
Tight Dimensionality Reduction for Sketching Low
Degree Polynomial Kernels

Anonymous Author(s)
Affiliation
Address
email

Abstract

We revisit the classic randomized sketch of a tensor product of q vectors xi ∈ Rn.1

The i-th coordinate (Sx)i of the sketch is equal to
∏q
j=1〈ui,j , xj〉/

√
m, where2

ui,j are independent random sign vectors. Kar and Karnick (JMLR, 2012) show3

that if the sketching dimension m = Ω(ε−2C2
Ω log(1/δ)), where CΩ is a certain4

property of the point set Ω one wants to sketch, then with probability 1 − δ,5

‖Sx‖2 = (1± ε)‖x‖2 for all x ∈ Ω. However, in their analysis C2
Ω can be as large6

as Θ(n2q), even for a set Ω of O(1) vectors x.7

We give a new analysis of this sketch, providing nearly optimal bounds. Namely,8

we show an upper bound of m = Θ
(
ε−2 log(n/δ) + ε−1 logq(n/δ)

)
, which9

by composing with CountSketch, can be improved to Θ(ε−2 log(1/(δε)) +10

ε−1 logq(1/(δε)). For the important case of q = 2 and δ = 1/poly(n), this11

shows that m = Θ(ε−2 log(n) + ε−1 log2(n)), demonstrating that the ε−2 and12

log2(n) terms do not multiply each other. We also show a nearly matching lower13

bound of m = Ω(ε−2 log(1/(δ)) + ε−1 logq(1/(δ))). In a number of applications,14

one has |Ω| = poly(n) and in this case our bounds are optimal up to a constant15

factor. This is the first high probability sketch for tensor products that has optimal16

sketch size and can be implemented in m ·
∑q
i=1 nnz(xi) time, where nnz(xi) is17

the number of non-zero entries of xi.18

Lastly, we empirically compare our sketch to other sketches for tensor products,19

and give a novel application to compressing neural networks.20

1 Introduction21

Dimensionality reduction, or sketching, is a way of embedding high-dimensional data into a low-22

dimensional space, while approximately preserving distances between data points. The embedded23

data is often easier to store and manipulate, and typically results in much faster algorithms. Therefore,24

it is often beneficial to sketch a dataset first and then run machine learning algorithms on the sketched25

data. This technique has been applied to numerical linear algebra problems [36], classification [8, 9],26

data stream algorithms [32], nearest neighbor search [21], sparse recovery [11, 19], and numerous27

other problems.28

While effective, in many modern machine learning problems the points one would like to embed29

are often only specified implicitly. Kernel machines, such as support vector machines, are one30

example, for which one first non-linearly transforms the input points before running an algorithm.31

Such machines are much more powerful than their linear counterparts, as they can approximate32

any function or decision boundary arbitrary well with enough training data. In kernel applications33

there is a feature map φ : Rn → Rn′ which maps inputs in Rn to a typically much higher n′-34

dimensional space, with the important property that for x, y ∈ Rn, one can typically quickly compute35

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.

〈φ(x), φ(y)〉 given only 〈x, y〉. As many applications only depend on the geometry of the input36

points, or equivalently inner product information, this allows one to work in the potentially much37

higher and richer n′-dimensional space while running in time proportional to that of the smaller38

n-dimensional space. Here often one would like to sketch the n′-dimensional points φ(x), without39

explicitly computing φ(x) and then applying the sketch, as this would be too slow.40

A specific example is the polynomial kernel of degree q, for which n′ = nq and φ(x)i1,i2,...,iq =41

xi1 · xi2 · · ·xiq . The polynomial kernel is also often used for approximating more general functions42

via Taylor expansion [16, 29]. Note that the polynomial kernel φ(x) can be written as a special type43

of tensor product, φ(x) = x⊗ x⊗ · · · ⊗ x, where φ(x) is the tensor product of x with itself q times.44

In this work we explore the more general problem of sketching a tensor product of arbitrary vectors45

x1, . . . , xq ∈ Rn with the goal of embedding polynomial kernels. We will focus on the typical case46

when q is an absolute constant independent of n. In this problem we would like to quickly compute47

S · x, where x = x1 ⊗ x2 ⊗ · · · ⊗ xq , where S is a sketching matrix with a small number m of rows,48

which corresponds to the embedding dimension.49

The most naïve solution would be to explicitly compute x and then apply an off-the-shelf Johnson50

Lindenstrauss transform S [24, 17, 27, 15], which using the best known bounds gives an embedding51

dimension of m = Θ(ε−2 log(1/δ)), which is optimal [23, 26, 30]. However, the running time52

is prohibitive, since it is at least the number nnz(x) of non-zeros of x, which can be as large as53

nq. A much more practical alternative is TENSORSKETCH [33, 34] which gives a running time of54 ∑q
i=1 nnz(xi), which is optimal, but the embedding dimension is a prohibitive Θ(ε−2/δ). Note that55

for high probability applications, where one may want to set δ = 1/poly(n), this gives an embedding56

dimension as large as poly(n), which since x has length nq = poly(n), may defeat the purpose of57

dimensionality reduction.58

Thus, we are at a crossroads; on the one hand we have a sketch with the optimal embedding dimension59

with a prohibitive running time, and on the other hand we have a sketch with the optimal running60

time but with a prohibitive embedding dimension. A natural question is if there is another sketch61

which achieves both a small embedding dimension and enjoys a fast running time.62

1.1 Our Contributions63

1.1.1 Near-Optimal Analysis of Tensorized Random Projection Sketch64

Our first contribution shows that a previously analyzed sketch by Kar and Karnick for tensor products65

[29], referred here to as a Tensorized Random Projection, has exponentially better embedding66

dimension than previously known. Given vectors x1, . . . , xq ∈ Rn in this sketch one computes the67

sketch S · x of the tensor product x = x1 ⊗ x2 ⊗ · · · ⊗ xq where the i-th coordinate (Sx)i of the68

sketch is equal to 1√
m
·
∏q
j=1〈ui,j , xj〉. Here the ui,j ∈ {−1, 1}n are independent random sign69

vectors, and q is typically a constant. The previous analysis of this sketch in [34] describes the sketch70

as having large variance and requires a sketching dimension that grows as n2q, as detailed in the71

supplementary, in Appendix D.72

We give a much improved analysis of this sketch in 2.1, showing that for any x, y ∈ Rnq

and
δ < 1/nq , there is an m = Θ

(
ε−2 log(n/δ) + ε−1 logq(n/δ)

)
for which

Pr[|〈Sx, Sy〉 − 〈x, y〉| > ε] ≤ δ.
Notably our dimension bound grows as logq(n) rather than n2q, providing an exponential improve-73

ment over previous analyses of this sketch. Another interesting aspect of our bound is that the second74

term only depends linearly on ε−1, rather than quadratically. This can represent a substantial savings75

for small ε, e.g., if ε = .001. Thus, for example, if ε ≤ 1/ logq−1(n), our sketch size is Θ(ε−2 log(n))76

which is optimal for any possibly adaptive and possibly non-linear sketch, in light of lower bounds for77

arbitrary Johnson-Lindenstrauss transforms [30]. Thus, at least for this natural setting of parameters,78

this sketch does not incur very large variance, contrary to the beliefs stated above. Moreover, q = 279

is one of the most common settings for the polynomial kernel in natural language processing [2],80

since larger degrees tend to overfit. In this case, our bound is m = Θ(ε−2 log(n) + ε−1 log2(n)),81

and the separation of the ε−2 and log2(n) terms in our sketching dimension is especially significant.82

We next show in 2.2 that a simple composition of the Tensorized Random Projection with a CountS-83

ketch [13] slightly improves the embedding dimension tom = Θ(ε−2 log(1/(δε))+ε−1 logq(1/(δε))84

2

and works for all δ < 1. Moreover, we can compute the entire sketch (including the composition85

with CountSketch) in time O(
∑q
i=1m · nnz(xi)). This makes our sketch a "best of both worlds"86

in comparison to the Johnson-Lindenstrauss transform and TensorSketch: Tensorized Random87

