
Appendix A Proofs

A.1 Proofs of Section 2

The proof of Proposition 2.2 relies on the following auxiliary lemma, which we state first.
Lemma A.1 (Upper semicontinuity). For any x ∈ X ⊂ Rm, the functional F (ν) = ν(x) is upper
semicontinuous overM(X ).

Proof. We denote by 1x(·) the indicator function at x, that is, 1x(ξ) = 1 if ξ = x and 1x(ξ) = 0
otherwise. By definition, F (ν) =

∫
1xdν. Moreover, let {νk}k∈N be a sequence of probability

measures converging weakly to ν ∈ M(X ). Since 1x(·) is upper semicontinuous, the weak
convergence of νk implies that

lim sup
k→∞

F (νk) = lim sup
k→∞

∫
1xdνk ≤

∫
1xdν = F (ν),

which in turn shows that the functional F is upper semicontinuous.

Proof of Proposition 2.2. If ε = 0, the ball BKL(ν̂, ε) contains a singleton ν̂ and the claim holds
trivially. We can thus assume that ε > 0. Since BKL(ν̂, ε) is not necessarily weakly compact, the
existence of the optimal measure ν? is not trivial. To show that ν? exists, we first establish that

sup
ν∈BKL(ν̂,ε)

ν(x) = sup
ν∈BKL(ν̂,ε)

supp(ν)⊆(Ŝ∪{x})

ν(x), (A.1)

where Ŝ = supp(ν̂). To establish (A.1), it suffices to show that for any ν̄ ∈ BKL(ν̂, ε) that assigns a
non-zero probability on X\(Ŝ ∪ {x}), there exists ν′ ∈ BKL(ν̂, ε) satisfying supp(ν′) ⊆ Ŝ ∪ {x}
such that ν′ attains a higher objective value than ν̄, that is, ν′(x) > ν̄(x). Because ν̄ assigns a
non-zero probability to X\(Ŝ ∪ {x}), we have

0 < κ ,
∑

z∈X\(Ŝ∪{x})

ν̄(z) ≤ 1.

We now construct the measure ν′ explicitly. Assume that x 6∈ Ŝ. In this case, consider the discrete
measure ν′ supported on Ŝ ∪ {x} given by

ν′(x) = ν̄(x) + κ and ν′(x̂j) = ν̄(x̂j) ∀j ∈ [N ].

Intuitively, ν′ keeps the probability of ν̄ on Ŝ, and it gathers the probability everywhere else and
puts that mass onto x. We first show that ν′ is a probability measure. Indeed, since κ > 0 and ν̄ is a
probability measure, we have ν′ ≥ 0. Moreover, we find∑
z∈X

ν′(z) =
∑
j∈[N ]

ν̄(x̂j) + ν̄(x) + κ =
∑
j∈[N ]

ν̄(x̂j) + ν̄(x) +
∑

z∈X\(Ŝ∪{x})

ν̄(z) =
∑
z∈X

ν̄(z) = 1,

where the first equality exploits the definition of ν̄, and the second equality follows from the definition
of κ. Thus we conclude that ν′ is a probability measure. We now proceed to show that ν′ satisfies the
KL divergence constraint. Indeed, we have

KL(ν̂ ‖ ν′) =
∑
z∈X

f

(
ν̂(z)

ν′(z)

)
ν′(z)

=
∑
j∈[N ]

f

(
ν̂j

ν′(x̂j)

)
ν′(x̂j) + ν′(x) (A.2a)

=
∑
j∈[N ]

f

(
ν̂j

ν̄(x̂j)

)
ν̄(x̂j) + ν̄(x) + κ (A.2b)

=
∑
j∈[N ]

f

(
ν̂j

ν̄(x̂j)

)
ν̄(x̂j) + ν̄(x) +

∑
z∈X\(Ŝ∪{x})

f

(
ν̂(z)

ν̄(z)

)
ν̄(z) (A.2c)

=
∑
z∈X

f

(
ν̂(z)

ν̄(z)

)
ν̄(z) ≤ ε. (A.2d)
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Equality (A.2a) holds because f(0) = 1 for the function f defined in Definition 2.1 and supp(ν′) ⊆
Ŝ ∪ {x}. Equality (A.2b) follows from the construction of ν′, and equality (A.2c) holds due to
the definition of κ and the fact that f(0) = 1. Finally, the inequality in (A.2d) follows from
the feasibility of ν̄, and it implies that ν′ ∈ BKL(ν̂, ε). Furthermore, because κ > 0, we have
ν′(x) = ν̄(x) + κ > ν̄(x) which asserts that ν̄ is strongly dominated by ν′, and thus ν̄ cannot be an
optimal measure.

