A Technical background

A.1 Hermite polynomials

The Hermite polynomials {Hey }r>o form an orthogonal basis of L?(R,~), where v(dx) = e /24y /N2 is
the standard Gaussian measure, and Hey has degree k. We will follow the classical normalization (here and
below, expectation is with respect to G ~ N(0,1)):

E{Hej(G) Her(G)} = K16 (18)
As a consequence, for any function g € L?(R, ), we have the decomposition
o) =3 B by (0), o) = E{o(@) Hey(@)). (19)
k=0 ’

A.2 Notations

Throughout the proofs, Og4(-) (resp. 0g(-)) denotes the standard big-O (resp. little-o) notation, where the
subscript d emphasizes the asymptotic variable. We denote Ogp(-) (resp. ogp(-)) the big-O (resp. little-o)
in probability notation: hi(d) = Ogp(h2(d)) if for any € > 0, there exists C. > 0 and d. € Z~¢, such that

P(|hi(d)/ha(d)] > C.) <&, ¥d > d.,

and respectively: hy(d) = oqp(h2(d)), if hi(d)/ha(d) converges to 0 in probability.

We will occasionally hide logarithmic factors using the Og( - ) notation (resp. 64(-)): hi(d) = Og(ha(d)) if
there exists a constant C' such that hy(d) < C(logd)C hy(d). Similarly, we will denote Ogp(-) (resp. 64p(-))
when considering the big-O in probability notation up to a logarithmic factor.

B Proofs for quadratic functions

Our results for quadratic functions (qf) assume x; ~ N(0,1;) and y; = f«(x;) where
fi(xi) = by + (z, Bx) . (20)
Throughout this section, we will denote E,, the expectation operator with respect to & ~ N(0,1;), and E,,
the expectation operator with respect to w ~ N(0,T).
B.1 Random Features model: proof of Theorem 1
Recall the definition R
RRF,N(f*) = . min E{(f*(a:) - f(m))2}7

FEFre, N (W)
where

Fre,N(W) = { Zaz (wi,x)): a; €ER,i € [N]}.

Note that it is easy to see from the proof that the result stays the same if we add an offset c.

B.1.1 Representation of the RF risk
Lemma 1. Consider the RF model. We have

Rren(fs) = Eo[fu(2)?] - VUV, (21)
where V.= [Vi,....VN]T, and U = (Usj); je|n), with

Vi =Ea[fs(2)o ((wi, )],
Uij =Eglo((wi, z))o ((w;, z))].
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Proof of Lemima 1. Simply write the KKT conditions. The optimum is achieved at @ = U~ 'V. O

B.1.2 Approximation of kernel matrix U

Lemma 2. Let 0 € L*(R,v) be an activation function. Denote Ay = Eg.un(o,1)[0(G)Hex(G)] the k-th
Hermite coefficient of o and assume Mg = 0. Let U = (Uyj); je|n) be a random matriz with

Uij =Eglo((w;, x))o((w;, x))],

where (w;)ien) ~ N(0,T') independently. Assume conditions A1 and A2 hold.
Let W = (wq,...,wy) € RN and denote Uy = {(U0)ij}ijerny, with

(Uo)ij = Adij + AT (wis wj) + w/d + pipy,

where

pi =de(will3 —1)/2,
X =E[o(G)?] - X2,
k =d\3Tr(T?)/2.
Then we have as N/d = p and d — oo,
U = Ubqllop = 04,p(1).

Proof of Lemma 2.
Step 1. Hermite expansion of ¢ for |w;|[2 # 1. Denote o;(x) = o(||w;[|2 - ). First notice that by a

change of variables, we get
Elo(tG)] = Bl(0(G)/t) exp(G3(1 — 1/¢2)/2)]. (22)
By Assumption A1, there exists ¢; < 1 such that
o(u)?exp(u?(1 — 1/t?)) < cgexp(u®(c1/2 +1 — 1/t)).

Hence for |t — 1| sufficiently small, we have o; € L?(R,~) and we can consider its Hermite expansion

m(v)—ZCk Hoy ().

where
Ck(0:) = Eqanio,nlo(|wil2G)Hey (G)].

Denote the Hermite expansion of o to be

Z Ak (0)Hey () /k!,

where
Ak(0) = Egono,1)[o(G)Hey (G)].
By dominated convergence theorem, we have
. . 2] _
}EI}EGNN(OJ)[(U(G) o(tG))"]
In addition, by sub-Gaussianity of the norm of a multivariate Gaussian random variable (see [Ver10]), it is

casy to show that
sup |[lwillz — 1| = oap(1). (23)
i€[N]
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Hence we have
sup |lo — a4l|z2 =04p(1),
1€[N]
sup |Gr(03) = Ar(0)] < sup [|o — o3| L2 E[Her (G)*]"/? = 0q.5(1), (24)
i€[N] i€[N]

for any fixed integer k.
Step 2. Expansion of U. Denote u; = w;/|w;|2, then we have

) \2 ) \k
Uiy = Glo)6o(05) + G (oG 0) b s) + Glo)6o(0) B 1+ 37 (oo BBl (a5)
To,ij T1,i5 Thij k=3
‘ Ts,ij
We define i
T, = (Ck(%)(k(%)%) .
- i.jE[N]
Step 3. Term Ty. By definition of u;, we have
Ty = (Co(0:)C0(7))i jerny = Dol(A2/2)?([lwill3 — 1) ([lw;]l5 — 1)) jerny Do,
where (by the assumption that E¢[o(G)] = 0)
Co(0i) o(|wi||G) —o(G) 1
Do)ii =55 = : .
L o T ey ekl S e s R o Py
Let us show: i) (@)
R =
or equivalently:
tG) — o(G .
PEECEL R

Recall the change of variable (22) and do a first order Taylor expansion of the exponential: there exists a
function £(G) € [0, G] such that

E[M —(G*— 1)a(G)]
“E[o(G) (exp(GX(1 = 1/62)/2) 1~ 1(t = 1/(G* ~1))] - 7=

—E [U(G)(t - 1)(1 — G2t +1]/(22) + GA(t + 1)2/(8tY) exp(£(G)2(1 — 1/t2)/2))] :

&+ | =

We see that the integrand goes to zero as t — 1. For |t — 1| sufficiently small, we have

’exp(Gz(l C2))2) —t—t(t — 1)(G% — 1)

TR <2+ 2G?% 4 2G* exp(G?/5),

which is squared integrable. Recalling that ¢ € L?(R,~), we obtain (26) by dominated convergence.
Hence, combining (23) and (26) gives

1Do = Lallop = 0a,p(1)-
Furthermore, for g = (p3)ic(n) With p; = A2(|Jw;[|3 — 1)/2, we have

2

T 2 >‘2 2 2 A% 2 A%
Efllpesllop] = Elllpell2] = - NE[([wi]lz — 1)7] = FNIIFll7 <

7N2||F||§p = Oqp(1),
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where the last equality comes from assumption A2. We get
ITo — ke lop < 21 Do — Lallop || [lop (| Dollop + 1) = 0a,e(1)- (27)
Step 4. Term T,. For T, we have
T = (Gi(09)¢1(07) (s, u5))i jen) = DIW WDy,
where
D = diag((¢1(03))/[|wil2)-
By the uniform convergence of (1(0;) to A1(0), cf Eq. (24), we have
D1 — A1(0)allop = 0a,p(1).
Moreover, we have
IWTW [[op = [WW || < VA2 |GG lop = Ouz(1),
where we denoted by G the matrix with columns g, ~ N(0,1/d). Hence, we have
1Ty = MWW lop < D1 = AiLallop [W W [lop ([ D1llop + 1) = 0ap(1). (28)
Step 5. Term T>. We have
Ty = (Co(00)Ca(05) (i, u5)? /2); jeny = Da((wi, w;)?/2); jein Do,

where
Dy = diag((Ca(03))/[lw;13).