Projection runs much faster than the Johnson-Lindenstrauss transform and it enjoys a smaller88

embedding dimension than TensorSketch. Additionally, we are able to show a nearly matching89

m = Ω(ε−2 log(1/δ) + ε−1 logq(1/δ)) lower bound for this sketch, by exhibiting an input x for90

which ‖Sx‖2 /∈ (1± ε)‖x‖2 with probability more than δ.91

It is also worthwhile to contrast our results with earlier work in the data streaming community92

[22, 10] that analyzed the variance only for q = 2 and general q respectively, and then achieved high93

probability bounds by taking the median of multiple independent copies of S. The non-linear median94

operation makes the former constructs unsuitable for machine learning applications. In contrast, we95

show high probability bounds for the linear embedding S directly. From personal communication we96

are aware of parallel independent work in unpublished manuscripts [4, 28], which provide different97

sketches with different trade-offs. Their sketching dimension has significantly worse dependence98

on ε and δ and better (polynomial) dependence on q, making it more suitable for approximating99

high-degree polynomial kernels.100

From a technical standpoint, our work builds off the recent proof of the Johnson-Lindenstrauss trans-101

form in [15]. We write the sketch S as σTAσ, where in our setting σ corresponds to the concatenation102

of u1,1, u2,1, . . . , um,1, while A is a random matrix which depends on all of u1,j , u2,j , . . . , um,j for103

j = 2, 3, . . . , q. Following the proof in [15], we then apply the Hanson-Wright inequality to upper104

bound the w-th moment E[|σTAσ − E[σTAσ]|w], for integers w, in terms of the Frobenius norm105

‖A‖F and operator norm ‖A‖2 of the matrix A. The main twist here is that in the tensor setting,106

when we try to apply this inequality, the matrix A is a random variable itself. Bounding ‖A‖2 can107

be accomplished by essentially viewing A as a (q − 1)-th order tensor, flattening it q − 1 times,108

and applying Khintchine’s inequality each time. The more complicated part of the argument is in109

bounding ‖A‖F , which again involves an inductive argument to obtain tail bounds on the Frobenius110

norm of each of the blocks of A, which itself is a block-diagonal matrix with m blocks. The tail111

bounds are not as strong as sub-Gaussian or even sub-exponential random variables, which makes112

standard analyses based on moment generating functions inapplicable. We instead give a “level-set”113

argument by giving a novel adaptation of analyses of Tao, originally needed for showing concentration114

of p-norms for 0 < p < 1, to our tensor setting (see, e.g., Proposition 6 in [35]).115

1.1.2 Approximating Polynomial Kernels116

Replicating experiments from [34], we approximate polynomial kernels using Tensorized Random117

Projection, TensorSketch, and Random Maclaurin [29] features. In Section 4.1 we demonstrate that118

TensorSketch always fails for certain sparse inputs, while Tensorized Random Projection succeeds119

with high probability. We show in 4.2 that Tensorized Random Projection has similar accuracy to120

TensorSketch, and both vastly outperform Random Maclaurin features.121

1.1.3 Compressing Neural Networks122

We also experiment with using Tensorized Random Projection to compress the layers of a neural123

network. In [7], Arora et al. propose a method for compressing the layers of a neural network via124

random projections and prove generalization bounds for such networks. To compress an individual125

layer, they choose a basis set of random Rademacher matrices and project the layer’s weight matrix126

onto this random basis set. We refer to this method here as Random Projection. The simplest, order127

q = 2, Tensorized Random Projection can be viewed as a more efficient, rank-1 version of Random128

Projection: instead of using a basis set of fully-random Rademacher matrices, the basis set is made129

up of random rank-1 Rademacher matrices. We show in 4.3 that Tensorized Random Projection130

has similar test accuracy as Random Projection when compressing the top layer of a small neural131

network.132

2 Main Theorem and its Proof133

Our main theorem combining sketches S and T described in Sections 2.1 and 2.2 is the following.134

We provide its proof in Section 2.3.135

3

Theorem 2.1. There is an oblivious sketch S · T : Rnq → Rm for m = Θ(ε−2 log(1/(εδ)) +
ε−1 logq(1/(εδ)), such that for any fixed vector x ∈ Rnq

and constant q,

Pr[|‖STx‖22‖ = (1± ε)‖x‖22] ≥ 1− δ,

where 0 < ε, δ < 1. Further, if x has the form x = x1 ⊗ x2 ⊗ · · · ⊗ xq for vectors xi ∈ Rn for136

i = 1, 2, . . . , q, then the time to compute STx is O(
∑q
i=1 nnz(xi)m).137

2.1 Initial Bound on Our Sketch Size138

We are ready to present Tensorized Random Projection sketch S and the outermost layer of its analysis.139

We defer statements and proofs of some key technical lemmas to Appendix A in the supplementary.140

Note that both the sketching dimension m and the failure probability δ depend on n, which we later141

eliminate with the help of Section B.142

Theorem 2.2. There is an oblivious sketch S : Rnq → Rm for m = Θ(ε−2 log(n/δ) +143

ε−1 logq(n/δ)) and δ < 1/nq such that for any fixed vector x ∈ Rnq

, Pr[‖Sx‖22 = (1± ε)‖x‖22] ≥144

1− δ.145

Proof. Set m = Θ
(
ε−2 log(n/δ) + ε−1 logq(n/δ)

)
, and define a family of sketching matrices146

S ∈ Rm×nq

as follows. Choose m · q independent uniformly random vectors ui,j ∈ {+1,−1}n,147

where i = 1, . . . ,m and j = 1, . . . , q. Then the `-th row of S is (1/
√
m)u`,1 ⊗ u`,2 ⊗ · · · ⊗ u`,q,148

that is, the (i1, i2, . . . , iq)-th entry of the `-th row of S is (1/
√
m)
∏q
j=1 u

`,j
ij

.149

It suffices to show for any unit vector x ∈ Rnq

, that150

Pr[|‖Sx‖22 − 1| > ε] ≤ δ. (1)

We define Si ∈ Rm×nq−1

to have `-th row equal to u`,1i · v`, where v` = u`,2 ⊗ u`,3 ⊗ · · · ⊗ u`,q,151

and define x = (x1, . . . , xn), with each xi ∈ Rnq−1

, so that Sx =
∑n
i=1 S

ixi. Then,152

‖Sx‖22 = ‖
n∑
i=1

Sixi‖22 =

n∑
i=1

‖Sixi‖22 + 2
∑
i 6=i′
〈Sixi, Si

′
xi
′
〉.

Lemma 2.3 below proves that
∑n
i=1 ‖Sixi‖22 = (1±ε/3)‖x‖22 holds with probability at least 1−δ/10.153

We prove Lemma 2.3 and in effect Theorem 2.2 by induction on q and applying Theorem 2.2 for154

q′ = q − 1. To complete the proof, we need to show that that155

∑
i 6=i′
〈Sixi, Si

′
xi
′
〉 ≤ ε/3 (2)

with probability at least 1 − 9δ/10. Note that Sixi =
∑m
`=1(1/

√
m)u`,1i 〈v`, xi〉. So showing (2)

is equivalent to showing 1
m

∑
i 6=i′

∑m
`=1 u

`,1
i u`,1i′ 〈v`, xi〉〈v`, xi

′〉 ≤ ε/3. Rearranging the order of
summation, we need to upper bound

Z :=
1

m

m∑
`=1

∑
i6=i′

u`,1i u`,1i′ 〈v
`, xi〉〈v`, xi

′
〉 := uTAu,

where u ∈ Rnm×1 and A ∈ Rnm×nm is a block-diagonal matrix with m blocks, each of size n× n.156

Let E be the event that
∑n
i=1 ‖Sixi‖22 = (1± ε/3). By Lemma 2.3, we have that Pr[E] ≥ 1− δ/10.