Consider now the case x ∈ Ŝ. Without loss of generality, we assume that x = x̂N . In this case, it
suffices to consider ν̄ satisfying ν̄(x̂N ) ≥ ν̂N because any ν̄ with ν̄(x̂N ) < ν̂N is already dominated
by the nominal measure ν̂. Since κ > 0 and ν̄(x̂N ) ≥ ν̂N , there must exist K ∈ [N − 1] atoms
denoted without loss of generality by {x̂1, . . . , x̂K} that satisfy ν̄(x̂j) < ν̂j for all k ∈ [K]. Due to
the continuity of the function f , there exists ε̄ ∈ (0, κ) that satisfies

f

(
ν̂N

ν̄(x̂N ) + ε̄

)
(ν̄(x̂N ) + ε̄) ≤ f

(
ν̂N

ν̄(x̂N )

)
ν̄(x̂N ) + κ.

We now consider the following measure ν′ supported on Ŝ:

ν′(x̂j) =

 ν̄(x̂j) + (κ− ε̄)× (ν̂j − ν̄(x̂j))/
∑
k∈[K](ν̂k − ν̄(x̂k)) ∀j ∈ [K],

ν̄(x̂j) ∀j ∈ ([N − 1]\[K]),
ν̄(x̂N ) + ε̄ j = N.

We can verify that ν′ is a probability measure supported on Ŝ and that ν′(x̂N ) > ν̄(x̂N ). Furthermore,
we have

KL(ν̂ ‖ ν′) =
∑
j∈[N ]

f

(
ν̂j

ν′(x̂j)

)
ν′(x̂j)

=
∑
j∈[K]

f

(
ν̂j

ν′(x̂j)

)
ν′(x̂j) +

∑
j∈([N−1]\[K])

f

(
ν̂j

ν′(x̂j)

)
ν′(x̂j) + f

(
ν̂N

ν′(x̂N )

)
ν′(x̂N )

≤
∑
j∈[N ]

f

(
ν̂j

ν̄(x̂j)

)
ν̄(x̂j) + κ = KL(ν̂ ‖ ν̄) ≤ ε,

where the first inequality follows from the definition of ν′, the definition of ε̄, the fact that for any
ν̂j > 0 the function t 7→ tf(ν̂j/t) is non-increasing in t over the domain (0, ν̂j) and that 0 ≤
ν̄(x̂j) < ν′(x̂j) ≤ ν̂j by construction. We have thus asserted that ν̄ is dominated by ν′ ∈ BKL(ν̂, ε),
and we conclude that (A.1) holds.

We now consider the supremum on the right hand side of (A.1). By Lemma A.1, the objective
function of (A.1) is upper semicontinuous. Furthermore, the feasible set{

ν ∈M(X ) : supp(ν) ⊆ (Ŝ ∪ {x}), KL(ν̂ ‖ ν) ≤ ε
}

is weakly compact because it only contains measures supported on a finite set [1, Theorem 15.11].
By the Weierstrass maximum value theorem [1, Theorem 2.43], the supremum in (A.1) is attained
and there exists ν?KL ∈ BKL(ν̂, ε) such that

sup
ν∈BKL(ν̂,ε)

ν(x) = ν?KL(x).

This observation completes the proof.

Proof of Theorem 2.3. Consider first the case when x ∈ Ŝ, where Ŝ = supp(ν̂). As a result
of Proposition 2.2, the distribution that maximizes the probability at point x subject to the KL
divergence constraint will be supported on at most N points from the set Ŝ . The probability measures
of interest thus share the form

ν =
∑
j∈[N ]

yjδx̂j

for some y ∈ RN+ ,
∑
j∈[N ] yj = 1. The optimistic likelikood (5) satisfies

ν?KL(x) = sup

∑
j∈[N ]

yj1x(x̂j) : y ∈ RN++,
∑
j∈[N ]

ν̂j log

(
ν̂j
yj

)
≤ ε,

∑
j∈[N ]

yj = 1

 , (A.3)
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which is a finite dimensional convex program in y.

Next, we consider the case where x 6∈ Ŝ . To this end, for any N ∈ N+, we denote by ∆N the simplex

∆N ,

y ∈ RN+ : 0 ≤ yj ≤ 1 ∀j ∈ [N ],
∑
j∈[N ]

yj ≤ 1

 . (A.4)

The relevant measures in BKL(ν̂, ε) then share the form

ν =
∑
j∈[N ]

yjδx̂j + (1−
∑
j∈[N ]

yj)δx

for some y ∈ ∆N . In this case, the optimistic likelihood 5 evaluates to

ν?KL(x) = max
y∈∆N
y>0

1−
∑
j∈[N ]

yj :
∑
j∈[N ]

yjf

(
ν̂j
yj

)
−

1−
∑
j∈[N ]

yj

 f(0) ≤ ε

 .