By the uniform convergence of (3(0;) to A2(c0), we have
1D = Aolallop = 0ap(1)-

Moreover, we have (see below)
1((ws, w;)?)i jenillop = Oap(1)-

Hence, we have

1T — A5((wi. w;)?/2); jernllop < [1D2 — AaLallop|((wis w;)?/2); jen lop ([ P2llop + 1) = 0q.p(1).

Moreover, by the estimates in proof of Theorem 2.1 in [EK™10], we have

[ (wis w;)?/2) jern) — [Te(T?) /21117 = (1/2)Iy |lop = 0a,p(1)-
Hence, we get
T2 — N[TH(T?) /21117 — [(A3/2]Tx [lop = 0a,2(1). (20)

Step 6. Term ), . ddiag(T)). Denote ddiag(Ty) the diagonal matrix composed of diagonal entries of
T'. We have -

2 2
(@i = M@K = [lloille = D7 (o) /R = Il + D Anle)? /KL
k>3 k=0 k=0

2

<llo = oillz22lollez + llo = oillze] + D 1Gu(0:)* = A(0)?| /K.
k=0

Note that we have shown (cf Eq. (24))

zsel[lJ\% max{”a —0illLe, kﬂ)%ifz |Ck (o) — )\k(U)|} = oq,p(1).
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Therefore, we have

| > dding(T) — (A = A3 /2)INHOP = oap(1). (30)
k>3

Step 7. Term Y, 4[T) — ddiag(T;)]. We have

| D2ITs — ddiag(Ty)]| | < 37 T — ddiag(T) | ¢
k>3 k>3

<> > G (0:)%Gu(,)?) (s;l;<uz-,uj>%/<k!>2)]” :

k>3 dj=1
N
<[22 Gulon? /! max(us, uy)?
k>3 i=1 i

<Jloul22 % N max (s, u,)?.
i#]
Note we have max;cn ||03/|2. = Ogp(1). Moreover, we have (see for example Lemma 10 in [GMMM19])
max(uz-,uJ-)?’ = éd_]p(d_g/2).
= '

Therefore, we have

H > [Tx — ddiag(T)] HF = 0g4,7(1). (31)
k>3

Combining the bounds (27), (28), (29), (30) and (31) into the decomposition (25) proves the lemma. O

B.1.3 Approximation of the V vector
Lemma 3. Under the assumptions of Theorem 1, define V.= (Vi,..., V)T with

Vi = Ez[f(z)o({w;. )]
where (w;);en) ~ N(0,T) independently. Then as N/d = p with d — oo, we have
IV — 71/Vd|5 = | B} - 04z (1),

where
7 =vd- A\Tr(BT).

Proof of Lemma 3. Without loss of generality, we assume | B||r = 1 in the proof (it suffices to divide V; by
| B F). Consider w; € R?. Take R to be an orthogonal matrix such that Rw; = |[w;]||2e1, then we have

Vi =Eu [f: (R )0 (|w;]221)]
=E.|((z, RBR @) — Tr(B))o(||lwil|2z1)]

—k,, (52 B0 1Py, B) - T(B) o 0]

Jwil3
;, Bw;)
= ’32 —1 —<w“ ! ill2x
o |3 = DS o o)
<w7Bw7>
=—"—"(2(0y),
fwig

where P ,,, is the projection on the hyperplane orthogonal to w;, and we recall the definition of (2(0;) of

Lemma 2:
(o(07) = Eq[(G? — Do ([Jwi=G))],
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with G a standard normal random variable.
We define the following interpolating variables:

<wi7 Bwl)

o Xoy VP = (w;, Bw)ry, VP = Tr(TB)A,,
|12

(2

v _
K

and the associated vectors V", V® and V® . We bound successively the distance between these vectors.
We will denote by P,,, the projection onto vector w;. First, we consider:

N
V- VWIS =3 TPy, B)*(Ga(oq) — A2)*.
i=1
One can check, using a similar argument as for Eq. (26) and dominated convergence, that

E[(G? — 1)(o(tG) — 0(G))]

}1_1)1% ] = (o) + 2X2(0). (32)
Hence, recalling (23), we have
(1))2 2
IV = VO = Oue(( s1p 1x(Pu B)) 2wz~ 1) 7). (33)

Let us first show that the sum is bounded with high probability: denoting g ~ N(0,1;), classical sub-Gaussian
concentration inequalities (see for example Theorem 6.3.2 in [Ver10]) shows that

I/ 2g1ls = P2 ]| < O o, (34)
P2

where || - ||, denotes the sub-Gaussian Orlicz norm. By assumption, we have ||I‘1/2||0p = ||I‘||(1){)2 = O04(d=1?),
and |TV/?||p = VIIT = 1. Hence, for w; ~ N(0,T), we have

H\/EHUJZ'HZ — (35)
Therefore, we have
N
> (lwilla = 1)* = Oap(1). (36)
i=1
Furthermore, we readily have (for example from (23))
sup [w;]| ™" = Oge(1). (37)
1€[N]
Noticing that Tr(w;w] B) = | BY?w,]||2 and by the same argument as for (34), we have:
|IB20Y 2|, ~ B[ BT 2] | < €| BT, (38)

By assumption A2, we have ||B1/21"1/2||Op < ||Bl/2||0p||I‘1/2||Op = 0q(d=1/?) and
2171/ : 1/2 1/2 —1/:
E[| B'/°T"2g].s] < (B[||B'/°T"/*g|3))"/? = Te(TB)Y? < 0| /2| B|| 1 < |[T||5 Te(T)/* = Oa(d=Y/2),
which combined with (38) yields

sup ||B?w;|3 = 045(1). (39)
i€[N]
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Combining the bounds (36), (37) and (39) into (33), we get
IV = VW3 = ogp(1).

Consider now

v vz = Z)\Q w;, Bw;) ( E 1)2
wil|3

=1

N
<5 sup 18" 23/ fw8) S (el 17
i=1
‘We have

Ev;~nio.0)[(will3 = 1) =Egnon [({9g". T) — T(T))?] = 2||T|% = Oap(d™*).

Hence we must have
N

z(HwiH% —1)% = Ogp(1),

i=1
which, combined with (39) and (41), yields

VO = V&3 = 045(1).
Consider the last comparison:
N 2
IV — VO3 =3 23((w;, Bwi) — T(TB)) .
i=1

Taking the expectation:

Ey, o) (i, Bw,) = Tr(TB))*] =Eg-no (99", T/*BT /) — Tx(TB))?
—2|T2BrY

<2|[0)|3, || BF = Oa(d™).

We conclude that N
2
3 ( (w;, Bw,) TY(I‘B)) = 042(1),
i=1

and therefore
[V — V|2 = o4p(1),

where V® = X\, Tr(I'B)1. Combining the above three bounds (33), (42) and (43) yields the desired result.

B.1.4 Calculating 1TU;'1/d

(42)

(43)
O

The following proposition is stated in slightly more general terms, in order to be used in both the proofs of

Theorem 1 and Theorem 4.

Proposition 2. Let (w;);c;n) ~ N(0,T) independently, where T' satisfies assumption A2 (resp. B2). Denote

by M = Egno,1)[0(G)Hey (G)] the k-th Hermite coefficient of o. Define A= ]EGNN(OJ)[O'(G)Q] -
Kk = k(d) positive constants that are uniformly upper bounded. Define

Uyg= Ay -l—/i].].T/d—l—[l,/.LT,
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where _ ‘
Ag =My + MWW,

pi =Aa(|lwsll3 — 1)/2.
Then we have
(LU, 1) /d =4 /(1+ k) + 0ap(1),

where 1 > 0 is the unique solution of

s A%t
A= 5t / T )\%wD(dt), (44)

where D is the empirical distribution of eigenvalues of d - T'.
The proof of Proposition 2 is a direct combination of Lemma 4, 5, and 6 below.

