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1 Debiasing inference with a generalized propensity score approach

When realized treatment exposures are correlated with potential outcomes, the dose-response liter-
ature has suggested generalizations of the propensity score to de-bias inference. Hirano and Imbens
(2004) define the generalized propensity score function r : (e,X) — r(e,X) as the density of
the conditional distribution of outcome unit ¢’s treatment exposure given its covariates X;. They
suggest learning the generalized propensity score function (-, -) as well as the conditional outcome
distribution 3 : (¢/,7") — E[Y;|e; = €', r(¢/,X;) = r'], conditioned on treatment exposure ¢’ and
generalized propensity score /. Finally, they propose fi(e) = /N>, B(e, r(e, X;)) as an estima-
tor for the average dose-response function p. In our case, the treatment exposure distribution of
outcome unit 4 is known and fully parameterized by its outgoing-edge weights {w;; };.

In practice, Hirano and Imbens (2004) suggest fitting a linear regression of Y; on the realized treat-
ment exposure and corresponding propensity score couplet (e;, 7(e;, X;)) to construct an approxi-

mation 3 of the conditional outcome distribution 3, necessary for computing /. Imai and Van Dyk
(2004) propose a similar approach, which stratifies outcome units into S strata by any uni- or

multivariate parameter 0; such that r(-, X;) = r(-,6;), and learns fs within each strata such that
Yi(Z) = fs(ei(Z)). They suggest using f(-) = /s> > ;.. fs(-)Ws as an estimator for the
average dose response function (i, where W is the number of outcome units in strata .S.

2 Proof of Proposition 1

To prove Proposition 1, we consider a rewriting of the objective from Theorem 1.

A:P*wz > <¢ja¢k>*%z > (e, T)

C#C’ jEC,keC ¢ \jec

We decompose this objective term-by-term. For all diversion unit pairs j, k € [1, M], (¢}, ¢r) > 0,
with equality if and only if diversion unit j and diversion unit k¥ have no common outcome unit
neighbors.  As a result, > 0D e rec (5. @k) = 0, with equality if and only if clusters
C and C’ have no common outcome unit neighbors. Furthermore, the following equality holds:
e X jecl®i 1) = N. From the Cauchy-Schwarz inequality, >0 (3" ;c0(0),1))* > N%/k,

where K is the total number of clusters C, with equality if and only if VC,C’, Zj ccldy, T> =
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> jec (i, 1) = N/k. If there exists a clustering {C} x with K clusters, such that the variance

maximization objective for {C}x is equal to p — p(lilgp), then {C}x cuts no edges of the bipar-
tite graph G. As a result, each outcome unit receives either treatment exposure 1 or 0 for every
assignment Z, and the stable unit treatment value assumption holds.

3 Proof of proposition 2

The first claim is an application of Gauss-Markov; the second claim is an application of Cramer-Rao.

For the sake of exposition, we assume that 5 = 0 and Y = ae + ¢, for all assignments Z. The
average treatment effect is equal to . Hence, we can restate our proposition with 7 as estimators of
o.

For a fixed assignment vector Z, the Cramer-Rao bound states that the variance of any unbi-

ased estimator 7 of « is such that Var[@] > I(a)~!, where I(a) = —F {%} is the

Fisher information of « and [ is the log-likelihood of observing (Y, e) given « and Z. With
A — . 2 .

(Y, e;0) = —Nlog(2m0?) + SN, W)™ we obtain I(e) = (e — &)T(e — &). By the

law of total variance:
Varz . = Ez[Var [7|Z]] + Varz[E.[7|Z]] = Ez[Var.[7|Z]] + Varz[a]| = Ez[Var[7|Z]]

Hence the result becomes:

2 2

Varg, [7] > Ez e—oT(e_a)|~ Ez[L(e—@e)T(e —@)]

z|=

4 Proof of Theorem 1

Let ® € RV*M be the adjacency matrix of the bipartite graph between diversion units and outcome
units, such that ®;; = w;; and ¢; = w.;. Because e(Z) = PZ, the variance-maximization objective
in Eq. 3 can be rewritten as

L (70T - L rer L. 7 ’
N (e(Z)—e(Z)) (e(Z)—e(Z)) = NZ o' PZ — (Nl <I>Z)

Let p be the probability that a diversion unit is assigned to treatment and ¥ = Ez[ZTZ] be the

variance-covariance matrix of Z. Taking the expectation of the quadratic form in Z,

1

iTT _ T 21T 5T 7& T 2
Ez {Nz ® @Z]N(Tr[cp %] +p*1"® <I>1)7NTr[<I> %] +p?,

where the second equality is obtained by observing that d1 = 1. If two diversion units j and k
belong to the same cluster C, then X5, = p; otherwise, X5, = p2. Hence,

Tr[e7ox] =) Y p@ @)+ > > (07D

Cc jkec? C#C’ jeC,kecC’

Because (7' ®) ;. = (¢;, ox) and >_ix(®j, ék) = N, the above becomes

EZ |:]1TZT‘I)T(I)Z:| = p2 +p— Z Z ¢j ) ¢k‘

C#C’ jeC,keC’!



Taking the expectation of the second term of the objective,
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Noting that Z%ﬂzl (05, 1) (¢p, 1) = N2, the previous term becomes

1 2l pPN? p
<N1Tq>z>] o ZZ (¢, 1) (bn, I)

C j,keC

Ey

The final objective can be written as:

A:p Z Z ¢j7¢k Z Z ¢J7 (bkv

C#C’JEC kec’ C jkec
= Z > (%m 5 (@5 D) (o, >)
C j,keC

Let Wy = (¢, %) — % (¢, D¢, 1), W3, = max(0,W;,) and W, = min(0, W;i.) be the

positive and negative edges of the graph respectively, and W~ = Z;Vk Wﬁc be the sum of all
negative edges in the graph. The objective becomes:
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