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A Synthetic Data Experiments

In the first experiment, we consider that M = 25 annotators are available to annotate N = 10, 000
items, each belonging to one of K = 3 classes. The true label for each item is sampled uniformly
from {1, . . . ,K}, i.e, the prior probability vector d is fixed to be d = [1/3, 1/3, 1/3]>. For generating
the confusion matrices, two different cases are considered

• Case 1: an annotator is chosen uniformly at random and is assigned an ideal confusion
matrix, ie., an identity matrix I3. This ensures the assumption as given by Eq.(9) (or Eq. (6)).

• Case 2: an annotator m is chosen uniformly at random and its confusion matrix is made
diagonally dominant such thatAm(k, k) > Am(k′, k), for k′, k ∈ {1, . . . ,K}, k 6= k′. To
achieve this, the elements of each column of Am is drawn from a uniform distribution
between 0 and 1. The columns are then normalized using their respective `1-norms. After
that, for each column, the elements are re-organized such that the corresponding diagonal
entry is dominant in that column and then normalized with respect to `1-norm. In this way,
Eq. (11) in Theorem 1 may be (approximately) satisfied.

In both the cases, for the remaining annotators, the confusion matricesAm are randomly generated;
the elements are first drawn following the uniform distribution between 0 and 1, and then the columns
are normalized with respect to the `1-norm. Once Am’s are generated, the responses from each
annotator m for the items with true labels g ∈ {1, . . . ,K} are randomly chosen from {1, . . . ,K}
using the probability distributionAm(:, g). An annotator response for each item is retained for the
estimation ofAm with probability p ∈ (0, 1]. In other words, with probability 1− p, each response
is made 0. In this way, our simulated scenario is expected to mimic realistic situations where we
have a combination of reliable and unreliable annotators, each labeling parts of the items. Using
the generated responses, we construct R̂m,`’s and then follow the proposed approach to identify the
confusion matrices and the prior d.

The accuracy of the estimation is measured using mean squared error (MSE) defined as,

MSE =
1

M

M∑
m=1

MSEm, (14)

where,

MSEm = min
π(k)∈{1,...,K}

1

K

K∑
k=1

‖Am(:, π(k))− Âm(:, k)‖22 (15)

where Âm is the estimate ofAm and π(k)’s are used to fix the column permutation.

The average (MSE) of the confusion matrices for various values of p under the above mentioned
cases are shown in Table 3 and Table 4 where the proposed methods, MultiSPA and MultiSPA-KL
are compared with the baselines Spectral-E&M, TensorADMM and MV-D&S since these methods are
also Dawid-Skene model identification approaches. As MV-D&S becomes numerically unstable for
smaller values of p, those results are not reported in the table. All the results are averaged from 10
trials.

From the two tables, one can see that MultiSPA works reasonably well for both cases. As expected,
it exhibits lower MSEs for case 1, since the condition in (6) is perfectly enforced. Nevertheless, in
both cases, using MultiSPA to initialize the KL algorithm identifies the confusion matrices to a very
high accuracy. It is observed that MultiSPA-KL outperforms the baselines in terms of the estimation
accuracy —which may be a result of using second order statistics.

Under the same settings as in case 2, the true labels are estimated using the MAP/ML predictor as in
[37] (in this case, ML and MAP are the same since the prior PMF is a uniform distribution). The
classification error and the runtime of the crowdsourcing algorithms are computed and shown in
Table 5.
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Table 3: Average MSE of the confusion matricesAm for case 1.

Algorithms p = 0.2 p = 0.3 p = 0.5 p = 1

MutliSPA 0.0184 0.0083 0.0063 0.0034

MultiSPA-KL 0.0019 0.0009 0.0004 1.73E-04
Spectral D&S 0.0320 0.0112 0.0448 1.74E-04

TensorADMM 0.0026 0.0011 0.0005 1.88E-04

MV-D&S – – 0.0173 1.84E-04

Table 4: Average MSE of the confusion matricesAm for case 2.

Algorithms p = 0.2 p = 0.3 p = 0.5 p = 1

MutliSPA 0.0229 0.0188 0.0115 0.0102

MultiSPA-KL 0.0029 0.0014 0.0005 1.67E-04
Spectral D&S 0.0348 0.0265 0.0391 1.67E-04
TensorADMM 0.0031 0.0016 0.0006 1.93E-04

MV-D&S – – 0.0028 5.88E-04

In the next experiment with case 2, the true labels are sampled with unequal probability. Specifically,
d is set to be [ 1

6 ,
2
3 ,

1
6 ]> with all other parameters and conditions same as in the first experiment.

Using the MAP predictor, the true labels are estimated for the proposed algorithms for various values
of p and the results are shown in Table 6. It can be inferred from the results that both the proposed
algorithms MultiSPA and MultiSPA-KL grantee better classification accuracy when the true label
distribution of the items is not balanced.

In the next experiment, the effect of the number of annotators (M ) in the estimation accuracy of the
confusion matrices is investigated. According to Theorem 2 and 4, the proposed methods will benefit
from the availability of more annotators (i.e., a larger M ). For N = 10, 000, K = 3, d = [ 1

6 ,
2
3 ,

1
6 ]>,

p = 0.5 and the true confusion matricesAm being generated as in case 2, the MSEs under various
values of M are plotted in Figure 1. One can see that MultiSPA-KL achieves better accuracy relative
to MultiSPA under the same M ’s, which corroborates our results in Theorem 4.
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Figure 1: MSE of the confusion matrices for various values of M
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Table 5: Classification Error(%) & Averge run-time when d = [ 1
3 ,

1
3 ,

1
3 ]>

Algorithms p = 0.2 p = 0.3 p = 0.5 Run-time(sec)
MultiSPA 37.24 26.39 19.21 0.049