Lemma 4. Let (w;)en) ~ N(O,T') independently. Assume condition A2 holds (resp. B2). Let p =
([[wil3 — Dserny, and Ag = a1y + caWTW, where ¢; = ¢1(d) and co = ¢3(d) are constants that are
asymptotically upper and lower bounded by strictly positive constants. Then as d — oo and N/d — p, we have

(1, Ay ) /Vd = o46(1). (45)

Proof. We first prove the lemma under the following extra assumption on the covariance matrix: there exists
a (fixed) integer K such that

= Qdiag(’)/l]:dm ce 7’)/KI(1K)QT7 (46)

for some orthogonal matrix @ and d - ~; < C. Furthermore, there exists an € > 0 such that dy/d > ¢ for d
sufficiently large.
Without loss of generality, we assume I' = diag(v11q4,,...,7x14.), and we divide w; into vectors
corresponding to each block
w; = (W15 .. ;Wi K) € RY,

where w; , € R and we denote W, = [w1 k, wak,...,wy k| € RN for k € [K].
Step 1. Decouple the randomness.

Let (;);cn) ~ N(0,T) independently and independent of (w;);en). We divide w; into segments
corresponding to each blocks

w; = (W15 ..;WiK),
where w; , € R% , and we denote W, = [W1 kg, Wok, .., WNE] € RN for k € [K].
Define
Dy, =diag(|lwy iz, ... [lwwil2) € RV,
Dy =diag([|[t1 k|2, - -, [0y k2) € RY*N.

Using the fact that ||g||2 is independent of g/||g||2 for g ~ N(0,I), the following two sets of random variables
have the same distribution:

d _ ~ T _~ _
{(W{Wk)ke[K]a (”wik”?)ie[N],ke[K]} = {(Dk.,ka,Z,Wk WD, Diw)iek]» (||wz'k||2)ie[N],k-€[K]}~

Define _ o
Ag=cilg+ ¢ Y DiwDi oy W WD} oDy

ke[K]
Then we have
(1, AG ) /Vd = (1, Ay )/ Vd. (47)
Step 2. Bound the difference between A, and Ag.

Define 5 o
Ag=c1ly+co Z ch Wi.
ke[K]
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Since di — 00 as d — oo, we have
||D1:,1~ka,'w —Inllop = 04,p(1),
and hence

~ _ ~ T ~
[Ao — Aollop < 2¢2 Z [ DD — Lallop |W i Wllop | Do Do llop = 0a,p(1)-
ke[K)

By definition, Ao, Ag > ;T and therefore || Ay [lop, || Ay llop = Oap(1). We deduce
~—1 -1 ~—1, - ~ \z—1
Ay — Ag [lop = [[Ag (Ao — Ao)Aq llop = 0ap(L).

This gives (recalling that ||u|3 = Ogp(1))
(L Ay ) VA = (1, Ag 1)V = 04p(1). (48)

Step 3. Calculating the second moment of (1, Ao_l;L)/\/E.
Since we have . L,
Ewl[((1,Ag p)/Vd)*] = (1, Ay 1)/d - Eypnor) (w3 — 1)].

Note that
Ew~nio,m)[([[wll5 —1)%] = Oaz(1/d),

and using that ||121(;1||Op = Oqp(1),
(LA, 1)/d = Oaze(L).
Therefore o ‘
Ewl[((1, Ay p)/Vd)*] = oap(1).
By Chebyshev inequality we have
(1, Ay ) /Vd = 04p(1). (49)

Combining (47), (48) and (49) proves the lemma in the case of a covariance of the form (46):

(1, Ay ) /Vd = 045(1). (50)

Step 4. From discrete to continuous spectrum.

We consider T' a covariance matrix verifying assumption A2. For a given € > 0 and K sufficiently large,
we consider I'. a matrix obtained from I' by binning its eigenvalues to at most K points of [0, C'/d], such
that we have Tr(I';) =1 and limg_,oc d - [T — T;||op < € (recall that ||T'||op < C/d by assumption). Such a
matrix always exists from the condition Tr(I') = 1 and the weak convergence of the spectrum of d - T'.

By construction T'. is of the form (46). Consider G = (g, ...,gy) € RN where g; ~;.;.4. N(0,1;). We
define: ‘ ‘

B = (||r1/29i||§ - 1)iE[N]a He = (||I‘;/29i||§ - 1)i€[N]v
Ap = c1lg + G'TG, Age =c1l;+ G 'T.G.

We have for d sufficiently large,

140 — Avcllop = IGT (T = T)Gllop < | G[3,IT — Tellop < 2¢[|G3,/d.

ol
Furthermore, using Tr(I' — ') = 0, we have

Elllp — pcl3] = NE[({9,9{, T —T:))?] = 2N||IT — Tc[|3 < 2pe”.
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Therefore

(1, A7 1~ AGla) V| <1, AT (Ao — Ag) AtV + (1, Agt(n. — w)/Vd
SHAEl”op”AO - AO,E”Op”Aa,i”op”Mb + ||A(T,i

opllpt = pcll2-

Noticing that || Ay 1||Op, | Ag. i||Op < (:1_1, and using (50) applied to T, we get for d sufficiently large:
‘(1, A61u>/\/3‘ < 04p(1) + 2c1 || pll2| G5y /d + e b — pello- (51)

We have ||p[|2]|G|2,/d = Oqp(1) hence for any § > 0 there exists a constant Cs (which do not depend on )
such that:
B(el|pl | GI12, /d > Cs) < 6.

Taking a sequence 6 — 0 and ¢ such that ¢ oc Cy ! shows that this is equivalent to
elpl=lGl3,/d = oap(1). (52)

By Markov inequality,
Jim B~ g2 > =\/300) < 6

Taking € x /8, we deduce that this is equivalent to
1 — pecllz = 0qp(1). (53)
Substituting (52) and (53) in (51) concludes the proof. O

Lemma 5. Under the same setting as Proposition 2, we have

1TA;'1/d
1,U;'1))d=—"9 4 1). 54
(LU; 1)/ T AT A T1/d 04,p(1) (54)
Proof of Lemma 5. Define z = \/k1/v/d. Then we have
UO :A0+ZZT+MNT.

By assumption, we have k = Og (1) and therefore ||z[ls = Ogp(1). We have already seen that || Ay " |lop; | Ag *lop =
Ogp(1). Furthermore
||A0||op <A+ )‘f)‘maX(WTW) = Oqp(1).

By Sherman Morrison Woodbury formula, we have
UG 1/d —1T AT /d 1T A 2, )T+ (2, 1T AT 2, )z ] AG 1/,

Note that by
(T2 + [z, u]T A [z, p)) "l e = Oap(1),

and by Lemma 4, we have (since 27 Ag'p, 1T Ay u/Vd = 04:(1))

1TAG [z, ] (X2 + [z, u] TAG [z, 1)) [z, ] T Ag ' 1/d
=(1TA;'2)2(1+ 2" Ay 2) Vd+04p(1) = k(1T AG'1/d)*(1 + k1T A 1/d) " + 04p(1).

This proves the lemma. O

In the following, we give an asymptotic expression for (1, Ay 11)/d.
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Lemma 6. Let (w;)cin) ~ N(0,T) independently, while T' satisfies assumption A2 (resp. B2). Denote
W = (wy,...,wy) € RN Let X and Ay be two positive constants. Define

Ag =Ny + MWW,
Let p € (0,00). We have almost surely

li 1AM /d — Tr(A;?! =0.
N/d:lpr%w| o 1/d—Tr(Aq")/d] =0 (55)

In addition, assume D is the limiting spectral distribution of d-T'. Then, we have almost surely

. 1 _
yyadim STH(AGY) = mp (=X, (56)

where mp(-) : C* — CT is the companion Stieltjes transform associated with D. For any x € CT, mp(x)
satisfies the so called Silverstein’s equation:

p— -l-/ Al
 mp() 1+ A2tmp(x)

Proof of Lemma 6. Consider the event

D(dt). (57)

An(t) = {[1TAg'1/d — Tr(AgY)/d] > ).