Furthermore, let F be the event that ‖A‖2 = O(log(q−1)(qnqm/δ)
m) and

‖A‖F = O(1/
√
m+ log1/2(1/δ) log(2q−3)/2(m/δ) log log(m/δ)/m)

bounds hold for the operator and Frobenius norm of A. By a union bound over Lemmas A.4 and A.7,157

we have that Pr[F] ≥ 1− δ/10. Lemma A.3 uses the Hanson-Wright Theorem to bound Z in terms158

of ‖A‖2 and ‖A‖F and proves that Pr[Z ≥ ε/3|F] ≤ δ/2.159

4

Putting this all together, we achieve our initial bound on ‖Sx‖22: Taking the probability over all u`160

and v`, we have,161

Pr[|‖Sx‖22 − 1| > ε] ≤ Pr[¬E] + Pr[|‖Sx‖22 − 1| > ε | E]

≤ δ/10 + Pr[Z ≥ ε/3 | E]

≤ δ/10 +
Pr[Z ≥ ε/3]

Pr[E]

≤ δ/10 +
Pr[Z ≥ ε/3]

1− δ/10

≤ δ/10 + (1 + δ/5) Pr[Z ≥ ε/3]

≤ δ/10 + (1 + δ/5)(Pr[Z ≥ ε/3 | F] + Pr[¬F])

≤ δ/10 + (1 + δ/5)(δ/2 + δ/10) = 3δ2/25 + 7δ/10

≤ 3δ/25 + 7δ/10 ≤ δ.

From the δ ≤ 1 assumption it follows that δ2 ≤ δ, which implies the second to last inequality and162

concludes the proof.163

Lemma 2.3. For all q ≥ 2, any set of fixed vectors x1, . . . , xn ∈ Rnq−1

, sketching dimension164

m = Θ(ε−2 log(n/δ) + ε−1 logq−1(n/δ)), δ < 1/nq−1, and matrices Si ∈ Rm×nq−1

defined in the165

proof of Theorem 2.2, we have that Pr[
∑n
i=1 ‖Sixi‖22 = (1± ε/3)‖x‖22] ≥ 1− δ/10.166

Proof. Define matrix S0 ∈ Rm×nq−1

such that its `-th row is v` from the proof of Theorem 2.2.167

Additionally define m×m diagonal matrices Di such that Di
`,` := u`,1i . Note that Si = DiS0 and168

therefore ‖Sixi‖2 = ‖DiS0x
i‖2 = ‖S0x

i‖2 holds since Di is ±1 diagonal matrix. To prove the169

lemma, it is sufficient to show that170

∀i ∈ [1, n] : Pr[‖S0x
i‖22 = (1± ε/3)‖xi‖22] ≥ 1− δ/(10n) (3)

holds, since then we have that
∑n
i=1 ‖Sixi‖22 =

∑n
i=1 ‖S0x

i‖22 = (1 ± ε/3)
∑n
i ‖xi‖22 = (1 ±171

ε/3)‖x‖22 with probability at least 1− δ by a union bound.172

We prove inequality (3) by induction on q. In the base q = 2 case, entries of v` = u`,2 vectors are173

i.i.d. ±1 random variables. Equivalently the entries of S0 are i.i.d. ±1 random variables. Applying174

the Johnson-Lindenstrauss lemma [30] to S0 and each xi with δ′ = δ/(10n) proves the base case.175

Now assume that Theorem 2.2 holds for q′ = q− 1. Observe that the structure of S0 for q′ = q− 1 is176

exactly like that of S for q. Setting δ′ = δ/(10n) in Theorem 2.2 we have that inequality (3) holds for177

sketching dimensionm′ = Θ
(
ε−2 log(n/δ′) + ε−1 logq−1(n/δ′)

)
. Since log(n/δ′) = log(n2/δ) =178

Θ(log(n/δ)) we can simplify m′ to Θ
(
ε−2 log(n/δ) + ε−1 logq−1(n/δ)

)
as claimed.179

2.2 Optimizing Our Sketch Size180

We define the sketch T , which is a tensor product of CountSketch matrices. We compose our sketch181

S from Section 2.1 with T in order to remove the dependence on n. See Section B for the proof.182

Theorem 2.4. Let T be a tensor product of q CountSketch matrices T = T 1 ⊗ · · · ⊗ T q , where each183

T i maps Rn → Rt for t = Θ(q3/(ε2δ)). Then for any unit vector x ∈ Rnq

,184

Pr[|‖Tx‖22 − 1| > ε] ≤ δ.

Furthermore, if x is of the form x1 ⊗ x2 ⊗ · · · ⊗ xq, for xi ∈ Rn for i = 1, 2, . . . , q, then Tx =185

T 1x1 ⊗ · · · ⊗ T qxq , where nnz(T ixi) ≤ nnz(xi) and where the time to compute T ixi is O(nnz(xi))186

for i = 1, 2, . . . , q.187

2.3 Proof of Theorem2.1188

Finally we prove our main claim by composing sketches S and T from Sections 2.1 and 2.2.189

5

Proof. Our overall sketch is S · T , where S is the sketching matrix of Section 2.1, with sketch-190

ing dimension m = Θ(ε−2 log(t/δ) + ε−1 logq(t/δ), and T is the sketching matrix of Section191

2.2, with sketching dimension t = Θ(q3/(ε2δ)). To satisfy the conditions of Theorem 2.2, set192

δS = 0.5/tq. S is applied with approximation error ε/2 and failure probability δS and T is193

applied with ε/2 and δ/2 respectively. Note that δS ≤ δ/2 and for q constant, log(t/δS) =194

Θ(log(tq+1)) = Θ(log(t)) = Θ(log(1/(εδ))) holds. Thus, the sketching dimension m of ST is now195

Θ(ε−2 log(1/(εδ)) + ε−1 logq(1/(εδ)), and has no dependence on n. By Theorems 2.2, 2.4, and a196

union bound, we have that for any unit vector x ∈ Rnq

, Pr[|‖S · Tx‖22 − 1| > ε] ≤ δ.197

In Theorem 2.4 above we show that, if x is a vector of the form x1 ⊗ x2 ⊗ · · · ⊗ xq, for xi ∈ Rn198

for i = 1, 2, . . . , q, then Tx = T 1x1 ⊗ · · · ⊗ T qxq where each T ixi can be computed in O(nnz(xi))199

time and where nnz(T ixi) ≤ nnz(xi). Thus, we can apply S to Tx in O(
∑q
i=1 nnz(xi)m) time.200

201

3 Lower Bound on Our Sketch Size202

We next show that our sketching dimension of m = Θ(ε−2 log(1/(δε)) + ε−1 logq(1/(δε)) is nearly203

tight for our particular sketch S · T . We will assume that q is constant. Note that S · T is an204

oblivious sketch, and consequently by lower bounds for any oblivious sketch [23, 26, 30], one has205

that m = Ω(ε−2 log(1/δ)). More interestingly, we show a lower bound of m = Ω(ε−1 logq(1/δ))206

summarized in the following theorem; see Section C for the proof.207

Theorem 3.1. For any constant integer q, there is an input x ∈ Rnq

for which if the number208

m of rows of S satisfies m = o(ε−2 log(1/δ) + ε−1 logq(1/δ)), then with probability at least δ,209

‖STx‖22 > (1 + ε)‖x‖22.210

Recall that the upper bound on our sketch size, for constant q, is m = O(ε−2 log(1/(εδ)) +211

ε−1 logq(1/(εδ))), and thus our analysis is nearly tight whenever log(1/(εδ)) = Θ(log(1/δ)).212

This holds, for example, whenever δ < ε, which is a typical setting since δ = 1/poly(n) for high213

probability applications.214

4 Experiments215

We evaluate Tensorized Random Projections in three different applications. In Section 4.1 we show216

that Tensorized Random Projections always succeed with high probability while TensorSketch always217

fails on extremely sparse inputs. Then in Section 4.2 we observe that TensorSketch and Tensorized218

Random Projections approximate non-linear SVMs with polynomial kernels equally well. Finally219

in Section 4.3 we demonstrate that Random Projections and Tensorized Random Projections are220

equally effective in reducing the number of parameters in a neural network while Tensorized Random221

Projections are faster to compute. To the best of our knowledge this comprises the first experimental222

evaluation of [7]’s compression technique in terms of accuracy. The code for the experiments is223

available in the supplementary material.224

4.1 Success Probability of TensorSketch vs Tensorized Random Projection225

In this section we demonstrate that TensorSketch cannot approximate the polynomial kernel κ(x, y) =226

〈x, y〉q accurately for all pairs x, y ∈ V simultaneously if the vectors in the set V are not smooth,227

i.e., if ‖x‖∞/‖x‖2 = Ω(1) holds for all x in V . TensorSketch fails even if the sketching dimension228

m is much larger than |V |. On the contrary, Tensorized Random Projection works well.229