MultiSPA-KL 31.71 21.10 12.79 18.07

MultiSPA-D&S 31.95 21.11 12.80 0.069

Spectral-D&S 46.37 23.92 12.89 27.17

TensorADMM 32.16 21.34 12.91 56.09

MV-D&S 66.91 57.92 13.09 0.096

Minmax-entropy 62.83 65.50 67.31 200.91

KOS 71.47 61.05 13.12 5.653

Majority Voting 67.57 68.37 71.39 –

Table 6: Classification Error(%) & Averge run-time when d = [ 1
6 ,

2
3 ,

1
6 ]>

Algorithms p = 0.2 p = 0.3 p = 0.5 Run-time(sec)
MultiSPA 30.75 21.29 13.67 0.105

MultiSPA-KL 23.19 16.62 10.13 18.93

MultiSPA-D&S 40.12 32.1 21.46 0.122

Spectral-D&S 56.17 49.41 39.17 28.01

TensorADMM 34.17 25.53 11.97 152.76

MV-D&S 83.14 83.15 32.98 0.090

Minmax-entropy 83.04 63.08 74.29 232.82

KOS 70.79 67.55 78.00 6.19

Majority Voting 65.37 65.57 66.06 –

B More Details on UCI and AMT Dataset Experiments

UCI data. The details of the UCI datasets employed in the real data experimemts is given in Table 7.
To be more specific, the Adult dataset predicts the income of a person into K = 2 classes based on
14 attributes. The Mushroom dataset has 22 attributes of certain variations of mushrooms and the
task there predicts either ‘edible’ or ‘poisonous’. The Nursery dataset predicts applications to one of
the 4 categories based on 8 attributes of the financial and social status of the parents.

The proposed methods and the baselines are compared in terms of runtime for various datasets and
the results are reported in Table 8. All the results are averaged from 10 different trials.

AMT data. The Amazon Mechanical Turk (AMT) datasets used in our crowdsourcing data experi-
ments is given in Table 9. Specifically, the tasks involving the Bird dataset [38], the RTE dataset [34],
and the TREC dataset [26], are binary classification tasks. The tasks associated with the Dog dataset
[7] and the web dataset [40] are multi-class tasks (i.e., 4 and 5 classes, respectively).

We would like to add one remark regarding the two-stage approaches that involving an initial stage
and a refinement stage (e.g., Spectral-D&S, MV-D&S, and MultiSPA-KL). Due to very high sparsity
of the annotator responses in most of the AMT data, the estimated confusion matrices from the first
stage may contain many zero entries, which may sometimes lead to numerical issues in the second
stage, as observed in [39]. In our experiments, we follow an empirical thresholding strategy proposed
in [39]. Specifically, the confusion matrix entries that are smaller than a threshold ∆ are reset to
∆ and the columns are normalized before initialization. In our experiments, we use ∆ = 10−6 for
most of the cases except the extremely large dataset TREC, which enjoys better performance of all
methods using ∆ = 10−5.
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Table 7: Details of UCI Datasets.

UCI dataset name # classes # items # annotators

Adult 2 7017 10

Mushroom 2 6358 10

Nursery 4 3575 10

Table 8: Average runtime (sec) for UCI datset experiments.

Algorithms Nursery Mushroom Adult
MultiSPA 0.021 0.012 0.018

MultiSPA-KL 1.112 0.663 0.948

MultiSPA-D&S 0.035 0.027 0.027

Spectral-D&S 10.09 0.496 0.512

TensorADMM 5.811 0.743 4.234

MV-D&S 0.009 0.007 0.008

Minmax-entropy 19.94 2.304 6.959

EigenRatio – 0.005 0.007

KOS 0.768 0.085 0.118

Ghosh-SVD – 0.081 0.115

Table 9: AMT Dataset description.

Dataset # classes # items # annotators # annotator labels
Bird 2 108 30 3240

RTE 2 800 164 8,000

TREC 2 19,033 762 88,385

Dog 4 807 52 7,354

Web 5 2,665 177 15,567

C Algorithm for Criterion (13)

In this section, the MultiSPA-KL algorithm is discussed in detail. To implement the identification
criterion in (13), we lift the constraint (13b) and employ the following coupled matrix factorization
cirterion:

minimize
{Am}Mm=1, D

∑
m,`

KL
(
R̂m,`||AmDA

>
`

)
, (16a)

subject to : 1>Am = 1>, Am ≥ 0, 1>d = 1, d ≥ 0, (16b)
whereD = Diag(d) and the Kullback-Leibler (KL) divergence is employed as the distance measure.
The reason is that Rm,` is a joint PMF of two random variables, and the KL-divergence is the
most natural distance measure under such circumstances. Problem (16) is a nonconvex optimization
problem, but can be handled by a simple alternating optimization procedure.

Specifically, we propose to solve the following subproblems cyclically:

Am ← arg min
1>Am=1>, Am≥0

∑
`∈Sm

KL
(
R̂m,`||AmDA

>
`

)
(17a)

d← arg min
1>d=1, d≥0

∑
`∈Sm

KL
(
R̂m,`||AmDA

>
`

)
(17b)
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where Sm denotes the index set of `’s such that Rm,` is available. Both of the above problems
are convex optimization problems, and thus can be effectively solved via a number of off-the-
shelf optimization algorithms, e.g., ADMM [18] and mirror descent [2]. The detailed summarized
algorithm is in Algorithm 2. The alternating optimization algorithm is also guaranteed to converge to
a stationary point under mild conditions [3, 32].