Let Q € RV*N he an orthogonal matrix. By rotation invariance of Gaussian random variables, QW' has
the same distribution as W. In fact, by Fubini’s theorem, we can draw @ uniformly (independent of Ag)
from orthogonal matrices and the distribution would still be unchanged. Let

An(t) :={17(QA;'Q") '1/d — Tr(QA;'Q")/d| > t}.

By the argument above,

PlAN ()] = PlAN(2)].

Since Q is orthogonal, Ay (t) can be written as
(1TQAT'QT1/d — Te(A; ") /d| > t}. (58)

Since Q is a uniformly chosen orthogonal matrix, Q1 / V/d is uniformly distributed on S% _1(\//7)7 indepen-
dently of Ag. Hence Q'1/+/d has the same distribution as V/Pz/||z||2 where z ~ N(0,Iy). In particular,

5 _ L S ~1yn] s £ B¢
< P{| o — 1] AT /N 4 12T AT /N - (AT N > 1) (60)
p
< P+ P, (61)

where

P = P{‘ﬁ — 127 A7 2/N > Qip} Py = P{|2T A7 2/N — Tr(A7")/N| > %}}

Let’s consider P; first. Since A t< 1/ 5\, we have

2

zTA 'z _ 1z
N 7

N

<

> =
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which yields

=]
N

>5‘t}:P{‘%—1‘>M}. (62)

N
P < ]P’{‘ A A
' 12 2p 2p

_ 1‘
Iz
We know due to fast concentration of ||z||?/N around one (see e.g. [BLM13]), P; vanish exponentially fast in
N (equivalently in d since N/d is fixed to be p).

Now, let’s consider P,. |27 Ay '2z/N — Tr(A,")/N|. By Hanson-Wright inequality (see e.g. [BLM13]), we
have

t 2 t
IP’(|zTA_1z/N —Tr(Ag")/N| > — Ao) < 2exp{ — cmin (—— e } (63)
0 0 Qp‘ (IIAO VN3 Ag 1/N||op)

< 2exp { — ¢ min (NS\QI‘,Q, ;\tN) } (64)

Since the bound in (64) is independent of Ay, it holds unconditionally. Therefore, we conclude P, vanishes
exponentially fast in N and d. We conclude that Pr[Ay(t)] vanishes exponentially fast as d, N — oc.
Therefore, by Borel-Cantelli lemma we recover (55).

Convergence of Tr(Ay ')/d to mp(—A) is a standard result in random matrix theory. We refer the reader
to [BS10| Chapters 3 and 6. a

B.1.5 Proof of Theorem 1

By Lemma 1, the risk has a representation

Reen (fi) = Egongo,1a) [fe(@)?] — viu-tv.
By Lemma 2, we have
U - UO”op = Od,]P’(l)-

By Lemma 3, we have
|V —11/Vd|2 = |B||p - 0a2(1),

where
7 = Vd- X\ Tx(BT).

Hence, we have
VUV — 221U 1 /d) = | B||3 - 0ap(1).

Proposition 2 gives the expression for
1'UGM 1 /d = /(1 + w) + 0ap(1),

where
K =d- - \Tr(T'?)/2.

Hence we have
VUV = 72)/(1+ k) + || Bl|% - 0a.p(1).

Recalling the assumption E(f,) = 0, we have || f.||?, = 2| B||%, which concludes the proof.

B.2 Neural Tangent model: proof of Theorem 2

Recall the definition X
Byt n(fo) = min  B{(fu(x) - f(2))*},

feEFT N(W)

where

N
Furn(W) = {fn(@) = c+ > o' (w,)){ai, @) : c € Roa; € RY i € [N]}.
i=1
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Proof of Theorem 2. We can rewrite the neural tangent model with a squared non-linearity o(z) = x2 as

N
fW, A ¢) = 22<wi,w><ai,w> +ec=20WA" zz") + c.

i=1
with W = [w1,...,wx] € RN and A = [a,...,ax] € RN, Note that we have

E.[(B —2W A" zx") + by — ¢)?]
=2|B-WA" — AW |% + Tr(B —2WA")? — 2Tr(B — 2W A")(c — by) + (¢ — by)?,

which, after minimizing over ¢ € R, simplifies to:

min |[f, — f(W, A,c)||7. = 2| B - WA" — AWT||%.
C

For w; ~ N(0,13), we have rank(W) = min(d, N') = r with probability one. Let W = P1SV " be the singular
value decomposition of W, with Py € R¥" § € R™*" and V € RV*". Defining G = SV'A € R"™*4, we
get almost surely

i . — f(W,A,0)|?. = min 2|B- PG -G P]|2.
acaiin M= f(W, A0z = min 2] 1 17

In the case N > d, we can take G = PIB /2 and we get almost surely over W € RN

Ryt on(fe) =0.

Consider the case when N < d, we define Py € R?¥*(4=N) the completion of Py to a full basis P = [Py, Ps] €
RI%4 We define Gy = GP; € RV*N and Gy = GP5 € RV*(@=N) and we perform our computation in the
P basis. We have

B-P.G-G'Pl - (Bn—Gl—GI Blz—Gz)

By — Gy Bas
where B;; = P;-'-BP]- for i,j = 1,2. We readily deduce that

min 2|B - P\G - G'P{||} = 2||P; BP;s|}.
GeRrxd

Let us compute its expectation over w; ~ N(0,1;), i.e over Py = [vy,...,v4_n]| where the v; € R? are
(d — N) orthogonal vectors uniformly distributed on the unit sphere in R%. Let B = _7_, \;e;e] with e; the
orthonormal eigenvectors of B. We get:

s d—N

E[|PyBPof3] = > Y NNE[(vk, €:) vk, €5)(vr, €3) (w1, €5)]
i,7=1k,l=1

=[1B[%(d — N)E[(v1, e1)"] + | B|E(d — N)(d — N = DE[(v1, e1)*(v2, e1)?]

F2( 0 (A~ NIl e1)* (v, e (65)
i<j

+ 2( Z )\i)\j) (d—N)(d— N — 1)E[{v1, e1){v1, e2) (v, e1){v2, 82>]] '
1<j

We bound each term separately. For u ~ Unif(S?~!), we have the convergence in distribution of the first two
coordinates \/E(Ul,ug) = N(0,I,), hence:

lim d’E[(v,,e;)?] =3, lim d°E[(v, e;)*(v,e3)?] = 1. (66)

d—o0 d—o0
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Furthermore, conditioned on v, v, is uniformly distributed over the sphere S¢~2 in the hyperplane orthogonal
to v1. We get the uniform convergence

lim sup |dE[<’UQ,€1>2|’U1] — (1 — <'l)1,€1>2)| =0.

d—00 ,, LeSd—1
By dominated convergence theorem, we get

lim d2E[<'01,61>2<’02,61>2] =1. (67)
d—o0

The last term of the sum (65) is also derived by first conditioning on v;. Let us denote z; = P ,,e; and
zo = P4, ey the projections of (e1, es) on the hyperplane perpendicular to v1, on which vo is uniformly
distributed over the unit sphere. We decompose zs5 into two components: one along z; that we denote

z(zl) = P, 22 and one perpendicular to z;, denoted zgz) = P, ,,zo. Then we have:
E[{v2, e1)(v2, e2)|v1] =E[(va, z1)(v2, 22)|v1]

:E[(vz, z1) ((vg,z§1)> + (v2, Zg2)>) ”i]

=(21, 22)E[u?] + || 21]|o]| 25> |2 Elus us]

(z1,22)
d—1"

where (u1,uz) are the first two coordinates of a uniform random variable on the sphere SY~2. Using that:

(z1,22) = (€1 — (e1,v1)v1, €3 — (€2,v1)v1) = —(e1,v1)(e2,v1),
we get
El(or,e1) (w1, ea) v e1) (02, 2)] = < El{or e (o)) = 5 +ou@d ) (69

where we used the same argument as for (66). Plugging the above limits (66), (67) and (68) in the expansion
(65), we get

Tr(B)? , Tr(B)?
E[Ryt,n (£)] = 2| B|IH| (1 = p)3 + (1 - p) —(1—=p) +0a(1)]- (69)
| | =2BI[0 -9 + 0= 0 gy By )
Recalling the assumption E(f,) = 0, we have || f||2, = 2|/ B||%., which concludes the proof. |

Remark 1. The above formula for the RF risk Eq. (69) has two terms that corresponds to the two limits
Tr(B)/||B||r = 04(Vd) (e.g. spiked matriz)

E[Rnr.n(fo)] = 2(1 = p)2IBI% + oa(lBI7),
and Tr(B)? = d||B|% (i.e. B x1)
E[Rnt.n(f2)] = 2(1 = p)+[| Bl
It is possible to show concentration of | Py BPy|/% on its mean E[|P3BP;|%] for B that satisfies

| BlloplBllr < C (see Theorem 5).