Since f is convex, the above program is a finite convex program in y. We now show that the above
optimization problem admits an analytical solution. Consider the equivalent minimization problem

OPT?KL , min
y∈∆N
y>0

∑
j∈[N ]

yj :
∑
j∈[N ]

ν̂j log ν̂j −
∑
j∈[N ]

ν̂j log yj ≤ ε

 . (A.5)

Suppose that ε > 0. By a standard duality argument, the above program is equivalent to

OPT?KL = inf
y∈∆N
y>0

sup
γ≥0

∑
j∈[N ]

yj + γ

∑
j∈[N ]

ν̂j log ν̂j − ε−
∑
j∈[N ]

ν̂j log yj

 (A.6a)

= sup
γ≥0

γ
∑
j∈[N ]

ν̂j log ν̂j − ε

+ inf
y∈∆N
y>0

∑
j∈[N ]

yj − γ
∑
j∈[N ]

ν̂j log yj


 (A.6b)

≥ sup
1≥γ>0

γ
∑
j∈[N ]

ν̂j log ν̂j − ε

+ inf
y∈∆N
y>0

∑
j∈[N ]

yj − γ
∑
j∈[N ]

ν̂j log yj


 (A.6c)

= sup
1≥γ>0

γ
∑
j∈[N ]

ν̂j − ε

− ∑
j∈[N ]

ν̂jγ log γ

 , (A.6d)

where the equality (A.6b) follows from strong duality since the Slater condition for the primal
problem is satisfied. The inequality (A.6c) follows directly from the restriction of the feasible set of
γ and because the objective function is continuous in γ. For any γ ∈ (0, 1], the inner minimization
admits the optimal solution y?j = γν̂j , and this leads to the last equation (A.6d). The maximization
over γ is now a convex optimization problem, and the first-order condition gives the optimal solution
γ? = exp (−ε). We can thus conclude that

OPT?KL ≥ exp (−ε) .
By substituting the feasible solution

yj = exp (−ε) ν̂j ∀j ∈ [N ]

into (A.6a), we see that OPT?KL ≤ exp (−ε). Hence,

OPT?KL = exp (−ε) ∀ε > 0.

Consider now the optimal value OPT?KL defined in (A.5) as a parametric function of the radius ε
over the domain R+. One can show that OPT?KL is a continuous function over ε ∈ R+ using Berge’s
maximum theorem [1, Theorem 17.31]. Furthermore, the function exp(−ε) is also continuous over
ε ∈ R+. We thus conclude that

OPT?KL = exp (−ε) ∀ε ≥ 0.

The proof for this case is completed by noticing that ν?KL(x) = 1− OPT?KL.
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A.2 Proofs of Section 4

Proof of Proposition 4.2. When ε = 0, BW(ν̂, ε) is the singleton set {ν̂} and the claim is trivial.
It thus suffices to consider ε > 0. Since BW(ν̂, ε) is weakly compact [8, Proposition 3] and the
objective function in (8) is upper-semicontinuous in ν by Lemma A.1, a version of the Weierstrass
maximum value theorem [1, Theorem 2.43] implies that there exists ν? ∈ BW(ν̂, ε) such that

sup
ν∈BW(ν̂,ε)

ν(x) = ν?W(x).

Suppose that ν̄ is an optimal measure that solves (8), that is, ν̄ ∈ BW(ν̂, ε) and ν̄(x) = ν?W(x). Since
the ground metric distance d(·, ·) in the Wasserstein distance is continuous, there exists an optimal
transport plan λ̄ that maps ν̂ to ν̄ [10, Theorem 4.1]. Since ν̂ is a discrete distribution with N atoms,
this optimal transport map can be characterized by N functions λ̄j : X → R+, j ∈ [N ], which
satisfy the balancing constraints

∑
z∈X

λ̄j(z) = ν̂j ∀j ∈ [N ] and
N∑
j=1

λ̄j(z) = ν̄(z) ∀z ∈ X

as well as the Wasserstein distance constraint∑
j∈[N ]

∑
z∈X

d(x̂j , z)λ̄j(z) ≤ ε. (A.7)

Define κj and ηj as

κj ,
∑

z∈X\(Ŝ∪{x})

λ̄j(z) and ηj ,
∑

z∈X\(Ŝ∪{x})

d(x̂j , z)λ̄j(z) ∀j ∈ [N ].