Let a set S of data points be a standard basis in d dimensions. If k ≥ 2 coordinates of different vectors230

collide in the same TensorSketch hash bucket then their common bucket is either zero or non-zero. If231

it is 0, then 〈ei, ei〉q is incorrectly estimated as 0 instead of 1. If the common bucket’s value is not232

0, then the estimate of 〈ei, ej〉q is non-zero, where i and j are any pair of two colliding coordinates.233

Thus if there is a collision, then TensorSketch cannot estimate all dot products exactly. Moreover234

the estimate cannot be close to the true kernel value either since if the dot product is incorrect, then235

it is off by at least 1. Now if n ≥
√

2m ln(1/(1− p) then by the Birthday paradox [1] we have at236

least one collision with probability p. If the number of vectors (and dimension) n is greater than the237

sketching dimension m, which is the interesting case for sketching, then there is always a collision238

6

by the pigeonhole principle. We remark that [25] provides a more detailed analysis of this sketching239

dimension vs input vector smoothness tradeoff for CountSketch, which is a key building block of240

TensorSketch.241

We illustrate the above phenomena in Figure 1(a) as follows. We fix the sketch size m = 100 and242

vary the input dimension (= number of vectors) n along the x-axis. We measure the largest absolute243

error in approximating κ(ei, ej) = 〈x, y〉2 = δij among the first n standard basis vectors and repeat244

the experiment with 100 randomly drawn TensorSketch and Tensorized Random Projection instances.245

The y-axis shows the average of the maximum error in approximating the true kernel, where error246

bars correspond to one standard deviation. It is clear that TensorSketch’s error quickly becomes the247

largest possible, 1, as the number n of vectors passes the critical threshold
√

100, while Tensorized248

Random Projection’s max error is much smaller, more concentrated, and grows at a much slower rate249

in the same setting.250

(a) Max error vs input dimension (n) (b) Max error vs sketch size (m)

Figure 1: Maximum Error

Next, in Figure 1(b) we fix the input dimension (= number of vectors) to n = 100 and vary the sketch251

sizem along the x-axis instead. The y-axis remains unchanged. We again observe that TensorSketch’s252

max error decreases very slowly and it is still about 40% of the largest error possible (1) on average253

at sketching size m = n2 = 104 � d. Tensorized Random Projection’s max error is almost an order254

of magnitude smaller at the same sketch size.255

4.2 Comparison of Sketching Methods for SVMs with Polynomial Kernel256

We replicate experiments from [34] to compare Tensorized Random Projections with TensorSketch257

(TS) and Random Maclaurin (RM) sketch. We approximate the polynomial kernel 〈x, y〉2 for the258

Adult [18] and MNIST [31] datasets, by applying one of the above three sketches to the dataset. We259

then train a linear SVM on the sketched dataset using LIBLINEAR [20], and report the training260

accuracy. This accuracy is the median accuracy of 5 trials. Our baseline is the training accuracy of a261

non-linear SVM trained with the exact kernel by LIBSVM [12]. We experiment with between 100262

and 500 random features.263

Both Figures 2(a) and 2(b) show that Tensorized Random Projection has similar accuracy to TensorS-264

ketch, and both have far better accuracy than Random Maclaurin. Recall that Random Maclaurin265

approximates the kernel function κ with its Maclaurin series. For each sketch coordinate it randomly266

picks degree t with probability 2−t and computes degree-t Tensorized Random Projection. This267

is rather inefficient for the polynomial kernel, which has exactly one non-zero coefficient in its268

Maclaurin expansion. Random Maclaurin’s generality is not required for the polynomial kernel and269

we can obtain more accurate results for general kernels by sampling degree t proportional to its270

Maclaurin coefficient.271

7

(a) Adult dataset (b) MNIST dataset

Figure 2: Accuracy vs Number of Random Features

4.3 Compressing Neural Networks272

We begin with a standard 2-layer fully connected neural network trained on MNIST [31] with a273

baseline test accuracy of around 0.97. The first layer has dimension (784x512) and the top layer has274

dimension (512x10). Further specifics of the model can be found in the TensorFlow tutorials [3].275

We sketch the weight matrix in the top layer using either Tensorized Random Projection or Random276

Projection. We then reinsert this sketched matrix into the original model and evaluate its accuracy on277

the MNIST test set. We compare both the test accuracy and the time needed to compute the sketch278

for both methods.279

In Figure 3(a) we see that both Tensorized Random Projection and Random Projection reach similar280

test accuracy for the same number of parameters. Figure 3(b) in illustrates that Tensorized Random281

Projection runs somewhat faster than ordinary Random Projection.282

(a) Test Accuracy vs Sketch Size (b) Time vs Sketch Size

Figure 3: Sketching the Last Layer of MNIST Neural Network

5 Conclusion283

We presented a new analysis of Tensorized Random Projection, providing nearly optimal bounds and284

demonstrated its versatility in multiple applications. An interesting question left for future work is285

whether its m ·
∑q
i=1 nnz(xi) running time could be further improved for dense x. We conjecture286

that the iid random u`i Rademacher vectors might be replaced with fast pseudo-random rotations,287

perhaps a product of one or more randomized Hadamard matrices similar to ideas in [6], which could288

possibly lead to an O(m log n) running time.289

8

References290

[1] https://en.wikipedia.org/wiki/Birthday_problem#Cast_as_a_collision_291

problem.292

[2] https://en.wikipedia.org/wiki/Polynomial_kernel, practical use section.293

[3] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,294

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,295

Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,296

Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray,297

Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul298

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,299

Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale300

machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.301

[4] Thomas Dybdahl Ahle and Jakob Bæk Tejs Knudsen. High probability tensor sketch, 2019.302

[5] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the303

frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.304

[6] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt.305

Practical and optimal lsh for angular distance. In Advances in Neural Information Processing306

Systems, pages 1225–1233, 2015.307

[7] Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds308

for deep nets via a compression approach. In Proceedings of the 35th International Conference309

on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,310

pages 254–263, 2018.311

[8] Rosa I. Arriaga and Santosh Vempala. An algorithmic theory of learning: Robust concepts and312

random projection. In 40th Annual Symposium on Foundations of Computer Science, FOCS313

’99, 17-18 October, 1999, New York, NY, USA, pages 616–623, 1999.314

[9] Avrim Blum. Random projection, margins, kernels, and feature-selection. In Subspace, Latent315

Structure and Feature Selection, Statistical and Optimization, Perspectives Workshop, SLSFS316

2005, Bohinj, Slovenia, February 23-25, 2005, Revised Selected Papers, pages 52–68, 2005.317

[10] Vladimir Braverman, Kai-Min Chung, Zhenming Liu, Michael Mitzenmacher, and Rafail318

Ostrovsky. Ams without 4-wise independence on product domains. In 27th International319

Symposium on Theoretical Aspects of Computer Science (STACS 2010), 2010.320

[11] Emmanuel J. Candès, Justin K. Romberg, and Terence Tao. Robust uncertainty principles: exact321

signal reconstruction from highly incomplete frequency information. IEEE Trans. Information322

Theory, 52(2):489–509, 2006.323

[12] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM324

Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available at325

http://www.csie.ntu.edu.tw/~cjlin/libsvm.326

[13] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams.327

In International Colloquium on Automata, Languages, and Programming, pages 693–703.328

Springer, 2002.329

[14] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression in input330

sparsity time. In Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA,331

USA, June 1-4, 2013, pages 81–90, 2013.332

[15] Michael B. Cohen, T. S. Jayram, and Jelani Nelson. Simple analyses of the sparse Johnson-333

Lindenstrauss transform. In 1st Symposium on Simplicity in Algorithms, SOSA 2018, January334

7-10, 2018, New Orleans, LA, USA, pages 15:1–15:9, 2018.335

[16] Andrew Cotter, Joseph Keshet, and Nathan Srebro. Explicit approximations of the Gaussian336

kernel. CoRR, 2011.337

9

https://en.wikipedia.org/wiki/Birthday_problem#Cast_as_a_collision_problem
https://en.wikipedia.org/wiki/Birthday_problem#Cast_as_a_collision_problem
https://en.wikipedia.org/wiki/Birthday_problem#Cast_as_a_collision_problem
https://en.wikipedia.org/wiki/Polynomial_kernel
http://www.csie.ntu.edu.tw/~cjlin/libsvm