Algorithm 2 MultiSPA-KL
Input: Annotator Responses {Xm(fn)}.
Output: Âm for m = 1, . . . ,M , d̂.
Estimate second order statistics R̂m,`;
get initial estimates of {Âm} using MultiSPA
for t = 1 to MaxIter do

for m = 1 to M do
updateAm ← (17a);

end for
update d← (17b);

end for

Note that this coupled factorization formulation bears some resemblance to the coupled tensor
factorization formulation in [37]. However, the two are very different in essence. The formulation
in [37] relies on the third-order statistics to establish identifiability, while the formulation in (16)
establishes identifiability using nonnegativity of the confusion matrices and the prior. The KL-
divergence based fitting criterion also fits the statistical learning problem better than the least squares
based criterion in [37].

D Estimation of Prior Probability Vector

In this section, we discuss different methods to estimate the prior probability vector d once the
confusion matrices are estimated via MultiSPA algorithm.

It is to be noted that the SPA-estimated Âm is up to column permutation, even if there is no noise,
i.e., Âm = AmΠm in the best case. Since our algorithm runs SPA separately for different Zm’s, the
permutation matrices resulted by each run of SPA need not to be identical; i.e., it is highly likely that
Π` 6= Πm for m 6= `. To estimate the prior PMF d, one will need to use estimators such as

D̂ = Â−1
m Rm,`(Â

>
` )−1,

which cannot be applied before the permutation mismatch is fixed. In practice, the mismatch can
be removed by a number of simple methods. For example, if annotator ` has co-labeled data with
annotator m, then Ã` = A`Πm can be estimated from Rm,` via Ã` = Â−1

m Rm,`. We also have
Â` = A`Π` estimated from Z`. Using a permutation matching algorithm, e.g., the Hungarian
algorithm [20], one can easily remove the permutation mismatch between Â` and Ã`. Another
more heuristic yet more efficient way is to rearrange the columns of Âm so that it is diagonally
dominant—this makes a lot of sense if one believes that all the annotators are reasonably trained.

E Geometry of The Sufficiently Scattered Condition

In this section, we present more discussion on the sufficiently scattered condition that is used in
Theorem 3. To simplify the notation, we omit the superscript of H(i) for i = 1, 2 and use H to
denote these two matrices. The sufficiently scattered condition is geometrically intuitive. The key to
understand this condition is the second-order cone C, which is shown in Fig. 2. This cone is very
special since it is tangent to all the facets of the nonnegative orthant.

A case whereH ∈ RN×K satisfies the sufficiently scattered condition is plotted in Fig. 3. One can
see that the sufficiently scattered condition is much more relaxed compared to the condition that
enables SPA (cf. Fig. 4). In order to apply SPA to Zm, one needs that there are rows in Hm that
attain the extreme rays of the nonnegative orthant.
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Figure 2: Illustration of the cone C in an 3-dimensional space.

Figure 3: A case whereH satisfies the sufficiently scattered condition. The inner circle corresponds
to C, the dots correspond toH(q, :)’s, and the triangle corresponds to the nonnegative orthant. The
shaded region is cone

{
H>
}

.

F Proof of Theorem 1

F.1 Identification Theory of SPA

To understand Theorem 1, let us start with a noisy nonnegative matrix factorization (NMF) model

X = WH>+N , (18)

whereW ∈ RM×K ,H ∈ RN×K ,W ≥ 0 andH ≥ 0, andN represents the noise. Also assume

that rank(W ) = K andH = Π

[
IK
H∗

]
; i.e., there exists Λ = {q1, . . . , qK} such thatH(Λ, :) = I .

Also assume thatH1 = 1.

The SPA algorithm under this model is as follows [16, 10, 2, 4]:

q̂1 = arg max
q∈{1,...,N}

‖X(:, q)‖22

q̂k = arg max
q∈{1,...,N}

∥∥∥P⊥
Ŵ (:,1:k−1)

X(:, q)
∥∥∥2

2
, k > 1.

where
Ŵ (:, 1 : k − 1) = [X(:, q̂1), . . . ,X(:, q̂k−1)]

collects all the previously estimated columns ofW andP⊥
Ŵ (:,1:k−1)

is a projector onto the orthogonal

complement of range(Ŵ (:, 1 : k − 1)).
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Figure 4: A case whereHm satisfies the condition for applying SPA (aka. the separability condition).
The inner circle corresponds to C, the dots correspond toHm(q, :)’s, and the triangle corresponds to
the nonnegative orthant. The shaded region is cone

{
H
>
m

}
.

When there is no noise, it was shown in the literature that SPA readily identifies Λ [16, 2]. To see
this, consider

‖X(:, q)‖2 =

∥∥∥∥∥
K∑
k=1

W (:, k)H(q, k)

∥∥∥∥∥
2

≤
K∑
k=1

‖W (:, k)H(q, k)‖2

=

K∑
k=1

H(q, k) ‖W (:, k)‖2 ≤ max
k=1,...,K

‖W (:, k)‖2 ,

where the two equalities hold simultaneously if and only ifH(q, :) = e>k for a certain k, i.e., q ∈ Λ.
After identifying the first index q̂1 in Λ, then by projecting all the data column onto the the orthogonal
complement ofX(:, q̂1), the sameW (:, k) will not come up again. Hence, K steps of SPA identifies
the wholeW .

A salient feature of SPA is that it is provably robust to noise. To be specific, Gillis and Vavasis have
shown that:
Lemma 1. [16] Under the described NMF model, assume that ‖N(:, l)‖2 ≤ δ for all l. If the below
holds:

δ ≤ σmin(W )min
(

1

2
√
K − 1

,
1

4

)(
1 + 80κ2(W )

)−1
,

then, SPA identifies an index set Λ̂ = {q̂1, . . . q̂K} such that

max
1≤j≤K

min
q̂k∈Λ̂

‖W (:, j)−X(:, q̂k)‖2 ≤ δ
(
1 + 80κ2(W )

)
where κ(W ) = σmax(W )

σmin(W ) is the condition number ofW .