B.3 Neural Network model: proof of Theorem 3

We consider two-layers neural networks with quadratic activation function o(x) = 22 and we fix the second

layer weights to 1,
N

fl@:W,c) = Z(wi,m)2 +ec.

i=1
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We consider the ground truth function f, to be a quadratic function as per Eq. (20), and the risk function
defined by

LW, ¢) = Bg[(fo(x) — fla: W,e))?] = By [((wa, B-WWT) +b— 0)2].

We consider running SGD dynamics upon the risk function for a fresh sample (@, fi(xr)) for each iteration

(Wit cry1) = Wi, cr) — eV e (f*(wk) — flay: W,c)>2,

and denote K
Ranv (Fes 6ye) = By [(fu(x) — f(2; W, c0))?).
B.3.1 Global minimum

Lemma 7. Let f, = (x, Bx)+bgy for some B = 0 and by € R. Denote by (Ai(B));c|y the positive eigenvalues
of B in descending order. Then we have

. _ ) 2
é%}ch(W,c) =2 > \(B)
i=N+1
Proof of Lemma 7. Note we have
L(W,c) =Ez[((B-WW' za) + b — )]
=2|B-WW' |2 +Tr(B-WW")? - 2Tr(B—-WW7")(c—bg) + (c — bo)?,

minimizing over c gives
inf L(W,¢) =2|B-WWT'|2.

The infimum of L over W is equivalent to the low-rank approximation problem of matrix B in Frobenius norm,
with rank less or equal to max(d, N), and is given by the Eckart-Young-Mirsky theorem (see [EY36]). O
B.3.2 Landscape: proof of Proposition 1

Without loss of generality, throughout the proof, we assume that B is diagonal and by = 0. Our first
proposition characterizes the critical points of L(W,c¢).

Proposition 3. Let W € RN and B € R¥? to be a positive semi-definite diagonal matriz. Define the

risk function to be
L(W,c) =Ex[((B-WWT zz") —¢)?.

Then for any critical point (W, co) of L(W ,c), there exists a projection matric P = Zle eT(i)eI@ for
some injection 7 : [k] — [d], such that To = W W is diagonal and satisfy

', =PBP,
Co :'I\I’(B — F())

Proof. Calculating the risk function, we get
LW,ce)=c?+2c- Tt(WW' - B)+ Tt(WW' — B)? + 2|WW' — BJ|3..

We consider the gradient of this function. We get:

%L(W, ¢) =2c+2Tx(WWT' — B),

VwL(W,c) =2cW 4+ 2Tt(WW ' — B)W +8(WW ' — B)W.
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By the stationary condition, at a critical point (W, ¢p), we must have:
co = —Tr(W oW} — B), (70)
BWy =W W W,. (71)

Let us denote Wy = USVT the (extended) singular value decomposition of Wy € RN with U ¢ R4*4,
S € RN and V € RV*N, Then the stationary condition (71) gives

BUSV' =US*VT. (72)

Let 7 be the rank of W and S = diag(81.0), U = (U,,U,) with §; € R™", U; € R¥" and U, € R¥*(@=7),
Then we get:
BU, =U,S%.

This is of the form of the eigenvalue equation of matrix B. Hence we must have the columns of U; to be a
set of eigenvectors and S % to be positive eigenvalues of B. This proves the proposition. O

Note the global minimizers are attained for T'o = W WOT corresponding to the min(NV, d) directions of B
with the largest eigenvalues. We prove in the following proposition that stationary points that are not global
minimizers are strict saddle points.

Define the spectral separation of B as

6° = min{[Ai(B) — A;(B)| : i,j € [d], \i(B) # A;(B)},
and 4% the minimum strictly positive eigenvalue of B.

Proposition 4. Consider (W, cq) a stationary point of L(W ,¢) but not a global minimizer. Then, we have
Amin(Viy L(W o, ¢p)) < —4min{5%8, 5P} < 0.
Proof. Let us first compute the Hessian of the risk with respect to the W variable. We have

(Z, V3 L(W,0)Z) =2¢-Te(ZZ") + 2Ty (WW T — B)Tr(2Z") + 4Te(WZT)?
+4WZT2 +4T(WZ™WZT) + 4WWT — B, ZZT").

Plugging the value of ¢y at a critical point (cf Eq. (70)), we get

(Z,NV3y L(W,c0)Z) =4Tr(WZ )2 + 4|WoZT||% +4Te(WoZ "W Z") + 4W W — B, ZZ").
(73)
Case 1: Counsider the case rank(Wy) < min{rank(B), N}. Then there exists an ¢ € [d] such that B;; > 0
(recall that we assumed B diagonal , with diagonal elements given by the positive eigenvalues of B) and
Wy Wg)” = 0. For simplicity, let us permute the coordinates so that i = 1. The singular value decomposition

of W verifies
0 0 o 0

0
Wo=UySoV]! = | . o Vi,
. UySy
0

where Uy and Sy are the sub-matrices corresponding respectively to the (d—1) x (d — 1) last coordinates of
Ujp and (d — 1) x (N — 1) last coordinates of Sy. Let us consider
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We have ||Z|r = 1 and WZ" = 0. Plugging these matrices in the above expression of the Hessian, see
Eq. (73), we get
<Za V%VL(W(M CO)Z> = _4B11 < _46eig-

Case 2: Consider the case when rank(W oW () = N < rank(B) and WW does not correspond to the
N largest eigenvalues of B. Then there exists i # j € [n], such that By > By, (WOWOT)“» = 0 and
(WOWg)jj = Bj;. For simplicity, let us permute the coordinates such that i = 1 and j = 2. The SVD
decomposition of W now verifies:

0 0 ... 0
VB 0 ... 0
Wo=UySoVy =] 0 vy
0 020VY o 0>
: U,S,
0

where UyS is the sub-matrix of the last (d — 2) x (N — 1) coordinate of USy. Let us consider again

We have || Z||p = 1. Plugging these matrices in the above expression of the Hessian (73), note
Tr(WoZ")=Te(WoZ"WoZ") =0, |WoZ'|% =By, (WW,-B,ZZ") =B,

we get
(Z, Vi, L(W,c0)Z) = —4(B11 — Bag) < —40%P.

This proves the proposition. O
We can now prove Proposition 1.

Proof of Proposition 1. First, remark that L(W,c) has compact sub-level sets. The proposition then follows
from Proposition 4 and the continuity of the gradient VL(x) and of the minimum eigenvalue of the Hessian
Amin (V2L(z)). |
B.3.3 Dynamics

The following lemma is a standard combination of Lojasiewicz inequality and center and stable manifold
theorem. We prove it for completeness.

Lemma 8. Let f: R? — R be an analytic function that has compact level sets. Consider the gradient flow
&y = —Vf(xy).
Then for (Lebesgue) almost all initialization x, there exists a second order local minimizer x., such that

lim x; = x..
t—+oc0

Proof of Lemma 8.
Step 1. Show convergence to a critical point. Since f is an analytic function, by Lojasiewicz inequality
[Loj82], and the fact that the level set of f is compact, we have

lim x; = x,
t—+o0
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for x, some critical point of f.
Step 2. Show convergence to a local minimizer. In this step, we proceed similarly to the proof of
Theorem 3 in [PP16]. First, consider a sublevel set

QK) = {z: f(x) < K}.