[17] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of Johnson and338

Lindenstrauss. Random Struct. Algorithms, 22(1):60–65, 2003.339

[18] Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository, 2017.340

[19] David L. Donoho. Compressed sensing. IEEE Trans. Information Theory, 52(4):1289–1306,341

2006.342

[20] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. LIB-343

LINEAR: A library for large linear classification. Journal of Machine Learning Research,344

9:1871–1874, 2008.345

[21] Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. Approximate nearest neighbor: Towards346

removing the curse of dimensionality. Theory of Computing, 8(1):321–350, 2012.347

[22] Piotr Indyk and Andrew McGregor. Declaring independence via the sketching of sketches. In348

Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, pages349

737–745. Society for Industrial and Applied Mathematics, 2008.350

[23] T. S. Jayram and David P. Woodruff. Optimal bounds for Johnson-Lindenstrauss transforms and351

streaming problems with subconstant error. ACM Trans. Algorithms, 9(3):26:1–26:17, 2013.352

[24] William B Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert353

space. Contemporary Mathematics, 1984.354

[25] Lior Kamma, Casper B Freksen, and Kasper Green Larsen. Fully understanding the hashing355

trick. In Advances in Neural Information Processing Systems, pages 5394–5404, 2018.356

[26] Daniel M. Kane, Raghu Meka, and Jelani Nelson. Almost optimal explicit Johnson-357

Lindenstrauss families. In Approximation, Randomization, and Combinatorial Optimization.358

Algorithms and Techniques - 14th International Workshop, APPROX 2011, and 15th Interna-359

tional Workshop, RANDOM 2011, Princeton, NJ, USA, August 17-19, 2011. Proceedings, pages360

628–639, 2011.361

[27] Daniel M. Kane and Jelani Nelson. Sparser Johnson-Lindenstrauss transforms. J. ACM,362

61(1):4:1–4:23, 2014.363

[28] Michael Kapralov, Rasmus Pagh, Ameya Velingker, David Woodruff, and Amir Zandieh.364

Sketching high-degree polynomial kernels, 2019.365

[29] Purushottam Kar and Harish Karnick. Random feature maps for dot product kernels. In366

Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics,367

AISTATS 2012, La Palma, Canary Islands, Spain, April 21-23, 2012, pages 583–591, 2012.368

Later: Journal of Machine Learning Research (JMLR) : WCP, 22:583-591.369

[30] Kasper Green Larsen and Jelani Nelson. Optimality of the Johnson-Lindenstrauss lemma. In370

58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA,371

USA, October 15-17, 2017, pages 633–638, 2017.372

[31] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.373

[32] S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and Trends in374

Theoretical Computer Science, 1(2), 2005.375

[33] Rasmus Pagh. Compressed matrix multiplication. In Innovations in Theoretical Computer376

Science 2012, Cambridge, MA, USA, January 8-10, 2012, pages 442–451, 2012.377

[34] Ninh Pham and Rasmus Pagh. Fast and scalable polynomial kernels via explicit feature maps. In378

The 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,379

KDD 2013, Chicago, IL, USA, August 11-14, 2013, pages 239–247, 2013.380

[35] Terence Tao. Math 254a: Notes 1: Concentration of measure, https://terrytao.381

wordpress.com/2010/01/03/254a-notes-1-concentration-of-measure/, 2010.382

[36] David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends in383

Theoretical Computer Science, 10(1-2):1–157, 2014.384

10

https://terrytao.wordpress.com/2010/01/03/254a-notes-1-concentration-of-measure/
https://terrytao.wordpress.com/2010/01/03/254a-notes-1-concentration-of-measure/
https://terrytao.wordpress.com/2010/01/03/254a-notes-1-concentration-of-measure/

This appendix is organized as follows:385

1. In Section A we prove technical Lemmas used in Section 2.1.386

2. In Section B we prove Theorem 2.4.387

3. In Section C we prove Theorem 3.1.388

4. In Section D we provide a note about previous analysis of Tensorized Random Projections.389

A Additional Lemmas from Section 2.1390

A.1 Preliminaries391

We write f(x) . g(x) if f(x) = O(g(x)). For random variable X and w ∈ R, ‖X‖w denotes392

(E[|X|w])1/w. Minkowski’s inequality shows that ‖ · ‖w is a norm if w ≥ 1. We use ‖A‖F for the393

Frobenius norm of a matrix A, and ‖A‖ for its operator norm.394

We need the following form of Khintchine’s inequality [15].395

Theorem A.1. (Khintchine) There is a constant C > 0 such that for σ1, . . . , σn independent396

Rademacher (i.e., uniform in {1,−1}) random variables, and any fixed x ∈ Rn, Pr[(
∑n
i=1 σixi)

2 >397

C
√

log(1/δ)‖x‖22] ≤ δ.398

We next state the following version of the Hanson-Wright inequality [15] that we need.399

Theorem A.2. (Hanson-Wright) For σ1, . . . , σn independent Rademachers (i.e., uniform in {1,−1})
and A ∈ Rn×n, for all w ≥ 1,

‖σTAσ −E[σTAσ]‖w ≤ O(1) · (
√
w‖A‖F + w · ‖A‖).

A.2 Lemmas400

Lemma A.3. Let Z := uTAu, where A and u are as described in Theorem 2.2. Let F be the401

event that the bounds on ‖A‖F and ‖A‖2 hold as described in Lemmas A.7 and A.4. Then Pr[Z ≥402

ε/3|F] ≤ δ/2.403

Proof. We will set w = Θ(log(1/δ)). By Hanson-Wright and the triangle inequality, where the404

randomness is taken only with respect to u1, . . . , um and not with respect to v1, . . . , vm, we have405

‖Z‖w ≤ ‖
√
w · ‖A‖F + w · ‖Ax‖‖w (4)

≤
√
w · ‖‖A‖F ‖w + w · ‖‖A‖‖w. (5)

Note that here we use that for any fixing of v1, . . . , vm, and thus A, since i 6= i′ we have E[Z] = 0,406

where the expectation is taken with respect to u1, . . . , um. Lemma A.4 proves that, with probability407

at least 1− δ/20,408

‖A‖2 = O

(
log(q−1)(qnqm/δ)

m

)
(6)

and Lemma A.7 proves that, with probability at least 1− δ/20,409

‖A‖F = O(1/
√
m+ log1/2(1/δ) log(2q−3)/2(m/δ) log log(m/δ)/m) (7)

Define F to be the event that (6) and (7) both hold. By a union bound, we have that Pr[F] ≥ 1−δ/10.410

We can now bound Pr[Z ≥ ε/3 | F]:411

Pr[Z ≥ ε/3 | F] = Pr[Zw ≥ (ε/3)w | F]

≤ (ε/3)−wE[Zw | F]

≤ (ε/3)−w · 2w ·E[max(
√
w
w · ‖A‖wF , ww · ‖A‖w) | F]

where we now justify these inequalities. The first inequality is Markov’s inequality. The second412

inequality is the Hanson-Wright inequality, where we have used that a+ b ≤ 2 max(a, b).413

11

We now set w = Θ(log(1/δ)) for a large enough constant in the Θ(·) notation. Recall that given414

F , both (7) and (6) hold. We choose m so that it satisfies the following three constraints: We415

need m = Ω(log(1/δ) log(2q−3)/2(m/δ) log log(m/δ))/ε as well as m = Ω(ε−2 log(1/δ)), so that416 √
w
w · ‖A‖wF ≤ εw/Cw1 . We also need m = Ω(ε−1 log(q−1)(nm/δ) log(1/δ)) so that ww · ‖A‖w ≤417

εq/Cq1 .418

A sketch size of m = Θ
(
ε−2 log(n/δ) + ε−1 logq(n/δ)

)
satisfies these constraints, using that419

log(1/δ) log(2q−3)/2(m/δ) log log(m/δ) ≤ logq(n/δ).Note that we can assumem ≤ nq , otherwise420

we could instead use the identity matrix as our sketching matrix. With this setting of m, we have that421

Pr[Z ≥ ε/3 | F] ≤ (ε/3)−w · 2w ·E[max((ε/C1)w, (ε/C1)q | F],

and by settingC1 > max((2·6w/δ)1/w, (2·6wεq−w/δ)1/q) we have that Pr[Z > ε/3|F] ≤ δ/2.422