F.2 Proof of The Theorem

Since Rm,` is obtained by sample averaging of a finite number of pairwise co-occurrences, the
estimated R̂m,` is always noisy; i.e., we have

R̂m,` = Rm,` +Nm,`, (20)

where the noise matrixNm,` has same dimension as R̂m,` orRm,` and its norm can be bounded by
Lemma 2.
Lemma 2. [1] Let δ ∈ (0, 1) and let R̂m,` be the empirical average of S independent co-occurrences
of random variables Xm and X` where Xm, X` ∈ {1, . . . ,K}, then the following holds

Pr

[
‖R̂m,` −Rm,`‖F = ‖Nm,`‖F ≤

1 +
√

ln(1/δ)√
S

]
≥ 1− δ

Using the estimates R̂m,`, Ẑm is constructed according to (5) (withRm,`’s replaced by R̂m,`’s). The
columns of Ẑm are normalized before performing MultiSPA, essentially normalizing the columns
of R̂m,`. Normalization complicates the analysis since the demonstrators used in this step are also
noisy. We derive Lemma 3 to characterize the noise bound after column normalization.
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Lemma 3. Assume that there exists at least S joint responses from each of the annotator pairs m, `.
Let η ∈ (0, 1). If ‖R̂m,`(:, k)‖1 ≥ η and ‖Nm,`(:, k)‖1 < ‖Rm,`(:, k)‖1,∀k ∈ {1, . . . ,K},∀m 6=
`, then with probability greater than 1− δ, the below holds ∀k ∈ {1, . . . ,K},∀m 6= `,

R̂m,`(:, k)

‖R̂m,`(:, k)‖1
=

Rm,`(:, k)

‖Rm,`(:, k)‖1
+Nm,`(:, k)

where ‖Nm,`(:, k)‖2 ≤
2
√
K(1+

√
ln(1/δ))√

Sη
.

Proof. For simpler representation, let us assign x := Rm,`(:, k), x̂ := R̂m,`(:, k) and n := R̂m,`(:
, k)−Rm,`(:, k) = Nm,`(:, k).

Let x = [x1, . . . , xK ]> and n = [n1, . . . , nK ]>. Note that x ≥ 0 and x + n ≥ 0—since x is a
legitimate PMF and x+ n is averaged from co-occurrence counts. Then, we have

x̂

‖x̂‖1
=

x+ n

‖x+ n‖1
=

x+ n∑
i xi + ni

=
x+ n∑

i xi +
∑
i ni

=
x+ n∑

i xi

(
1 +

∑
i ni∑
i xi

) .
Let µ =

∑
i ni∑
i xi

. Using the assumption ‖Nm,`(:, k)‖1 < ‖Rm,`(:, k)‖1, then |µ| < 1, From this,

x+ n

‖x+ n‖1
=

(x+ n)(1 + µ)−1∑
i xi

=
(x+ n)∑

i xi
(1− µ+ µ2 − µ3 + . . . )

=
x∑
i xi
− µ x∑

i xi
(1− µ+ µ2 − µ3 + . . . ) +

n∑
i xi

(1− µ+ µ2 − µ3 + . . . )

=
x∑
i xi

+
n

(1 + µ)
∑
i xi
− µx

(1 + µ)
∑
i xi

=
x

‖x‖1
+

n− µx
(1 + µ)

∑
i xi︸ ︷︷ ︸

Γ

(21)

Now let us bound the term Γ:

‖Γ‖1 :=

∥∥∥∥ n− µx
(1 + µ)

∑
i xi

∥∥∥∥
1

≤ ‖n‖1
‖x+ n‖1

+
‖
∑
i ni‖

‖x+ n‖1

≤ 2
‖n‖1
‖x+ n‖1

≤ 2
‖n‖1
η

. (22)

The first and second inequalities are due to Cauchy-Schwartz ineqality and the last inequality is by
‖R̂m,`(:, k)‖1 ≥ η.

From Lemma 2, with probability greater than 1− δ, the below holds,
K∑
k=1

‖Nm,`(:, k)‖22 = ‖Nm,`‖2F ≤
(1 +

√
ln(1/δ))2

S
.

By norm equivalence, ‖Nm,`(:,k)‖1√
K

≤ ‖Nm,`(:, k)‖2, Therefore,

K∑
k=1

‖Nm,`(:, k)‖21 ≤
K(1 +

√
ln(1/δ))2

S

=⇒ ‖Nm,`(:, k)‖21 ≤
K(1 +

√
ln(1/δ))2

S
, ∀k

=⇒ ‖Nm,`(:, k)‖1 ≤
√
K(1 +

√
ln(1/δ))√
S

, ∀k (23)
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From (22) and (23),

‖Γ‖1 = ‖Nm,`(:, k)‖1 ≤
2
√
K(1 +

√
ln(1/δ))√

Sη

By norm equivalence, ‖Nm,`(:, k)‖2 ≤ ‖Nm,`(:, k)‖1, then

‖Nm,`(:, k)‖2 ≤
2
√
K(1 +

√
ln(1/δ))√

Sη

This completes the proof of Lemma 3.

With the above lemmas, we are ready to characterize the accuracy of applying SPA to identify the
Dawid-Skene model given the assumptions in Eq. (11).

Eq. (11) indicates that there exits a set of indices Λq = {q1, . . . , qK} such that

Hm(Λq, :) = IK +E (24)

where IK is the identity matrix of size K and E is the error matrix with maxj |E(l, j)| = ‖E(l, :

)‖∞ ≤ ε. By norm equivalence, we have ‖E(l, :)‖2 ≤
√
KE(l, :)‖∞ ≤

√
Kε.