Then we have Q(K) compact. Since f is an analytic function, V f is Lipschitz in the compact set Q(K). We
define the map ¢; : Q(K) — ¢(QK)), * — x; where x; is defined as the solution of

T, = — Vf(xy),

o —=I.

By Picard’s existence and uniqueness theorem, we have ¢, is a diffecomorphism from Q(K) to ¢(Q(K)) for
any t > 0. Fix an g9 > 0, and we define g = ¢., : Q(K) — Q(K).

Let r be a strict saddle point of f, then r must be an unstable fixed point of the diffeomorphism g = ¢.,.
By center and stable manifold theorem (such as Theorem 9 in [PP16]), there exists a manifold W () of
dimension at most d — 1, and a ball B(r, (7)) centered at r with radius e(r), such that we have the following
facts:

(1) g (Wige(r) NB(r.e(r))) © Wi (r);

loc loc

(2) If g™(x) € B(r,e(r)) for all n > 0, we have € Wi (r) (here g" means composition of g for n times).

We consider the union of the balls associated to all the strict saddle points of f in Q(K)

A= UTGQ(K):T strict saddleB(r’E(r))'

Due to Lindelof’s lemma, we can find a countable subcover for A, i.c., there exists fixed-points 71,72, ... such
that A = UX_,B(rpm,c(ry)). If gradient descent converges to a strict saddle point, starting from a point
v € Q(K), there must exist a to and m such that ¢;(v) € B(ry,,e(ry)) for all ¢ > ty. By center and stable
manifold theorem, we get that ¢, (v) € Wi (r,,) N Q(K). By setting D1 (ry,) = ¢~ (WS (7)) N Q(K)) and

Diii(rm) = g Y (Di(ry,) NQ(K)) we get that v € Dg(r,,) for all keg > ty. Hence the set of initial points in
Q(K) such that gradient descent converges to a strict saddle point is a subset of

P = Unole UkeN Dk(’l“m).

Note that the set W (r,,,) N Q(K) has Lebesgue measure zero in R%. Since ¢ is a diffeomorphism, g~ is

loc
continuously differentiable and thus it is locally Lipschitz. Therefore, g~ ! preserves the null-sets and hence

(by induction) D;(7,,) has measure zero for all i. Thereby we get that P is a countable union of measure
zero sets. Hence P has measure 0.
Finally, note we have

{x € Q(K) : 3r,r is strict saddle,r = tlgn G (x)} C P

Since P has measure 0, we have
{x € R : Ir, 7 is strict saddle,r = lim ¢ ()}
t—+o0

=Ugen {x € Q(K) : Ir,r is strict saddle,r = lim ¢, (x)}
t—-+o00

has measure 0. This proves the lemma. O

The following lemma is standard, and a corollary of Theorem 2.11 in [Kur70].
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Lemma 9. Let
F(x) = E.[f(x; 2)]
be a C? function on Q C Re. Assume

sup E, [”wa(w» Z)HZ] <00,
xe)

sup || V2 F () op <oc.
e

Let x; be the trajectory of
Sbt = — VF((L’t),
with indtialization xo € Q. Further assume that there exists n > 0, such that U;>oB(x,,n) C Q.
Consider the following Markov jump process i starting from xo, with jump time to be an exponential
random variable with fivzed mean e, and jump direction —eV f(x; z) where x is the current state, and z an
independent sample. Then we have for any fired T > 0 and § > 0,

lim P( sup o, — @2 > 6) = 0.
e=0+  N\o<i<T )

B.3.4 Proof of Theorem 3

By Proposition 4, we know that for L(W ¢), any critical point that is not a global minimizer is a strict
saddle point. Consider the gradient flow

d
E(Wt, Ct) = —VL(Wt, Ct)

with random initialization (W, cg) ~ vy where vy is a distribution that is absolutely continuous with respect

to Lebesgue measure. Since L(W,¢) is an analytic function, by Lemma 8, we have (W, ¢,;) converges to a
global minimizer of L(W,¢). That is, we have almost surely (over 1)

tligolo L(Wta Ct) = ‘g}ch(Wv C)a

where infy . L(W,c¢) is calculated in Lemma 7.
Consider the following Markov jump process (W, ¢t o) starting from (W, ¢;) ~ v, with jump time to
be an exponential random variable with fixed mean &, and jump direction to be —eVL(W,¢; z) where

VwL(W, ¢ z)> _ (2(0 —bo+ (22T, WWT — B))zzTW)

VLW, e:2) = ( 0. L(W,¢; z) 2c—by+ (zzT, WW'T — B))

with (W ¢) the current state, and z an independent sample. By Lemma 9, we have for any fixed 7' > 0 and
0 >0,

i o) — : >0)=0.
i P(sup [(Woescoe) = (Wesci)ll 2 6) = 0

Note the sequence of Markov jump process at jump time is exactly the SGD iterates. Hence the SGD iterates
with properly scaled number of iterations is uniformly close to (W, ¢;) over finite horizon as € — 0. This
proves the Theorem.

C Proofs for Mixture of Gaussians

In this section, we consider the mixture of Gaussian setting (mg): y; = £1 with equal probability 1/2, and
xilys = +1 ~ N0, W), &;ly; = =1 ~ N(0,2?) where =) = ¥ — A and £ = 2 + A. With these

notations,

1
»=-(=W 4+ n®
2( + )7

ALz sm)
2
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Throughout this section, we will make the following assumptions:
M1. There exists constants 0 < ¢; < ¢o such that ¢;I; <X X < el
M2. [[Allop = O4(1/Vd).

Throughout this section, we will denote Ps; A the joint distribution of (y, ) under the mg model, E, , the
expectation operator with respect to (y,x) ~ Px a and E, the expectation operator with respect to the
marginal distribution  ~ (1/2) - N(0, M) + (1/2) - N(0, £?).

C.1 Random Features model: proof of Theorem 4
Recall the definition

RRF,N(]P)) =  min E{(y_f(w))2}’
fEFre,N (W)

where
N
Fren (W) = {fN(ﬂC) = Zam(mi,m)) ta; €Ri€ [N]}.

Note that it is easy to see from the proof that the result stays the same if we add an offset c.
Remark 2. We will state the lemmas for the case 3 = Iy, which amounts to re-scaling T' = sV2rsl/? gnd
A=x"12AR"12

C.1.1 Representation of the RF risk
Lemma 10. Consider the RF model introduced above. We have
Rren(Pra) =Eayly?] - VUV, (74)
where V. = [Vi,.... VN]T, and U = (Uyj); jeny, with
Vi =Eg ylyo ((ws, 2))],
Uij =Bz y[o((w;, x))o((w;, z))].

Proof. Simply write the KKT conditions. The optimum is achieved at @ = U ™'V O

C.1.2 Approximation of kernel matrix U

Lemma 11. Let o € L*(N(0,1)) be an activation function. Denote A, = Egun(o,1)[0(G)Hex(G)] the k-th
Hermite coefficient of o and assume Ao = 0. Let U = (Uyj); je[n) be a random matriz with

Uij =Eg[o((ws, z))o((w;, x))],
where (w;)ien) ~ N(0,T) independently. Assume conditions A1 and B2 hold.
Define W = (w1, ..., wy) € RN and Uy = {(U0)ij}4,5e[n, with
(UO)ij = 5\61] + A%(wlw]) -+ K/d -+ Hifljy

where )
pi =Xa([lwillz —1)/2,

A =E[o(G)*] = AT,
k =d - N3[Tr(T?)/2 + Tr(AT)?/4).
Then we have as N/d = p and d — oo, we have

U —Uogllop = 0ap(1).
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Proof of Lemma 11. Recalling that in the (mg) model, we have & ~ (1/2) - N(0,I— A) + (1/2) - N(0,I+ A),
we have
Uij =Eg[o((wi, z))o ((w;, ®))]
~{Baniono((T— &) 2w, @)o (T A)w;, )]
+Eqonion [0({(T+ A)?w;, 2))o((T+ A)w;, cc>)]}/2-

We can therefore readily use the result of Lemma 2 for @; ~ N(0,(I — A)Y2T(I — A)'/2) and @; ~
N(O, (T + A)/2T(I 4 A)/?), to get i

IU =Ubollop = 0ap(1), (75)

where U, = (UO)z',je[N] with

(Uo)ij = Nij + AN {wi, w;) + k/d + (Mjﬂ;r + g kg )/2,

and
A =E[o(G)’] - A%,
i =d\3[Tr((I - A)T(I— A)T) + Tr((I+ AT+ A)T)] /4
(T?) + Tr(ATAT)]/2,

)
uf“ = (T+A) w3 — 1)/2,

2l
=d\3[Tr

(

(T — ) 2w, —1)/2.