Lemma A.4. With probability at least 1− δ/20, ‖A‖2 = O(log(q−1)(qnqm/δ)
m)423

Proof. Since A is block-diagonal, its operator norm is the largest operator norm of any block. The424

`-th block in A can be written as (1/m)y`(y`)T where y` ∈ Rn for each ` ∈ [m], and y`i = 〈v`, xi〉.425

Since y`(y`)T is a rank-1 matrix, the eigenvalue of the `-th block is equal to (1/m)Tr(y`(y`)T),426

which is at most (1/m)‖y`‖22. Thus, ‖A‖ ≤ (1/m) maxm`=1 ‖y`‖22 with probability 1, where the427

probability is taken only over u1, . . . , um.428

We next bound |〈v`, xi〉|, where recall v` = u`,2⊗u`,3⊗· · ·⊗u`,q . By A.5 we have that |〈v`, xi〉| =429

O(log(q−1)/2(qnqm/δ)) with probability at least 1 − δ/(20nm). If this occurs, then ‖y`‖22 =430

O(log(q−1)(qnqm/δ))‖x‖22 = O(log(q−1)(qnqm/δ)) since ‖x‖2 = 1. Taking a union bound over431

all m vectors v` and all n vectors xi we have that ‖A‖2 = O(log(q−1)(qnqm/δ)
m) with probability at432

least 1− δ/20.433

Lemma A.5. Let xi ∈ Rnq−1

be an arbitrary vector and let v` = u`,2⊗u`,3⊗· · ·⊗u`,q be the tensor434

product of q − 1 random sign vectors u`,j ∈ {−1,+1}n. Then |〈v`, xi〉| = O(log(q−1)/2(qnqm/δ))435

with probability at least 1− δ/(20nm)436

Proof. Without loss of generality, we can prove this for the case where xi is a unit vector. In
this case it suffices to show that |〈v`, xi〉| = O(log(q−1)/2(qnqm/δ))‖xi‖22 with probability at
least 1 − δ/(20nm). Proof by induction. The base case is k = 2: In this case v` = u`,2, so
v` is a random sign vector. Applying Khintchine’s inequality with δ′ = δ/(40n2m) shows that
|〈v`, xi〉| = O(log1/2(40n2m/δ))‖xi‖22 with probability at least 1− δ/(40n2m), so the base case
holds. Assume that for k = q − 1, |〈v`, xi〉| = O(log(q−2)/2(qnqm/δ))‖xi‖22 with probability at
least 1− δ(q − 1)nq−2/(20qnqm). In the case of k = q, note that by Lemma A.8, we have that

|〈v`, xi〉| = |u`,2
T

X(u`,3 ⊗ · · · ⊗ u`,q)|,

where we have rewritten the vector xi as an n× nq−2 matrix X . Let

u′ = (u`,3 ⊗ · · · ⊗ u`,q).

Note that Xu′ is a vector of length n where the p-th entry is equal to 〈Xi,∗, u
′〉, where Xi,∗437

is the i-th row of X . Computing 〈Xi,∗, u
′〉 is simply the k = q − 1 case, so by the in-438

duction hypothesis, we know that 〈Xi,∗, u
′〉 = O(log(q−2)/2(qnqm/δ))‖xi‖22 with probabil-439

ity at least 1 − δ(q − 1)nq−2/(20qnqm). Taking a union bound we have that every en-440

try of Xu′ is simultaneously bounded by O(log(q−2)/2(qnqm/δ))‖xi‖22 for i = 1 . . . n with441

probability at least 1 − δ(q − 1)nq−1/(20qnqm). We now compute |u`,2T

(Xu′)|. Since442

u`,2 is a random sign vector, we apply Khintchine’s inequality with δ′ = δ/(20qnqm) and443

have that |〈v`, xi〉| = |〈u`,2, (Xu′)〉| = O(log1/2(qnqm/δ))‖(Xu′)‖22 with probability at least444

1 − δ/(20qnqm). ‖(Xu′)‖22 ≤
∑n
i=1O(log(q−2)/2(qnqm/δ))‖xi‖22, so by another union bound445

|〈v`, xi〉| = O(log(q−1)/2(qnqm/δ)) with probability at least 1− δ/(20nm).446

12

Lemma A.6. Let xi ∈ Rnq−1

be an arbitrary unit vector and let v` = u`,2 ⊗ u`,3 ⊗ · · · ⊗ u`,q be447

the tensor product of q− 1 random sign vectors u`,j ∈ {−1,+1}n. Then 〈v`, xi〉2 ≤ t1/2‖xi‖22 with448

probability at least 1− qnq−1e−Θ(t1/(2(q−1))).449

Proof. Proof by induction. The base case is k = 2. In this case v` = u`,2, so v` is a random sign
vector. Applying Khintchine’s inequality with δ′ = qnq−1e−Θ(t1/2(q−1)) we have that (〈v`, xi〉)2 ≤
t1/2‖xi‖22 with probability at least 1 − 2ne−Θ(t1/2). Assume that for k = q − 1, (〈v`, xi〉)2 ≤
t1/2(q−2)‖xi‖22 with probability at least 1 − (q − 1)nq−2e−Θ(t(q−2)/(2(q−1))). In the case of k = q,
note that by Lemma A.8, we have that

|〈v`, xi〉| = |u`,2
T

X(u`,3 ⊗ · · · ⊗ u`,q)|,

where we have rewritten the vector xi as an n× nq−2 matrix X . Let

u′ = u`,3 ⊗ · · · ⊗ u`,q.

Note that Xu′ is a vector of length n where the p-th entry is equal to 〈Xi,∗, u
′〉, where Xi,∗ is the450

i-th row of X . Computing 〈Xi,∗, u
′〉 is simply the k = q− 1 case, so by the induction hypothesis, we451

know (〈v`, xi〉)2 ≤ t(q−1)/2(q−2)‖xi‖22 with probability at least 1− (q − 1)nq−2e−Θ(t(q−2)/(2(q−1))).452

Taking a union bound, for each of the n entries of Xu′ it simultaneously holds that |〈Xi,∗, u
′〉| ≤453

t(q−1)/2(q−2)‖Xi,∗‖22 with probability at least 1− (q − 1)nq−1e−Θ(t(q−2)/(2(q−1))). We apply Khint-454

chine’s inequality again with δ′ to bound 〈u`,2, (Xu′)〉. Thus with a second union bound we have455

that456

〈u`,2, (Xu′)〉 ≤ t1/2(q−1)
n∑
i=1

‖(Xu′)i‖22

≤ t1/2(q−1) · t(q−2)/2(q−1)
n∑
i=1

‖Xi,∗‖22

≤ t1/2‖xi‖22

with probability at least 1− qnq−1e−Θ(t1/(2(q−1))).457

Lemma A.7. With probability at least 1− δ/20,

‖A‖F = O(1/
√
m+ log1/2(1/δ) log(2q−3)/2(m/δ) log log(m/δ)/m)

Proof. As in Lemma A.4, A is block-diagonal, and the `-th block in A can be written as458

(1/m)y`(y`)T where y` ∈ Rn for each ` ∈ [m], and y`i = 〈v`, xi〉. We therefore have that459

‖A‖2F =
1

m2

m∑
`=1

‖y`‖42. (8)

Note that for ` = 1, . . . ,m, the ‖y`‖42 are independent random variables. Further for each ` ∈ [m]460

and any t > 0, we have,461

Pr[‖y`‖42 ≥ t] = Pr[(

n∑
i=1

〈v`, xi〉2)2 ≥ t]

≤ Pr[∃i ∈ [n] such that 〈v`, xi〉2 ≥
√
t‖xi‖22]. (9)

To understand Pr[〈v`, xi〉2 ≥
√
t‖xi‖22], note that by A.6, we have that (〈v`, xi〉)2 ≤ t1/2‖xi‖22 with462

probability at least 1 − qnq−1e−Θ(t1/(2(q−1))). Since q is constant this is 1 − nq−1e−Θ(t1/(2(q−1))).463

Plugging into (9), we have that464

Pr[‖y`‖42 ≥ t] ≤ nq · e−Θ(t1/(2(q−1))). (10)

13

Equipped with (10), we now analyze S :=
∑m
`=1 ‖y`‖42. For j ≥ 1, let Sj = {` | 2j ≤ ‖y`‖42 ≤465