Without loss of generality, let us assume Λq = {1, . . . ,K} and

Hm =

[
IK +E
H∗m

]
.

Now we have,

Zm = AmH
>
m +N (25)

= Am[IK +E> (H∗m)>] +N (26)

= Am[IK (H∗m)>] + [AmE
> 0] +N (27)

whereN =
[
Nm,m1

, . . . ,Nm,mT (m)

]
and the zero matrix 0 has the same size as that ofH∗m

This model is similar to the noisy NMF model, i.e., X = WH> + N , where the noise matrix
N = [AmE

> 0∗m] +N . To be specifc, we have

N(:, l) = AmE(l, :)>+N(:, l) (28)

Therefore, one can see that

‖N(:, l)‖2 = ‖AmE(l, :)>+N(:, l)‖2 (29)

≤ ‖Am‖2‖E(l, :)‖2 + ‖N(:, l)‖2 (30)

≤ σmax(Am)
√
Kε+

2
√
K(1 +

√
ln(1/δ))√

Sη
(31)

where (30) is by the Cauchy-Schwartz inequality, (31) is by Lemma 3 and σmax(Am) is the largest
singular value of matrixAm.

Hence, we effectively have the same model as in (18). Applying Lemma 1, we see that if

ε ≤ 1√
Kκ(Am)

min
(

1

2
√
K − 1

,
1

4

)(
1 + 80κ2(Am)

)−1 −
2(1 +

√
ln(1/δ))

σmax(Am)
√
Sη

= O
(

max
(
K−1κ−3(Am),

√
ln(1/δ)(σmax(Am)

√
Sη)−1

))
,
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then, with probability at least 1− δ, the SPA algorithm identifies the matrixAm with an error bound
given by

min
Π
‖ÂmΠ−Am‖2,∞

= max
1≤j≤K

min
q̂k∈Λ̂q

∥∥Am(:, j)−Zm(:, q̂k)
∥∥

2

≤

(
σmax(Am)

√
Kε+

2
√
K(1 +

√
ln(1/δ))√

Sη

)(
1 + 80κ2(Am)

)
= O

(√
Kκ2(Am)max

(
σmax(Am)ε,

√
ln(1/δ)(

√
Sη)−1

))
.

This completes the proof.

G Proof of Theorem 2

Assuming that the rows ofHm are generated from the probability simplex uniformly at random, we
now analyze under what conditions vectors close to all K vertices of the probability simplex appear
in the rows ofHm.

Let us denote the probability simplex as X = {x ∈ RK |x>1 = 1,x ≥ 0}.
Let us consider an ε-neighbourhood of the k-th vertex ek denoted as Qk(ε) such that

Qk(ε) := {q ∈ X | ‖q − ek‖2 ≤ ε}. (32)

Also denote a euclidean ball of radius ε centered at ek as B(ek, ε). Geometrically, the continuous
set Qk(ε) can be considered as the intersection of the probability simplex X and the euclidean ball
B(ek, ε), i.e, Qk(ε) = X ∩ B(ek, ε) (see Fig. 5).

Figure 5: The big triangle represents the probability simplex X when K = 3, the dotted circles
denotes the euclidean balls B(ek, ε), the shaded region denotes X ∩ B(ek, ε). The small triangles
near the vertices has the same volume as the simplex having edge lengths ε denoted as Xε

Suppose we are uniformly sampling a set P of size s from the probability simplex X such that
P := {p1,p2, . . . ,ps}
Let us define an event Ji such that for every i ∈ {1, . . . , s},

Ji =

{
1, if pi ∈ Qk(ε)

0, otherwise
(33)
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Consider the probability such that event Ji happens,

Pr(Ji = 1) =
vol(Qk(ε))

vol(X )
(34)

=
vol(X ∩ B(ek, ε))

vol(X )
(35)

≥ vol(Xε)
vol(X )

(36)

≥
(

ε√
2

)K−1

(37)

where Xε denotes the (K−1)-dimensional simplex which intersects the co-ordinate axes at ε√
2
ek, for

every k ∈ {1, . . .K} and its volume is given by (ε/
√

2)K−1

(K−1)! [35]. (Note that the probability simplex
X intersects the co-ordinate axes at ek for every k). The inequality in Eq.(36) uses the geometric
property that the volume of X ∩ B(ek, ε) is greater than the volume of Xε (see Fig. 5).

Let us define the random variable U =
∑s
i=1 Ji which denotes the number of samples in P which

belongs to the set Qk(ε). Then,

E[U ] = E[

s∑
i=1

Ji] =

s∑
i=1

E[Ji] (38)

=

s∑
i=1

Pr(Ji = 1) = sPr(J1 = 1) (39)

≥ s
(

ε√
2

)K−1

(40)

Now, if there exists at least one sample from set P which is in the ε-neighbourhood of k-th vertex, ie
the event Ji happens at least once, then U =

∑s
i=1 Ji ≥ 1. We are interested in finding the below

probability,

Pr(U ≥ 1) = 1− Pr(U < 1) (41)
= 1− Pr(U ≤ 0) (42)
= 1− Pr(U = 0) (43)

So, our goal boils down to finding Pr(U ≤ 0) and we will achieve this using Chernoff-Hoeffding
bound.

Lemma 4. [36] Let J1, . . . , Js be independent bounded random variables such that Ji falls in the
interval [ai, bi] with probability one and let U =

∑s
i=1 Ji. Then for any t > 0,

Pr(U − E[U ] ≤ −t) ≤ e−2t2/
∑s
i=1(bi−ai)2 (44)

It follows that

Pr(U ≤ E[U ]− t) ≤ e−2t2/
∑s
i=1(bi−ai)2 (45)

By assigning E[U ]− t = 0, we get t = E[U ] . Also, notice that in our case bi = 1, ai = 0, then

Pr(U ≤ 0) ≤ e−
2E[U]2

s (46)

≤ e−
sε2(K−1)

2K−2 (47)

Eq. (47) is obtained by using the inequality (40) and implies that, the probability such that the

uniform sample P does not contain any points from k-th vertex is less than e−
sε2(K−1)

2K−2 .

