − A)−1T
, (22)

where D1 = E[e1eT
1 ] and D2 = E[e2eT

2 ] are diagonal covariance matrices of the noise added via soft
interventions. Consider two adjacent variables xi, x j in Dpath. We have a few observations: I − A is a
full rank matrix since A is a strictly lower triangular matrix, hence it’s inverse exists and is unique. We
treat D1 and D2 as variables in this system: When we perform the soft intervention, we get to choose
the variance of each added noise term. We want to show that there always exist soft interventions,
i.e., D1,D2 such that xi, x j are dependent. Since xi, x j are jointly Gaussian, they are dependent if and
only if they are correlated. Hence, we only need to show that E[xix j] , 0 for any adjacent pair xi, x j.
Notice that this condition is equivalent to a linear equation being zero. Therefore, E[xix j] = 0 for
all D1,D2 or it is non-zero except for a particular value of D1,D2. If we set D1 = D2 = 0, we get
back the observational system. By assumption any pair of adjacent variables are dependent since
the original distribution is chosen to be faithful to the graph Dpath. Therefore, this system of linear
equations is not identically zero. Hence, if we randomly pick the variances of the added noise terms,
with probability 1, any adjacent pair of variables will be dependent (after a union bound).

Therefore, we have established that in the graph Dpath plus the F-variable, every pair of adjacent
variables are dependent. Now, we can use Meek’s lemma, which gives us that (Fi 6⊥⊥ Y |Z )q (Since
we did not add the other F variables as regime variables, we do not need to condition on them.).
Now, we can augment this distribution to cover the variables outside Dpath: Simply pick all the
remaining variables jointly independent and independent from the variables in Dpath. Construct the
interventional distributions by similar soft intervention of adding extra noise terms to the intervened
variables. The corresponding tuple of interventional distributions belong to PI(D2,V) but not to
PI (D1,V) since m-separation should have implied invariance between the interventional distributions
whereas we constructed the interventional distributions such that this is not true. �

7.5 Proof of Theorem 3

The main idea of the algorithm is to infer the separating sets between pairs of nodes using the
invariance tests. Using c-faithfulness assumption, it is easy to see that the invariances that are checked
imply m-separation statements between the nodes of the augmented graph. However, the separating
sets that are found always include all the F-nodes. There are few questions we need to address to
prove soundness of the algorithm:

(1) Are all pairs of separable nodes in Aug(D) correctly identified by the algorithm?

(2) Does the choice of separating set affect the application of FCI rules.

(3) Are the orientation rules sound?

We first address (1): Note that all pairs of F-nodes are separable with the empty set by construction of
Aug(D). This is captured in Line 8 of the algorithm by setting S epS et(Fi, F j) = ∅ for all pairs of
F-nodes. This assures that after Phase I, they become non-adjacent.

Next consider all pairs X,Y where at least one is not an F-node. Suppose two nodes are separable
in Aug(D). Then there is a set W that makes them separable. There is no restriction on W: It may
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or may not have some of the F-nodes. However, since F-nodes of Aug(D) are always source nodes,
adding the remaining F-nodes cannot open new paths. Therefore, the set W ∪ F is also a separating
set. Formally, we have the following lemma:
Lemma 8. For any pair X,Y ∈ V ∪ F , if (X ⊥⊥ Y |W )Aug(D), then (X ⊥⊥ Y |W ∪ (F − X ∪ Y) )Aug(D).

Proof. Proof follows from the fact that F-nodes are source nodes in Aug(D) and the rules of m-
separation. �

Therefore, any separable pair imply a testable separation statement by Theorem 1 and it will be
identified by the algorithm. This addresses (1). We next address (2).

We make use of the following simple observation: Although there may be more than one separating
set for a pair of variables in the graph, FCI algorithm is sound and complete irrespective of which
separating set is chosen. From the phrasing of the algorithm and its soundness, this is obvious since
which separating set should be used is not specified. Here, we verify this by checking how the rules
that require use of separating sets are affected by our choice of separating set:

Orienting unshielded colliders: Suppose we consider an ordered triple 〈X,Y,Z〉 where X,Z are
non-adjacent. An F-node can never be a collider. Then the only case where the application of the rule
may be affected by which separating system is used is when X,Z ∈ V,Y ∈ F . Since by construction
of S epS et, Y ∈ S epS et(X,Z) algorithm does not orient it as a collider, which is correct. No collider
will be missed by the algorithm due to the choice of S epS et.

Discriminating paths: By definition of discriminating path [28] and construction of augmented
graph, there cannot be discriminating paths between pairs of F-nodes. We can have discriminating
paths between an F-node and an observed node as 〈X, . . . ,W,U,Y〉, where X ∈ F and Y ∈ V . First, no
F-node can be between X and U since by definition of discriminating path, they should be colliders.
If U is not an F-node, then the change in separating system, i.e., adding extra F-nodes does not affect
how the rule is applied. Suppose U is an F-node. Then by construction of the separating set, it has to
be in the separating set. Then the rule is applied to orient U → Y , which is consistent with Rule 8
and the augmented graph construction.

Finally, we address the soundness of orientation rules to address (3). The rules of FCI are sound
as shown by [27]. This is applicable in our setting, as one can see the augmented graph as a CBN
with latents, ignoring how F-nodes are constructed, since m-separation statements implied by this
CBN, which are purely graph theoretic criteria, are identical to those implied by the augmented
graph. Moreover, previous phases of our algorithm are shown to be sound and complete, which
is required for the soundness of this step: Skeleton is correctly identified. Moreover, if there is an
unshielded collider, previous phases will correctly identify it. This is necessary for the correctness of
the orientation rules of FCI. Therefore, we only need to check the soundness of the additional rules
Rule 8,9. Soundness of Rule 8 is trivial since in any augmented graph Aug(D), F-nodes are source
nodes.

Soundness of Rule 9: Consider a pair Fi,Y where Fi ∈ F ,Y ∈ V that are adjacent and Y 3 nS i. This
means there is no separating set for Fi,Y in Aug(D), although by construction, they are not adjacent.
This can only happen if there is an inducing path between Fi and Y relative to the latent variables L.
An inducing path relative to latents L is defined as follows [28]: A path l in Aug(D) is an inducing
path if i) every non-endpoint that is not in L is a collider and ii) every collider is an ancestor of either
endpoints. Since F-nodes by construction do not have ancestors, every collider on the inducing path
between Fi,Y must be an ancestor of Y . Therefore in MAG(Aug(D)), the observed node must be an
ancestor of Y . If |S k | = 1, then any inducing path must go through the node in S i, since in Aug(D), Fi
is only adjacent to the node in S i. Since this node is on an inducing path, it must be an ancestor of Y .
Therefore MAG(Aug(D)) contains an edge from this node to Y . This concludes the proof. �
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