2j+1}, and let S0 = {` | ‖y`‖42 ≤ 1}. Then S ≤ 2 ·
∑
j≥0 2j |Sj |. Using (9), for each j,466

Pr[|Sj | >
t

2j100j2
] ≤

(
m

t/(2j100j2)

)
· e−Θ(2j/(2(q−1)))·t/(2jj2)

≤
(
m2j100j2e

t

)t/(2j100j2)

· e−Θ(t/(2j(2q−3)/(2q−2)j2)) (11)

We will set t ≥ m, and thus (11) becomes:467

Pr[|Sj | >
t

2j100j2
] ≤ 2ct/(2

jj)−c′t/(2j(2q−3)/(2q−2)j2), (12)

where c, c′ > 0 are absolute constants. For j larger than an absolute constant j0, (12) is just equal to468

2−Θ(t/(2j(2q−3)/(2q−2)j2)). (13)

This probability is maximized when j is as large as possible. To control it, we define the event G469

that ‖y`‖42 ≤ C log2(q−1)(m/δ) for a sufficiently large constant C > 0. W.l.o.g., we also choose470

C so that 2j1 = C log2(q−1)(m/δ) for an integer j1. Applying (10) and a union bound, and using471

the fact that d < 1/nq, we have that with probability 1 − δ/40, simultaneously for all ` ∈ [m],472

‖y`‖42 ≤ C log2(q−1)(m/δ), and so Pr[|∪j>j1 Sj | = 0] ≥ 1−δ/40. Also,
∑
j=0,...,j0

2j |Sj | ≤ Cm,473

for a constant C > 0, with probability 1.474

Consequently,475

Pr[S > t] ≤ Pr[2 ·
∑
j≥0

2j |Sj | > t]

≤ Pr[2 ·
∞∑
j=j0

2j |Sj | > t− Cm]

= Pr[

∞∑
j=j0

2j |Sj | > (t− Cm)/2]

≤
∞∑
j=j0

Pr[|Sj | >
(t− Cm)/2

2j100j2
]

=

∞∑
j=j1

Pr[|Sj | >
(t− Cm)/2

2j100j2
] +

j1∑
j=j0

Pr[|Sj | >
(t− Cm)/2

2j100j2
]

≤ Pr[| ∪j>j1 Sj | > 0] +

j1∑
j=j0

Pr[|Sj | >
(t− Cm)/2

2j100j2
]

≤ δ/40 +

j1∑
j=j0

Pr[|Sj | >
(t− Cm)/2

2j100j2
]

≤ δ/40 +

j1∑
j=j0

2−Θ(t/(2j(2q−3)/(2q−2)j2))

where the first inequality uses that S < 2 ·
∑
j≥0 2j |Sj |, the second inequality uses that476 ∑

j=0,...,j0
2j |Sj | ≤ Cm with probability 1, the third inequality uses the fact that if we did not477

have |Sj | > (t−Cm)/2
2j100j2 then we would have

∑∞
j=j0

2j |Sj | ≤ (t− Cm)/2, the fifth inequality uses478

that Pr[| ∪j>j1 Sj | = 0] ≥ 1− δ/40, and the final inequality uses (13), the definition of j0, and that479

we can assume t− Cm = Θ(t) if we choose t > 2Cm.480

14

Finally, note that
∑j1
j=j0

2−Θ(t/(2j(2q−3)/(2q−2)j2)) is equal to 2−Θ(t/(2j1(2q−3)/(2q−2)j21)). Recalling

that 2j1 = C log2(q−1)(m/δ), this expression is equal to 2−Θ(t/(log2q−3(m/δ) log2 log(m/δ))). Setting

t = C ′ log(1/δ) log2q−3(m/δ) log2 log(m/δ) + 2Cm,

for absolute constants C,C ′ > 0 makes this expression at most δ/40, which gives us our overall481

bound that Pr[
∑m
`=1 ‖y`‖42 > C log(1/δ) log2q−3(m/δ) log2 log(m/δ) + 2Cm] < δ/20.482

Plugging into (8), with probability at least 1− δ/20,483

‖A‖2F =
1

m2

m∑
`=1

‖y`‖42

≤ C log(1/δ) log2q−3(m/δ) log2 log(m/δ)

m2
+

2c

m
.

Thus we have that, with probability at least 1− δ/20,484

‖A‖F = O(1/
√
m+ log1/2(1/δ) log(2q−3)/2(m/δ) log log(m/δ)/m).

485

Lemma A.8. Let a ∈ Rn, b ∈ Rk, and x ∈ Rnk be arbitrary vectors. Define X ∈ Rn×k to be x
written as a matrix, such that Xi,j = x(i−1)k+j . Then

〈(a⊗ b), x〉 = aTXb.

Proof. We have that 〈(a ⊗ b), x〉 =
∑n
i=1 ai〈bTXi,∗〉, where Xi,∗ is the i-th row of X . Note that486

the i-th element of vector Xb is 〈bTXi,∗〉, and so aTXb =
∑n
i=1 ai〈bTXi,∗〉. Thus 〈(a⊗ b), x〉 =487

aTXb.488

Lemma A.9. Let A ∈ Rn×n and B ∈ Rn×k be arbitrary matrices and let x ∈ Rnk be an489

arbitrary vector. Then ‖(A ⊗ B)x‖22 = ‖AXBT ‖2F , where X is x written as a matrix, such that490

Xi,j = x(i−1)k+j .491

Proof. It suffices to show a bijection between the entries of (A ⊗ B)x and the entries of AXBT .492

Note that the (i, j)-th entry of the matrix AXBT is equal to 〈(Ai,∗⊗Bj,∗), x〉, where Ai,∗ is the i-th493

row of A and Bj,∗ is the j-th row of B. The entry at position ((i− 1)k + j) in the vector (A⊗B)x494

is also equal to 〈(Ai,∗ ⊗Bj,∗), x〉, giving the bijection.495

B Proof of Theorem 2.4496

It suffices to show that, for any unit vector x ∈ Rnq

,497

Pr[|‖Tx‖22 − 1| > ε] ≤ δ. (14)

To show (14), we use the following shown in the proof of Lemma 40 of [14].498

Lemma B.1. (Proof of Lemma 40 of [14]) Let T i : Rn′ → Rt′ be a CountSketch matrix, where
t′ = O(ε−2/(qδ)). Then for any fixed matrix X ∈ Rn′×n,

Pr[‖T iX‖2F = (1± ε)‖X‖2F] ≥ 1− δ/q.

Proof. Lemma 40 of [14] shows that E[‖T iX‖2F] = ‖X‖2F and Var[‖T iX‖2F] ≤ 6
m‖X‖

4
F . Apply-

ing Chebyshev’s inequality, we have that

Pr[|‖T iX‖2F − ‖X‖2F | ≥ ε‖X‖2F] ≤ 6‖X‖4F
t′ε2‖X‖4F

,

and setting t′ = 6qε−2/(δ) proves the lemma.499

500

15

We show (14) by applying Lemma B.1 q times, each time with ε replaced with ε/(4q). By Lemma501

A.9 we have that ‖Tx‖22 = ‖T 1X(T 2 ⊗ T 3 ⊗ · · · ⊗ T q)‖2F , where X ∈ Rn×nq−1

has its entries in502

one-to-one correspondence with the entries of x. By Lemma B.1, ‖T 1X(T 2 ⊗ T 3 ⊗ · · · ⊗ T q)‖2F =503

(1 ± ε/(4q))‖X(T 2 ⊗ T 3 ⊗ · · · ⊗ T q)‖2F . Now we replace X with the matrix X1 ∈ Rn×(t·nq−2)504

which has each of its columns X∗,i replaced with T 1X∗,i. The entries of X1 are then in one-to-one505

corresponding with the entries of a vector x1 ∈ Rt×nq−1

.506

We now repeat the above argument with T 2 replacing the role of T 1 and X1 replacing the role of507

X . Applying Lemma B.1 q times, and applying a union bound, we obtain a vector Tx ∈ Rtq with508

