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Figure 3: More results in the same setting as Fig. 1 (regression data)
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7 Proofs

7.1 Proof of Lem. 1

The following result is helpful for establishing Lem. 1.

Lemma 8. If V,t., (u) is Jacobian-transpose of t.,(u) with respect to w, then

Vo T (1) T Vo Top () = I(1 + ||u][3).

Proof. We use the notation V., 7., (u) = %,

)T

meaning that (V. Tw(w)),; =

dTw ('“')J'

dw;

Each row of V,t., (1) consists of the partial derivative of ., (u) with respect to one component of
w. Thus, the product is

(Ve Too(w)) "

(vaw (u)) =

We can calculate these components as

() (o) = el

) (@) = (e (e
(dSU > <dSZ] )

Adding the components up, we get that

(Vo Tw (u))T (VT ()

The following is the main Lemma.

(o) () S

> (an7)

Zai(u)a u)’

2

T

= uje;e;

J

T 2, T
E ee;, + g uje;e;
i 4,7

(1 + [lull3)-

Proof. Using Lemma Lem. 8, we can show that

nv w0 (W) Vf(To(u))l3

[V f(

Too(w)) 3

V[ (Tw(w
Vf(Tw(u
[V f(Tew (w0

13

) VT,
)

wTw ()" Vi To (u) V(

101+ Jlul3)) ¥

dwi

f(Tw(u))

Vo (T} = V7 (T3 (1+ ul3)

dTmQT

T (u))




7.2 Proof of Lem. 2

A few distributional properties are needed before proving Lem. 2.

Lemma 9. Suppose that u = (uy,--- ,uy) is random variable over R? with zero-mean iid compo-
nents. Then
Euu' = E[u})]
Eful; = dE[u]
Eu(l+[ul3) = 1 E[u]
Euwu'uu' = ((d-1)E[ui]*+E[u]) I

Proof. (Euu') Take any pair of indices i and j. Then, (IE uuT)ij = Eu;uj. If ¢ # j this is zero.
Otherwise it is Eu?. Thus, Euu’ = E[u?][.
(E |Ju Hg) This follows from the previous result as
E ||u||3 =Etruu’ =trEuu’ = trE[u?]] = dE[u?].
(E u(1+|ul|3)) If x and y are independent, Exy = (Ex)(Ey). Thus, since the first and third moments

of u; are zero,

2
Eu(l + [|ufl3):

d
Eu; (14 Z u?)
j=1

= Eluw]+E[ul] + Z E[u;] E[u3]
J#i
= ]E[LI3].

7

(Euu"uuT) It is useful to represent this term as

(EUUTUUT)M = Euu; H“Hg
= Euiuqui.
k

First, suppose that ¢ # j. Then this is
(E uuTuuT)ij = Euuy Z uz
k

2 2 2
= Euu; [uj+uj+ Z uy
ke{i,j}
= 0.
This is zero since u;, u; and uy are independent, and each term contains at least one of u; or u; to the
first power. Since E u; = 0, the full expectation is zero.

On the other hand, suppose that ¢ = j. Then this is

(EuuTuuT)M, = Eu? u?—i—Zui
ki

= E u?—i—u?Zu%
ki

Efuj] + (d — 1) E[uy]?

If we put this together, we get that
Euuluu' = ((d—1)E[ui]* + E[u]) I.

14



Lemma 2. Let u ~ s for s standardized with u € R? and E, u} = k. Then for any z,
E|Tw(u) = 2[I3 (1 + [lull3) = (d+ 1) [lm = 2[5 + (d+ &) |C]| .

Proof. We simply split the expectation up and calculate each part.