;=2

Note that we have
(51 4 ) /2 = iy + A3 (wi, Awi) (wj, Aw;) /4,
where
pi = Ao ([Jwil|5 — 1)/2.
The matrix ((w;, Aw;)(w;, Aw;)); jen) is simply ss' with s = ((w;, Aw;));eqn)- Defining v = E[(w;, Aw;)] =
Tr(T'A), we have
ss' = (s —v1)w1T +v1(s —v1)" + %117 + (s —v1)(s —v1).

Furthermore:
d

Is —v1]3 = 3 Tr((ww] — T)A),

i=1

Note that by assumptions M2 and B2, we have E[Tr((w,w] — T')A)?] = 2|AT||Z = 042(d"!). We deduce
that ||s — v1|j2 = 04.p(1), and therefore

||(3 - Vl)VlT”op = Od,]P’(l),
(8 = v1)(8 = v1) lop = 04p(1).

Hence, we get
+,,4T

[T+ pp™)/2 - pp” — Te(TA) 11T |op = 0a,2(1). (76)
We also have Tr(AT AT)? = 04(d~!) by assumptions M2 and B2, hence
[Tr(ATAT)117|op = 0ap(1). (77)
Therefore, combining (76) and (77), we get:
1To = Uollop = 0ae(1). (78)

Combining (75) and (78) concludes the proof. O
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C.1.3 Approximation of the V vector
Lemma 12. Under the assumption of Theorem 4, define V. = (Vq,...,Vn)T with

Vi = Em,y[yo'«wiv x))]

where (w;)ien) ~ N(0,T) independently. Then as N/d = p with d — oo, we have

IV = 71/Vd|2 = 04(1),
where
T =—Vd- A Tr(AT)/2.
Proof of Lemma 12. We have
Vi ={Ezn0,1-a)[0((wi, )] = Ezonio,i+a) lo{wi, ©)]}/2
~{Eanon [0 ((T— A)?w;,2))] = Egonion o (T + A)2w;, )]} /2
=Egeono.n o ([T — A)Pwil2G) — o (||(T+ A) 2w, ,G)] /2.

We define three interpolating variables:

VI = X {l(T— A) 2wl — (1 + &) w2} /2.
‘/;(2) = —)\Q{TI(szw;r)}/zv
V¥ = _\Tr(AL)/2.

We begin by bounding the difference between V' and v, For convenience, we will define w, = (I— A)l/ 2w;.

We have:
Blo (126 — o(C)] ~ Ml 1)
g [oi16) —o(G) — (ila ~ DGO (@ o
=] (o 17 Jthoita =27

Using dominated convergence theorem and arguments similar to those used to prove (26), one can check that

(79)

o(tG) — o(G) — (t — 1)Go'(G)
(t—1)2

limIE[

t—1

| = Qa(0) + 2a(0))/2. (80)
The same arguments as in the proofs of Lemma 2 and Lemma 3 show
sup |[[(T — &) ?w;|ly — 1] = 04p(1),
i€[N]
N (81)
> (I = A) w2 = 1)? = Oup(1).
i=1
Combining (80) with (81) in (79), we get:

N

Y- (Blo(l@i126) — o(G)] — (=~ 1)

_ = (E[U(Ilﬁfz-llzG)—ﬂ(G)] — Mo((lwif2 — 1)

(lwill2 — 1)

<.
—

)iz — 1)

i—1

<

(1T = A)2wil|2 = 1)* = 04(1).

=04z (1) - ((sup [[[(1 - A)" %02  1P)

i€[N] ,

N
1=
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Bounding similarly the term depending on (I + A)'/2w; in Vi(l), we get
IV = VW2 = 045(1). (82)

Now, consider the difference between VD and V., We use the fact for z on a neighborhood of 0, there

exists ¢ such that
V1 —2—V1+x+z| <clz)’
Hence, with high probability

|<wi7 A'w1>|g

1= )2l — [+ )P + G, Aw] < 22

Furthermore, we have:

Eu o) | ((wi, Awy)/ [wi[3] < | AIZE[((w;, Aw,))’]
< C[| A3, (T[T 2 ATt + | TYV2ATY2|3) = 0a(d ),
where the last equality is due to assumptions M2 and B2. We conclude that
VO =Vl = 04p(1). (83)
For the last comparison between V@ and V(?’)7 we take the expectation:
Eup, ~no,r)[((w;, Aw;) — Tr(TA))? :EgNN(O,I)[(<g9T7F1/2AF1/2> — Tr(TA))?]
=2|rt2Art?|
<2| P[5, A% = Oa(d™?).

We get
[V —V®l; = 042(1). (84)

Combining the above three bounds (82), (83) and (84) yields the desired result. a

C.1.4 Proof of Theorem 4
By Lemma 10, the risk has a representation
Rren(fa) =1-VU'V.

By Lemma 11, we have
U = Uogllop = 04,p(1).

By Lemma 12, we have
IV —71/Vd|s = 042(1),

where

T = —Vd- \Tr(AT)/2.

Hence, we have
VUV — 217U 1 /d| = 0qp(1).

Proposition 2 gives the expression
1TUG "1 /d =% /(1 + KY) + ogp(1),

where
k=d - \3[Tr(T?)/2 + Tr(AT)?/4].

Hence we have
VIUV =72¢/(1 + r) 4 04.5(1).

This proves the theorem.

35



C.2 Neural Tangent model: proof of Theorem 5
Recall the definition (note Ryt n(P) is a function of W)

Ryrn(B) = min  E{(y— f(z))?},
fEFNT, N (W)

where

N
Fnt N (W) = {fN(ﬂf) = C+Zal(<wivw>)<aiam> cceR,a; €RYi€ [N]}
i=1

C.2.1 A representation lemma

Lemma 13. Assume conditions M1 and M2 hold. Consider the function
f(@;T,a.¢) = a(l,za") +c. (85)
Define the risk function optimized over a,c while T' is fized

L(T) = inf Eq,y[(y — f(@:T,a,c))%. (86)

Then we have

2
sup |L(T") — = 0q4(1). 87
P s Ay e 0

Proof of Lemma 13. Note we have

L(T,a,¢) =B y[(y — f(@: T, a,0))?]
=1+c? +2ac(T, %) + 2a(T, A)
+a*[(T,£)? + 2Tr(ETET) + (T, A)? + 2Tr(ATAT)).