‖Tx‖22 = 1± ε with probability at least 1− δ. This proves (14).509

Note that if the vector x is of the form x1 ⊗ x2 ⊗ · · · ⊗ xq , for xi ∈ Rn for i = 1, 2, . . . , q, then we510

can write Tx as511

Tx = T 1 ⊗ T 2 ⊗ · · · ⊗ T q(x1 ⊗ x2 ⊗ · · · ⊗ xq)
= T 1x1 ⊗ T 2x2 ⊗ · · · ⊗ T qxq

Since each matrix T i is a CountSketch matrix, computing T ixi takes O(
∑q
i=1 nnz(xi)) time, and512

additionally nnz(T ixi) ≤ nnz(xi) for each i = 1, 2, . . . , q.513

C Proof of Theorem 3.1514

Consider a vector x ∈ Rnq

defined as follows: x = y ⊗ y ⊗ · · · ⊗ y, where y is a random sparse515

vector containing (1/q) log(1/(4δ)) entries that are equal to 1 placed at uniformly random positions,516

and remaining entries equal to 0. Note that T i perfectly hashes the (1/q) log(1/(4δ)) ones in y517

with probability at least 1− δ ·Θ(log2(1/δ)/q2). By a union bound, with probability at least 1/2,518

simultaneously for i = 1, 2, . . . , q, T i perfectly hashes y. Thus, conditioned on this event which519

we call E , each T iy has exactly (1/q) log(1/(4δ)) entries which are each equal to 1 or −1, and520

remaining entries are equal to 0. We condition on event E in what follows.521

Now consider the first row u1,1 ⊗ u1,2 ⊗ · · · ⊗ u1,q of the sketching matrix
√
m · S. The first522

entry of
√
mS · Tx is equal to

∏q
i=1〈u1,i, T iy〉. For each i = 1, 2, . . . , q, with probability523

(1/2)(1/q) log(1/(4δ)) = (4δ)1/q, each of the entries of u1,i in the support of T iy has the same524

sign. Thus, this holds for all i simultaneously with probability (4δ) by independence of the u1,i. Let525

us call this event F . By independence of S and T it follows that E ∧ F occurs with probability at526

least (1/2) · (4δ) = 2δ. In this case, we have that the squared first entry of
√
m · SṪx has value527

Ω(log2q(1/δ)), where we again used that q is a constant. Note that ‖x‖22 = (1/q)q logq(1/(4δ)),528

which for constant q, is a factor of Θ(logq(1/δ)) smaller than the squared first entry of
√
mS · Tx529

conditioned on E ∧ F .530

We next consider ‖(STx)−1‖22, which denotes the squared 2-norm of the vector STx with the first531

entry replaced with 0. Define the event G that ‖(STx)−1‖22 = (1 ± C/
√
m)‖x‖22 for a constant532

C > 0 defined below, where C may depend on q but is constant for constant q, as we assume.533

We will show that Pr[G | E ∧ F] ≥ 1/2. We will then have that Pr[E ∧ F ∧ G] ≥ 1
2 · 2δ = δ. Since534

the first rows of S are independent, Pr[G | E ∧ F] = Pr[G | E], which we now bound.535

Note this will imply a lower bound of m = Ω(ε−1 logq(1/δ)), since it implies that with probability
at least δ,

‖STx‖22 = (Ω(log2q(1/δ))/m+ 1± 10/
√
m)‖x‖22.

Since m ≥ 10000/ε2 by our m = Ω(ε−2 log(1/δ)) lower bound, and assuming δ is smaller than a536

sufficiently small constant, it follows that with probability at least δ,537

‖STx‖22 = (Ω(logq(1/δ))/m+ 1± ε/10)‖x‖22. (15)

In order for ‖STx‖22 = (1 ± ε)‖x‖22 with probability at least 1 − δ, we must therefore have538

m = Ω(ε−1 logq(1/δ)), which shows the lower bound.539

Thus, it remains to show that Pr[G | E] ≥ 1/2. Note that ‖Tx‖2 = ‖x‖2 given that event E occurs,540

and more precisely ‖T iy‖2 = ‖y‖2 for each i = 1, . . . , q, so it suffices to compute the probability541

that S preserves the norm of Tx = T 1y⊗T 2y⊗ · · ·⊗T qy. For the `-th row u`,1⊗u`,2⊗ · · ·⊗u`,q542

of S, we have
√
m(STx)` =

∏q
i=1〈u`,i, T iy〉. Define z` =

∏q
i=1〈u`,i, T iy〉.543

16

Since the u`,i are independent for i = 1, 2, . . . , q, we have544

E[z2
`] =

q∏
i=1

E[〈u`,i, T iy〉2]

=

q∏
i=1

‖T iy‖22 =

q∏
i=1

‖y‖22 = ‖x‖22. (16)

Consequently, E[‖(STx)−1‖22] = m−1
m ‖x‖

2
2.545

We can similarly bound the second moment,546

E[z4
`] =

q∏
i=1

E[〈u`,i, T iy〉4], (17)

where we have again used independence of the u`,i for i = 1, 2, . . . , q. Note that E[〈u`,i, T iy〉4] is547

just the second moment of the standard Alon-Matias-Szegedy [5] estimator (using a random sign548

vector u`,i) for the squared 2-norm of a fixed vector (in this case T iy), and it holds (see the proof of549

Theorem 2.2 of [5]),550

E[〈u`,i, T iy〉4] ≤ ‖T iy‖44 + 6‖T iy‖42 ≤ 7‖T iy‖42. (18)

Plugging (18) into (17), we get551

E[z4
`] ≤ 7q

q∏
i=1

‖T iy‖42

= 7q(

q∏
i=1

‖T iy‖22)2 = 7q‖x‖42. (19)

Consequently by (19), Var[z4
`] ≤ 7q‖x‖42, and by independence of ` = 2, 3, . . . ,m,552

Var[‖(STx)−1‖22] ≤ 1
m−1 · 7

q‖x‖42. Combining with (16), we can apply Chebyshev’s inequal-553

ity to conclude that554

Pr[|‖(STx)−1‖2 − ‖x‖22| > γ‖x‖22]

≤ 7q‖x‖42
(m− 1)γ2‖x‖42

=
7q

(m− 1)γ2
. (20)

It follows from (20) that for constant q and γ = Θ(1/
√
m), this probability is at least 1/2. Here we555

can take the constant C defined above to be 2 · 7q/2, for example. Thus, Pr[G | E] ≥ 1/2, which556

completes the proof.557

D Note on Previous Analysis of Sketch558

Given Sx and Sy for x, y ∈ Rnq

, it is not hard to show that E[〈Sx, Sy〉] = 〈x, y〉. The main
issue is the variance of this sketch. Indeed, as stated in [34], this estimate “incurs very large
variance, especially for large q”. Kar and Karnick analyze the variance of this sketch and show
the following (discussion before Section 4.1 of [34]). Suppose one has a set Ω of points of the
form a⊗q for some a ∈ Rn (the different points in Ω may be tensor products of different points
a ∈ Rn), for which each such point a is in the radius-R `1-ball B1(0, R). Let CΩ = q(qR2)q . Then
if m = Ω(C2

Ωε
−2 log(1/δ)), then for any x, y ∈ Ω,

Pr[|〈Sx, Sy〉 − 〈x, y〉| > ε] ≤ δ.

For a = (1/
√
n, . . . , 1/

√
n), we have ‖a⊗q‖2 = 1 but ‖a⊗q‖1 = nq/2. Consequently, to apply their559

analysis we would need to set R = n1/2 in their bound, which gives CΩ = n2q and a sketching560

dimension m = Ω(n2qε−2 log(1/δ)) which is much larger than the dimension nq of a⊗q to begin561

with!562

17

	Introduction
	Our Contributions
	Near-Optimal Analysis of Tensorized Random Projection Sketch
	Approximating Polynomial Kernels
	Compressing Neural Networks

	Main Theorem and its Proof
	Initial Bound on Our Sketch Size
	Optimizing Our Sketch Size
	Proof of Theorem2.1

	Lower Bound on Our Sketch Size
	Experiments
	Success Probability of TensorSketch vs Tensorized Random Projection
	Comparison of Sketching Methods for SVMs with Polynomial Kernel
	Compressing Neural Networks

	Conclusion
	Additional Lemmas from Section 2.1
	Preliminaries
	Lemmas

	Proof of Theorem 2.4
	Proof of Theorem 3.1
	Note on Previous Analysis of Sketch