E|Tw() - 215 (1+ul}) = ElCu+m - 2[5 (1+ul})

= E(lCull} +2(m - 2)"Cu+ |lm - 2[3) (1+ lul3)

2 2 2 2 2
Eflcul} (1+ul3) = ElCul}+E|Cul]lull;

EHCUH; = Etru'C'Cu
= trC"CEuu’
= trCTCE[I)I
= Eu trC'C

E|Cul3|ull5 = Etru'C'Cuu'u

= trC"C Euu'uu’
= t1CT'C((d-1)E[ui]®> +E[u}]) I

= ((d-1)Eui]*+E[u}])trC'C
ElCully (1+]ull}) = (W] +(d— ) EW?+Eul]) rcTC
E(mfi)TC’u(lnLHqu) = (m-2"C Eu(1+||u||§)
(m—2)"C1 E[ul
=0
Elm—z[5(1+ul3) = llm—2z[3EQ1+|u]3)

Adding all this up gives that

2 2 _n2 2
E || To(u) — 213 (14 Jull3) = (1 -+ dE[u2)) [lm — 23+ (Elu] + (d - 1) B3 + Elud]) |1l
In the case that the variance is one, this becomes

E([Tew () = 2113 (1+ lull}) = (@+1) m = 2} + (d + Elul]) €I

15



7.3 Proof of Thm. 7

Theorem 7. For any symmetric matrices M, --- , M and vectors z1,- - - , ZN, there are functions
fi,-, fn such that (1) f, is M,-matrix-smooth and has a stationary point at Z,, and (2) if s is
standardized with u € R? and E u} = k, then for g = ﬁan (Taw(u)),

N
1 _
Vgl 2 D0 s (Ml = 21+ @+ 5= DM
n=1

Proof. First, take any matrix M and vector z. Define

‘We can calculate that

l(lw) = E 1(zf,i)—'—M(sz)

Z~qw

1 1
= E Zz2"Mz— E z2'Mz+ E 5ZTME

Zqw Z~qw Z~qw

1 1
= E §terzT—2TMm+§2TM£

Zqw

1 1
= 3 trM(mm' +CCT)—z ' Mm+ -z"Mz

2
1 1 1

= 5mTMm +3 tr MCCT — 2" Mm + 5?1\42
1 1

= Sm- 2)"M(m —2) + 3 tr MCC'T.

Thus, we have that

dl

2L~ Mim-—=z
T (m—2)
dl
il ¥
dC ¢

If we add up components, we get that

IEg|3 = [[Vi(w)|3 = [|IM(m — 2)[5 + [ MC|%.
Now, given a sequence My, -+ , My and 21, - - - , Zy, if we choose

Jul#) = 3z = 20) Mz = 20),

The true gradient will be

A EN M, (m — %,)
d - n:1 n n
dl

dC nC,



and so, applying Jensen’s inequality,

IEgl; = [IVi(w)[l3
= m—Zn)
F
N 2 N 2
— _ = R M
Zﬂ (m—20)|| + |2 oy ™ MO
n=1 2 n=1 a
N 1 2
< m(n) || ——M,(m — z,) —|— ‘
20 |5 >t ,
N
= 3 (IMalm )+ ML)
7r(n) 2 a
n=1
Thm. 6 tells us that
2 Yo 2 2
E gl; = D ooy (@4 D 1Malm = 201 + (04 ) MO )
n=1
Thus, we have that
Vgl = Elgl?-|Egl?
N
1 _ N2 2
> PN - - .
> Y oy (413 m = 201+ (5 = 1)L,

17



8 Smoothness conditions for linear models
Lemma 10. Suppose that f(z) = ¢(a' 2), and that |¢" (t)| < 0 for all t. Then,

IVf(y) = V), < Ollally [a’ (v - 2)]-

Proof. Then, we have that

V) =V, = |ad'(a’y)—ad'(a’2)|,
lally |6/ (a"y) — ¢'(a"2)]|

T

/;Zy ¢ (t)dt

O llallyla’(y—2)].

= lall,

IN

Lemma 11. Suppose that f(z) = fo(z) + ¢(a' 2) and that fo(2) is My smooth. Then, we have that
IVFy) = Vi, = Molly—zl,+0lally|a"(y—2)].
Lemma 12. Suppose that f(z) = Zf\;l #(a; z) and that 0 < ¢"' (t) < 0 for all t. Then,
IVfy) =VIGEl, < (IM(y = 2)ll,

N
M = 0 Z aa;
i=1

Proof.