Minimizing successively over ¢ and a, we get the following formula:

_ 2
L) = CIEIEI]%L(F,(I,C) =57 (T,A)?/[Tx(TSTX) + Tr(TATA)]

By Assumptions M1 and M2, we have 3 > ¢I and || A||op < C/v/d for some constants ¢ and C. We get

Tx(PATA) _ C?
T(TETE) — d2

We deduce that

sup |L(T") — 2

1
< ’ — 1] = 04(1).
=0 2+<r,A>2/||21/2r21/2%‘ — 11 +C?/(de?) (D)

C.2.2 Proof of Theorem 5

We consider the re-scaled matrices I' = Y/2I'SY2 and A = ¥~ /2AX /2. We consider the NT model
with a squared non-linearity:

N
fW, A) = QZ(wz,mHai,m) +ec=2WA" zz") +c.

i=1
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with W = [wy,...,wy] € RN and A = [a4,...,ay] € RV, For w; ~ N(0,X), we have with probability
one rank(W) = min(d, N) = 7. We consider W = P; SV the SVD decomposition of W, with P; € R,
S eR™ and V € RVNX". Define G = SV A € R"*?, we obtain almost surely that the minimum over A is
the same as the minimum over G. From Lemma 13, we deduce that almost surely

. 2
Ryt N(Ps,a) = min

- + 04(1 88
GeRixd {2+Tr[(P1G+GTPI)A]2/||P1G+GTPI||%} a(l) (88)

Case N/d — p>1. In the case N > d, we can take G = P|{ G /2 and we get almost surely over W € R*N

2 2
Barn(Ps o) = mi 1) = ———— +o4(1
v Fea) a‘éﬁé?m{2+<a,A>2/||G||%}“’d() rryar o

where the minimizer G = A is obtained by Cauchy-Schwarz inequality.
Case N/d — p < 1. Consider now the case when N < d. From (88), the optimal G is the one maximizing

Tr[(P1G + GTP])AP?
max ToTuz
GerM?  [|[P1G + G P|%

b

which we rewrite as the following convex problem

max Tr[P1GA], st |[P1G+G P[||%<1. (89)
GERN x4

We define Py € R¥(@=N) the completion of P; to a full basis P = [Py, Py] € R™4 and denote G| =
GP; c RV*N and Gy = GP, € RV*(4N) | We can form the Lagrangian of problem (89):

L(G,\) =Tr(P1GA) + \1—||P,G +G"P]|%).
The stationary condition implies:

VeL(G,\) = P]A —4\(P]G"P] + P] P,G) =0,
which yields, using PIPl =1In,

A =40Gy, Ay =4NG1+GY), (90)
where A;; = PZ-TAP]- for i,j = 1,2. The constraint reads in the P basis
|P1G + G P{|} = |G1 + G [|% + 2| Gall7 = 1. (O1)
Substituting (90) in (91) yields:
=/l Anl + 2| Awl?. (92)
Considering the (unique) symmetric optimizer G; and substituting (92) in (90), we get the minimizer
1 1
G* _All = A117
b VAN F2lARl
1 1 (93)
G = A= 12-
AT VA 2AnlE

Let’s consider the objective function:

TI‘(P1G*A) :TI‘(GTAU + G;Agl)
B 1
2y/ A7 + 2l Al

1
—s V1A + 2] A

1
=SV 1AL = [ Aas3. (94)

Tr(A2] + 2A15A0))
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Substituting (94) in (88), we then obtain

2

R P = 1 95
N Eea) = 5 A AR T )

where Agy = Py APy with Pyo = Iy — W(WTW)_lWT is the random projection along the
orthogonal subspace to the columns of W. From Theorem 2, we know that

n(A)2> _— Tr(A)?

E[| AnsllF] = |AIF (1 - p)2 (1 -
llanF] = 1Al [0 02 (1= g N

+ od(l)]. (96)

Let Wfiv be the Stiefel manifold, i.e. the collection of all the sets of N orthonormal vectors in R?¢ endowed
with the Frobenius distance. In matrix representation, we have

WY = {P e RPN . PTP =1y}

By Theorem 2.4 in [Led01], the volume measure on W has normal concentration. In particular, denote
by F: WY i R, the function F(P) = ||[PT AP||%. We upper bound the gradient of F:

IVE(P)|r = 4|APPTAP|p < 4|APPT|op|AP| s < |AllopllAllF < C,
by assumption M2 on A. We deduce that there exists a constant ¢ (that depends on p and C) such that:
P(|F(P) — E[F(P)]| > t) < e "’

Therefore, we have

P(|[| x|} — Ef|Anz]|F]] > 1) < e7o". (97)
Using (97) and (95), we deduce the final high probability formula for the risk of the NT model:
2
Bntn(Psa) = + 0a,p(1).

2+ AR —El A

Substituting E[|| As2|%] by its expression (96) concludes the proof.

C.3 Neural Network model: proof of Theorem 6

Recall the definition

Ruwww(P) = min  E{(y - f(2))*},
FEFNN, N (W)

where we consider the function class of two-layers neural networks (with N neurons) with quadratic activation
function and general offset and coefficients

N
Fann (W) = {fN(az) —c+ Y ai((w,a)?: coa; €Ri € [N]}.

We define the risk function for a given set of parameters as
L(Wv a, C) = ]Efc,y[(y - f(xv W,a, C))Q]'
The risk is optimized over (a;, w;);<n and c.

Proof of Theorem 6. Without loss of generality, we assume ¥ = I, (it suffices to consider the re-scaled
matrices I' = Y2022 and A = »-12An"Y ). We rewrite the neural network function in a compact
form:

N
flx; W,a,c) = Z%(’wm@Q +c= <WAWT,£B.’BT> +c,
i=1
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where A = diag(a). Define ' = WAW " and using Eq. (87) in Lemma 13, the minimizer I'* is the solution

of

,A)2
el W, s.t. rank(T') < min(N,d) =7
F

where S(R%*?) is the set of symmetric matrices in R%*,
Let us denote the eigendecomposition of T' by T' = USU " with U € R¥*" and S = diag(s) € R"*". We
have by Cauchy-Schwartz inequality

(T,A)2  Tr(SUTAU)?

_ < |diag(UTAU) 3,
I IST% 2

with equality if and only if S, = ddiag(U T AU) where ddiag(UTAU ) is the vector of the diagonal elements
of UTAU. Denoting D(R**?) the set of diagonal matrices in R¥*?, we get

(USUT, A)? (S, U'AU)*  ||S. |} 5
max | T s = > = 1S5
sep(rixd) |[USU"|2 18117 1S:11%

Hence, the problem reduces to finding U € R?*" with orthonormal columns which maximizes ||ddiag(U T AU)||3..
The maximizer is easily found as the eigendirections corresponding to the r largest singular values. We
conclude that at the optimum
T, A2 &,
: A7
1T ||2 Z

where the \;’s are the singular values of A in descending order. Plugging this expression in Eq. (87) concludes
the proof. O

D Additional Experiments

For the sake of theoretical analysis, we focused on the case of quadratic activations for NT and NN in the
main text. However, the phenomena we presented persist (qualitatively) even when other activation functions
are used. For example, figures 3 and 4 examine the performance of our models when RelLU non-linearity is
used. These experiments suggest that the when d is larger than IV there is a significant performance gap
between NN and NT. Moreover, Similar to what was presented in the paper, we observe that the gap between
RF(I) and NN does not vanish unless & — oo.

e I SR Y NN 1.0 — NN
® o s * x A — NTO)
] *x A,
0.8 ° * A
° . A, 0.8
A
06 ° * A,
& ] - L4 o * A , 206
< L} - [ " * <
0.4 = NN ] I 0.4
® NT(/) LI ° *
[ ] *
0.2 4 RF( "e, ° *
* g ° * 0.2
* RF(") u "= mwsnmaia 2 iwyg
00 N=d
. 0.0
10? 103 0 10000 20000 30000 40000
Number of Hidden Units, N n/d

Figure 3: Left frame: Prediction (test) error of a two-layer neural networks in fitting a quadratic function in
d = 450 dimensions, as a function of the number of neurons N. We consider the large sample (population)
limit n — oo and compare three training regimes: random features (RF), neural tangent (NT), and fully
trained neural networks (NN). All models use ReLU activations. Right frame: Evolution of the risk for NT
and NN with the number of samples.
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Figure 4: Left frame: Prediction (test) error of a two-layer neural networks in fitting a mixture of Gaussians
in d = 450 dimensions, as a function of the number of neurons N. We consider the large sample (population)
limit n — oo and compare three training regimes: random features (RF), neural tangent (NT), and fully
trained neural networks (NN). All models use ReLU activations. Right frame: Evolution of the risk for NT

and NN with the number

of samples.
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