Now we have to find the corresponding probability that considers all the K vertices.
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For this, let us define events Ek as follows,
Ek = {There exists no point p in the uniform sample set P such that p ∈ Qk(ε)} (48)

From Eq. (47), it is clear that Pr(Ek) ≤ e−
sε2(K−1)

2K−2 . Since the points are uniformly sampled from
the probability simplex X , this bound is applicable for all k ∈ {1, . . . ,K}.
Now let us define the event E as below
E = {there exists at least one point in the uniform sample set P such that p ∈ Qk(ε) for each k}

We can observe that E =
⋂K
k=1Ek where Ek is the complement of the event Ek.

Therefore,

Pr(E) = Pr

(
K⋂
k=1

Ek

)
= Pr

(
∪Kk=1Ek

)
= 1− Pr

(
K⋃
k=1

Ek

)
≥ 1−

∑
k

Pr(Ek)

≥ 1−Ke−
sε2(K−1)

2K−2 (49)

Eq. (49) implies that with probability greater than or equal to 1−Ke−
sε2(K−1)

2K−2 , the points from the
ε-neighbourhood of all the vertices are contained by set P .

If s represents the number of rows in Hm, then for s ≥ 2K−2

ε2(K−1) log
(
K
ρ

)
, with probability at least

1− ρ, a uniform sample from the probability simplex X will contain ε-near-vertex points of all the K
vertices. Note that s = (M − 1)K where M is the number of annotators. This provides a bound on
the number of annotators needed. Specifically, if there exists at least 1 + 2K−2

Kε2(K−1) log
(
K
ρ

)
annotators,

then we have the conclusion of Theorem 2

H Proof of Theorem 3

To show this theorem, we will use the following Lemma:
Lemma 5. [17] Consider a matrix factorization model R = P1P

>
2 , where R ∈ RM×N , P1 ∈

RM×K , P2 ∈ RN×K , and rank(P1) = rank(P2) = K. If Pi ≥ 0 for i = 1, 2 and both P1 and P2

are sufficiently scattered, we have any P̂1 ≥ 0 and P̂2 ≥ 0 that satisfy R = P̂1P̂
>
2 must have the

following form
P̂1 = P1ΠΣ, P̂2 = P2ΠΣ−1, (50)

where Π is a permutation matrix and Σ−1 is a diagonal nonnegative singular matrix.

Lemma 5 addresses the identifiability of a conventional nonnegative matrix factorization (NMF)
model. Simply speaking, if both latent factors ofR = P1P

>
2 are sufficiently scattered, then the NMF

ofR is unique up to column permutation and scaling of the latent factors.

Now we start proving Theorem 3. Let us consider the following matrixR:

R =

 Rm1,`1 Rm1,`2 . . . Rm1,`|P2|
...

... . . .
...

Rm|P1|,`1
Rm1,`2 . . . Rm|P2|,`|P2|


It is readily seen that

R =

 Am1

...
Am|P1|

.

D[A>`1 , . . . ,A
>
`|P2|

]

= H(1)D(H(2))>.
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It suffices to show that R = H(1)D(H(2))> is unique up to column permutations of H(i) for
i = 1, 2. The reason is that if such uniqueness holds, then Am for m /∈ P1 ∪ P2 can be identified
with via solving

Rm,r = AmDA
>
r, r ∈ P1 ∪ P2,

up to the same column permutation.

Note that since D and Ar have been identified from R, solving Am amounts to solving a system
of linear equations, which has a unique solution under rank(D) = rank(Am) = K. Under the
assumption that all m /∈ P1 ∪ P2 are connected to a certain r ∈ P1 ∪ P2 viaRm,r, all theAm’s for
m /∈ P1 ∪ P2 can be identified up to the same column permutation.

To show the identifiability ofR = H(1)D(H(2))>, consider re-writing the right hand side as

R = H(1)D1/2︸ ︷︷ ︸
P1

D1/2(H(2))>︸ ︷︷ ︸
P>2

= P1P
>
2 .

It suffices to show that P1 and P2 are unique up to column permutation and scaling, since the
constraints on 1>Am = 1>(⇒ 1>H(i) = |Pi|) removes the scaling ambiguity.

Assume that there is an alternative solutionR = P̂1P̂
>
2 . By the fact rank(Am) = K, we have

rank(H(i)) = K ⇒ rank(Pi) = K.

Note thatH(1) andH(2) are both sufficiently scattered. This directly implies that both P1 and P2

are sufficiently scattered, since column scaling of H(1) and H(2) does not affect the cone of their
respective transposes, i.e.,

cone
{

(H(i))>
}

= cone
{

(H(i)Σ)>
}

for any nonnegative, nonsingular and diagonal Σ.

Then, by Lemma 5, it must hold that

P̂1 = H(1)D1/2ΠΣ, P̂2 = H(2)D1/2ΠΣ−1,

for a certain Π and Σ. Nevertheless, Σ is automatically removed by the constraints 1>Am = 1>.

I Proof of Theorem 4

LetH represents the matrixH with its rows normalized with respect to `1-norm. Geometrically,H
can be viewed as the projection of the rows ofH onto the (K − 1)-probability simplex. (cf. Fig. 2).