IVF(y) = V)l

N N
> aid (ay) =Y aid (a:2)
i=1 i=1

2

N

= Y ai @) - ¢/(a:2)
i=1 2
N a,;ry

= a; ¢"(t)dt
; /%TZ 2

N
= Zai(a:y—a:z)bi
i=1

—-0<b; <46
N

= Z biasa; (y — 2)
i=1

2

2

(Z aﬂ:) (y—2)

IN

0

2
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2
The final inequality is justified by the following claim: H Zf\il biaza; (y — 2) H is maximized over
2
vectors b with 0 < b; < 6 by setting b; = 6 always. To establish this claim observe that

d
dby,

2 q (X T /N
= o <Z bia;a, (y — z)) Z bjaja;-r (y—2)
Jj=1

2 i=1

N
Z biaia;r (y —2)
i=1

g XX .
= o Z Zbibj (y— =) (aia;rajajT) (y —2)

i=1 j=1

N
d
= dT)k2Zbkbj (y — Z)T (aka;—aja;-r) (y — z)
i

b B (- ) (wafanal) (v -2
N
.
= 2> b (y=2)" (axafaje]) (v~ 2)
J#k

+2b (y — z)T (aka;—aka;) (y — 2)

N
= 23 b (y—2)" (wafa;a]) (y— =)
j=1
N
= 2) bitr(y—2)" (aralaz0]) (v - 2)
j=1
N
= 2trakakT ijaja; (y—2)(y— Z)T
j=1

N
.
= 2a] ijaja;r (y—2)(y—2) ag
=1

Now, both (Zjvzl bjajajT) and (y — 2) (y — z) " are real symmetric positive definite matrices.

Thus, their product has real non-negative eigenvalues. This means that

d [|& :
ar Zbiaiaj (y—2)|| >0,
=1 2
i.e. the maximizing b will set all entries to 6. O

Theorem 13. Suppose that f(z) = § 2115 + ZZI\LI #(a; 2) and that 0 < ¢"' (t) < 6. Then,

Vi) =V, < 1My = 2)ll,

N
M cl+46 Z aa;
i=1

19



Proof. Suppose that V fo(y) — V fo(z) = ¢(y — 2). Then, we have that

N N
Z a;¢'(aiy) — Z a;¢'(a;2) + c(y — 2)
i=1 i=1

N
= Zaz zy ( Zz))—i—c(y—z)

IVi(y) = Vi),

2

2
Ty

N :
= Zaz/ (t)dt + c(y — 2) 2

N
= Zai(a?yfajz)bﬂrc(y*z)

=1

<

2

IN
/N
o
~
+

S .
i)+

8

K
N————

3

|

&

2

The final inequality is justified by the following claim: H Zf\il biaza; (y —2) H is maximized over
2

vectors b with 0 < b; < 0 by setting b; = 6 always. To establish this claim observe that

(c[—&-Zbal ) y—z)

2 T

N
dor ((c[—l—Zb a;a > — z)) CI+;bjajajT (y—2)

N T d N
= 2 ((cl—!—meia;) (y — z)) dor (CI—FZbiaia;r) (y—2)

= (—z <CI+ZZ)CL1 >c1+bkaka£)(y—2)

db;c
2

= 2tr <cI + Z bmm?) (cI + bkakaZ) (y—2)(y - Z)T
= <CI+Zb a;a ) brarag (y —2) (y —2) "
+2ctr (cI +y° bmm?) (y—2)y—2)"
i=1

= 2bptra] (y—2)(y—2) <cI+Zba, )
+2ctr(y —z) " (CIJeriaia?) (y— =)
i=1

> 0.

The last inequality follows from the fact that
N
<CI + Z biaia;r>
i=1

20



and
T

(y—2)(y—2)
are both real, symmetric positive definite matrices.
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9 Specific Models

9.1 Linear Model

Suppose that p(z) = N (2|0, 21) and p(y;|x;, z) = N(y;|z" @;, +). Then, we have that

1
p(z) [ [ p(wilzi,2) o exp <—2| ||2_Z%(yi_zT$z)2>
_ ¢ 2 b T..\2
= exp | =527 =D S —z"w)
2 — 2
C 2 b 2
— enp (<5 el - § by - X1
b
- (2 I21” — ¥ lyll3 + by Xz QZTxTXz)
X exp <byTXz — =z (bXTX + cI) z)
( T, 1 Tea )
= expla z—iz Yz
1 -1
X exp —§(z—2a)2 (z —Xa)
1 -1
= exp| —5(z - i (2~ p)
Y o= (XX +cd)
nw o= Xa
= (XX +c) X'y
- (XTX+gI)_ XTy

10 Reparameterization Stuff

10.1 Motivation

Suppose that log p(z, ) is something of the form
log p(z,2) = 17 6(X2).

‘We have that
V.logp(z,z) = X T¢/(Xz)

and that
Viiogp(z,z) = X "¢ (X2)X.
If we suppose that 0 < ¢ < 6 (for example this is true with logistic regression with = i) then we

have that
0= V2logp(z,z) < X' X.

If we were to add a uniform prior, we’d have something like

el < V2logp(z,z) < cl +0XTX.

On the other hand, for Bayesian regression, we’d have something like
XX <V2logp(z,z) <X X

with # = 1. This offers much stronger possibilities for rescaling.
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10.2 Divergence

Suppose that log p(z, x) is some distribution that is “poorly scaled”. That is, if we compute the
condition number, it is quite poor. On the other hand, it could be that for some A and b, log p(Az+b, )
is much better-conditioned. The following lemma shows that we are free to re-scale p in whatever way
we want and then have ¢ target that rescaled distribution. Once that’s done, we can then transform ¢
back to the original space.

Lemma 14. Suppose that p,(z) is some distribution and py(y) is the distribution of Az + b, z ~ p,,

namely .
py(y) = mpz(A‘l(y —b)).

Suppose that q, is some distribution which is “close” to py. If we define
%:(z) = |Al ¢y(Az + ),
then KL (¢z|[p.) = KL (qyllpy) -

10.3 Concrete
Lemma 15. I[f B < C then ATBA < ATCA.

10.4 Proofs

Lemma 14. Suppose that p,(z) is some distribution and py(y) is the distribution of Az + b, z ~ p;,

namely .
py(y) = WPZ(A‘l(y —b)).

Suppose that q, is some distribution which is “close” to py. If we define
1:(2) = [Al ¢y (Az +b),
then KL (¢z||pz) = KL (qyllpy) -

Proof. In more detail, we know that if y = T'(z)then P(z = z) = P(y = T'(2)) |T’(2)|. In our case,
we use T'(z) = Az + b so we have that

po(z,2) = py(Az + b, x) |A]

Intuitively, we should correspondingly define
0:(2) = gy(Az + b,2) [A].
Then, we have that

p2(z,x) py(Az +b,2) |A]
E 1 = E log—F—FF—F—
g q-(z, ) g, 08 qy(Az+b,z)|A]
py(Az + b, )
= ,(2) log =———=d
/q (2) log gy(Az +b, ) ®
py(Az+ b, x)
Al g, (A b,x)log =———"—=d
[ 141,45+ by o G
py(y, )
= qy(y,x)lo d
/ Y(y ) g Qy(ywr) Yy
Where in the last line we apply
[ fway= [ £ v
with f(y) = g,(y, 7) log 2124 and T(2) = Az + . O
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Lemma 16. If B < C then ATBA < ATCA.

Proof. Suppose that B < C meaning that C' — B is positive definite. Then note that

ATCA—-ATBA=AT(C - DB)A

is also positive definite, since for any z,

z' AT(C — B)Ax 27 (C—B)z, z=Ax.

0.

v

Thus we have that
ATBA < ATCA.

11 Gradient Variance with a Full-Covariance Quadratic

Suppose that f(z) = 1(z — z) " M (z — z). What is the gradient variance? The gradient is V f(z) =
M(z — z). Thus, we seem to get that

E Vi (Tw()ll3

2 2
B £ (T ()13 (1 + llul3)
—\ (12 2
= E|M (Tu() - 2)I3 (1+ul3)
= E||MCu+m— Mz} (1+ul})
_12 2
= (d+1)[m—M2|;+ (d+E[u1]) |MCF.
The key thing, for this to work is showing that
Vi) = VI, < 1My = 2)ll,-
Certainly, if we had a property like that, we would be in business.
Claim: If f is M-smooth in the above sense, then %ZTMZ — f(z) is convex.
What does the above say about the Hessian? For very close y and z,
Viy) = Vi) = V() (y - 2).
Thus the bound sort of says that
2 2
[V2F(2)(y = 2)|l, < IM(y = 2)ll5 -

Or, essentially, that
x" (sz(z))2 r <z Mz
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