Lin et al. provides a characterization to the spread of the rows ofH in the probability simplex using
a measure called as uniform pixel purity level (named in the context of hyperspectral imaging) [27].
The purity level is denoted by γ and is defined as follows:

γ = sup{r ≤ 1|R(r) ⊆ conv{H>}} (51)

where

R(r) = {x ∈ RK |‖x‖2 ≤ r} ∩ conv{e1, . . . , eK} (52)

Geometrically, R(γ) is the ‘largest’ R(r) that can be inscribed inside conv{H>}. There is an
interesting link between γ and the sufficiently scattered condition shown in [11]:

Lemma 6. [11] Assume K ≥ 3 holds. If γ ≥ 1√
K−1

, thenH is sufficiently scattered.

In general cases, it is hard to check if γ ≥ 1√
K−1

holds [17]. However, in [27], a sufficient condition
for γ ≥ 1√

K−1
is derived:
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Lemma 7. [27] Suppose the following assumption holds true: for every k, k
′ ∈ {1, . . . ,K}, k 6= k

′
,

there exist a row index qkk′ inH such that

H(qkk′ , :) = αkk′e
>
k + (1− αkk′ )e

>
k′

(53)

where 1
2 < αkk′ < 1 for K ≥ 4, 2

3 < αkk′ < 1 for K = 3 and αkk′ = 1, for K = 2 . Then
γ ≥ 1√

K−1
and by Lemma 6,H is sufficiently scattered.

Figure 6: (ε-sufficiently scatterd) The big triangle represents the probability simplex X when K = 3,
the shaded region denotes the region which is ε near the edges and in the inset, the shaded region
depicts the lower bound for the volume (area) of this region at each vertex.

Let us define α = min
k,k′∈{1,...,K},k 6=k′

αkk′ . Lemma 7 states that for every edges of the probability

simplex, if there exists at least one row inH which belongs to certain range in the edge which is of
length α (α-edge) (see Fig. 6), then the matrixH is sufficiently scattered.

Let us denote the probability simplex as X = {x ∈ RK |x>1 = 1,x ≥ 0}.
For each vertex, there exists K − 1 edges associated to it. Let us denote an ε-neighbourhood of
α-edge connecting the vertices k and k

′
as Q̃k,k′ (ε, α). By the conditions in Lemma 7 and the

definition of ε- sufficiently scattered (cf. Def. 2), it can be seen that, for every edges connecting k and
k′, if there exists at least one row inH belonging to Q̃k,k′ (ε, α), thenH is ε-sufficiently scattered.

For each vertex k, the union of Q̃k,k′ (ε, α), k′ 6= k forms a continuous neighbourhood around the
vertex k denoted as Q̃k(ε, α) , i.e,

Q̃k(ε, α) =
⋃
k′ 6=k

Q̃k,k′ (ε, α) (54)

Geometrically, the volume of the continuous set Q̃k(ε, α) can be lower bounded as below (see Fig 6)

vol(Q̃k(ε, α)) ≥ vol(Xα)− vol(Xα−2ε) (55)

where Xα′ is (K − 1)-dimensional simplex which intersects the co-ordinate axes at α′√
2
ek for every

k = {1, . . . ,K} and thus has the edge lengths α′. The volume of Xα′ is given by (α′/
√

2)K−1

(K−1)! [35]
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Eq. (55) can then be written as

vol(Q̃k(ε, α)) ≥ αK−1

√
2
K−1

(K − 1)!
− (α− 2ε)K−1

√
2
K−1

(K − 1)!
(56)

=
αK−1

√
2
K−1

(K − 1)!

(
1−

(
1− 2ε

α

)K−1
)

(57)

=
αK−1

√
2
K−1

(K − 1)!

(
2ε

α

(
1 +

(
1− 2ε

α

)
+ · · ·+

(
1− 2ε

α

)K−2
))

(58)

=
αK−1

√
2
K−1

(K − 1)!

(
2ε

α
+

2ε

α

(
1− 2ε

α

)
+ · · ·+ 2ε

α

(
1− 2ε

α

)K−2
)

(59)

≥ αK−1

√
2
K−1

(K − 1)!

2ε

α
(60)

=
αK−2ε

√
2
K−3

(K − 1)!
(61)

Eq. (58) uses the geometric series sum formula 1 − an = (1 − a)(1 + a + · · · + an−1) and the
assumption that α > 2ε.

From Eq. (54) and (61), the volume of the set Q̃k,k′ (ε, α) can be lower bounded as

vol

 ⋃
k′ 6=k

Q̃k,k′ (ε, α)

 = vol
(
Q̃k(ε, α)

)
(62)

=⇒ (K − 1)vol
(
Q̃k,k′(ε, α)

)
≥ vol

(
Q̃k(ε, α)

)
(63)

≥ αK−2ε
√

2
K−3

(K − 1)!
(64)

=⇒ vol
(
Q̃k,k′(ε, α)

)
≥ αK−2ε
√

2
K−3

(K − 1)(K − 1)!
(65)

Suppose we are uniformly sampling a set P of size s from the probability simplex X such that
P := {p1,p2, . . . ,ps}
Let us define an event Ji such that for every i ∈ {1, . . . , s},

Ji =

{
1, if pi ∈ Q̃k,k′(ε, α)

0, otherwise
(66)

Consider the probability such that event Ji happens,

Pr(Ji = 1) =
vol(Q̃k,k′(ε, α))

vol(X )
(67)

≥ (K − 1)!
αK−2ε

√
2
K−3

(K − 1)(K − 1)!
(68)

=
αK−2ε

(K − 1)
√

2
K−3

(69)

Eq. (68) uses the fact that the volume of the (K − 1)-dimensional simplex X is given by 1
(K−1)! [35].
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Now, let us define the random variable U =
∑s
i=1 Ji. Then,

E[U ] = E[

s∑
i=1

Ji] =

s∑
i=1

E[Ji] (70)

=

s∑
i=1

Pr(Ji = 1) = sPr(J1 = 1) (71)

≥ s αK−2ε

(K − 1)
√

2
K−3

. (72)

Now, if there exists at least one sample from set P which is in the ε-neighbourhood of α-edge, i.e,
the event Ji happens at least once, then U =

∑s
i=1 Ji ≥ 1. Also,

Pr(U ≥ 1) = 1− Pr(U < 1)

= 1− Pr(U ≤ 0)

= 1− Pr(U = 0)

So, our goal boils down to finding Pr(U ≤ 0) and we will achieve this using Lemma 4.

From Lemma 4, it follows that

Pr(U ≤ E[U ]− t) ≤ e−2t2/
∑s
i=1(bi−ai)2 (73)

By assigning E[U ]− t = 0, we get t = E[U ] . Also, notice that in our case bi = 1, ai = 0, then

Pr(U ≤ 0) ≤ e−
2E[U]2

s (74)

≤ e−
sα2(K−2)ε2

2K−4(K−1)2 (75)

Eq. (75) is obtained by using the inequality E[U ] ≥ s αK−2ε

(K−1)
√

2
K−3 as in Eq. (72) and implies that,

the probability such that the uniform sample P does not contain any points from Q̃k,k′(ε, α) is less

than e−
sα2(K−2)ε2

2K−4(K−1)2 .

Now we have to find the corresponding probability that considers all the (K − 1) edges for each
vertex k.

For this, let us define events Ẽkk′ as follows,

Ẽkk′ = {There exists no point p in the uniform sample set P such that p ∈ Qk,k′ (ε, α)} (76)

From Eq. (75), it is clear that Pr(Ẽkk′ ) ≤ e
− sα2(K−2)ε2

2K−4(K−1)2 . Since the points are uniformly sampled
from the probability simplex X , this bound is applicable for all k, k

′ ∈ {1, . . . ,K}, k 6= k
′
.

Now let us define the event Ẽ as below
Ẽ = {there exists at least one point in the set P such that p ∈ Qk,k′ (ε, α) for all k, k

′
, k 6= k

′
}

We can observe that Ẽ =
⋂
k,k
′

k 6=k
′
Ẽkk′ where Ẽkk′ is the complement of the event Ẽkk′ .

Therefore,

Pr(E) = Pr

(⋂
k,k
′

k 6=k
′
Ẽkk′

)
= Pr

(⋃
k,k
′

k 6=k
′
Ẽkk′

)

= 1− Pr

(⋃
k,k
′

k 6=k
′
Ẽkk′

)
≥ 1−

∑
k,k′

Pr(Ẽkk′ )

≥ 1−K(K − 1)e
− sα2(K−2)ε2

2K−4(K−1)2 (77)
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Eq. (77) implies that with probability greater than or equal to 1−K(K−1)e
− sα2(K−2)ε2

2K−4(K−1)2 , the points
from the ε-neighbourhood of all the α-edges are contained by set P . This essentially means that the
rows ofH satisfy the assumption (53) with ε accuracy and thus the ε-sufficiently scattered condition
is achieved.

From Lemma 7, we get the lower bounds for α under various values of K:

α > αmin, αmin =


1, for K = 2,
2
3 , for K = 3,
1
2 , for K > 3.

(78)

Therefore, Eq. (77) can be agian bounded as,

Pr(E) ≥ 1−K(K − 1)e
−
sα

2(K−2)
min

ε2

2K−4(K−1)2 (79)

If s represents the number of rows inH , then for s ≥ 2K−4(K−1)2

α
2(K−2)
min ε2

log
(K(K−1)

ρ

)
, with probability

at least 1 − ρ, H is ε-sufficienty scattered. Note that s = (M − 1)K where M is the number of
annotators. This provides a bound on the number of annotators needed.

Consequently, if there exists at least 1 + 2K−4(K−1)2

Kα
2(K−2)
min ε2

log
(K(K−1)

ρ

)
annotators, then we have the

conclusion of Theorem 4.

J Sample complexity for second order and third order statistics

In this section, we compare the sample complexity needed to estimate the second order statistics of
the annotator responses from m and ` denoted asRm,` and the third order statistics of the annotator
responses from m, n and ` denoted asRm,n,` given a dataset of N samples to jointly label as one of
the K classes.

In crowdsourcing, not all samples are labeled by an annotator. To be specific, an annotator m labels
each sample with probability pm ∈ (0, 1] and in most of the practical cases, pm << 1. For simpler
analysis, let us take pm = p, for all annotators. Then, this results to have an average of dNp2e joint
responses from annotators m and ` and dNp3e joint responses from annotators m, n and `. With this
and using the matrix and tensor concentration results from [39], the estimation error forRm,` and
Rm,n,` can be re-stated as, with probability at least 1− δ,

‖Rm,` − R̂m,`‖F ≤
1 +

√
log(1/δ)

p
√
N

(80)

‖Rm,n,` − R̂m,n,`‖F ≤
1 +

√
log(K/δ)

p
3
2

√
N/K

(81)

It is clear from Eq. (80) and (81) that in order to achieve the same accuracy, third order statistics
need much higher number of samples compared to second order statistics when p is smaller and K is
larger.

28


	Introduction
	Background
	Proposed Approach
	 Identifiability-enhanced Algorithm
	Experiments
	Conclusion
	Synthetic Data Experiments
	More Details on UCI and AMT Dataset Experiments
	Algorithm for Criterion (13)
	Estimation of Prior Probability Vector
	Geometry of The Sufficiently Scattered Condition
	Proof of Theorem 1
	Identification Theory of SPA
	Proof of The Theorem

	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Sample complexity for second order and third order statistics