By construction, we have 0 ≤ κj ≤ ν̂j ≤ 1 and 0 ≤ ηj for all j ∈ [N ]. Suppose that ν̄ assigns
non-zero probability mass on X\(Ŝ ∪ {x}), where Ŝ = supp(ν̂). In that case, there exists j ∈ [N ]
such that κj > 0 and ηj > 0. We will next show that ν̄ cannot be the optimal solution.

Assume first that x 6∈ Ŝ, and define the transport maps λ′j : X → R+ for j ∈ [N ] as

λ′j(z) =


λ̄j(x̂j) +

(
1−min

{
1,

ηj
d(x,x̂j)

})
κj if z = x̂j ,

λ̄j(x̂k) if z = x̂k, k 6= j, k ∈ [N ],

λ̄j(x) + min
{

1,
ηj

d(x,x̂j)

}
κj if z = x,

0 otherwise.

By this construction of λ′j , we obtain∑
z∈X

λ′j(z) =
∑
z∈X

λ̄j(z) = ν̂j ∀j ∈ [N ].

We now construct a measure ν′ explicitly using the transport map λ′ from ν̂ as

ν′(z) =
∑
j∈[N ]

λ′j(z) ∀z ∈ X . (A.8)

Notice that ν′ is supported on Ŝ ∪ {x}, ν′ ≥ 0 and

∑
z∈X

ν′(z) =
∑
j∈[N ]

 ∑
k∈[N ]

λ̄j(x̂k) + κj + λ̄j(x)

 =
∑
j∈[N ]

∑
z∈X

λ̄j(z) =
∑
j∈[N ]

ν̂j = 1,
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which further implies that ν′ is a probability measure on X . Moreover, we have

W(ν̂, ν′) ≤
∑
j∈[N ]

∑
k∈[N ]

d(x̂j , x̂k)λ′j(x̂k) +
∑
j∈[N ]

d(x̂j , x)λ′j(x) (A.9a)

=
∑
j∈[N ]

 ∑
k∈[N ]

d(x̂j , x̂k)λ̄j(x̂k) + d(x̂j , x)λ̄j(x) + min {d(x̂j , x)κj , ηjκj}


≤
∑
j∈[N ]

 ∑
k∈[N ]

d(x̂j , x̂k)λ̄j(x̂k) + d(x̂j , x)λ̄j(x) + ηjκj


≤
∑
j∈[N ]

 ∑
k∈[N ]

d(x̂j , x̂k)λ̄j(x̂k) + d(x̂j , x)λ̄j(x) + ηj

 (A.9b)

=
∑
j∈[N ]

 ∑
k∈[N ]

d(x̂j , x̂k)λ̄j(x̂k) + d(x̂j , x)λ̄j(x) +
∑

z∈X\(Ŝ∪{x})

d(x̂j , z)λ̄j(z)


=
∑
j∈[N ]

∑
z∈X

d(x̂j , z)λ̄j(z) ≤ ε. (A.9c)

Inequality (A.9a) holds because of the definition of the Wasserstein distance and the fact that
{λ′j}j∈[N ] constitutes a feasible transportation plan from ν̂ to ν′. Inequality (A.9b) holds due to the
non-negativity of both ηj and κj and the fact that κj ≤ 1. Inequality (A.9c) is a consequence of (A.7).
The last inequality implies that ν′ ∈ BW(ν̂, ε), and thus ν′ is a feasible measure for the optimistic
likelihood problem. Finally, we have

ν′(x) =
∑
j∈[N ]

λ′j(x) =
∑
j∈[N ]

(
λ̄j(x) + min

{
1,

ηj
d(x, x̂j)

}
κj

)
>
∑
j∈[N ]

λ̄j(x) = ν̄(x),

where the strict inequality is from the fact that there exists j ∈ [N ] such that κj > 0 and ηj > 0.
Thus, ν′ ∈ BW(ν̂, ε) attains a higher objective value than ν̄, and as a consequence ν̄ cannot be an
optimal measure. Notice that supp(ν′) ⊆ (Ŝ ∪ {x}) by construction, and thus we conclude that
when x 6∈ Ŝ, the optimal measure ν?W satisfies supp(ν?W) ⊆ (Ŝ ∪ {x}).

Assume now that x ∈ Ŝ, and assume without loss of generality that x = x̂N . Consider now the
transport plan λ′j : X → R+ for any j ∈ [N ] defined as

∀j ∈ [N − 1] : λ′j(z) =


λ̄j(x̂j) +

(
1−min

{
1,

ηj
d(x,x̂j)

})
κj if z = x̂j ,

λ̄j(x̂k) if z = x̂k, k 6= j, k ∈ [N − 1],

λ̄j(x) + min
{

1,
ηj

d(x,x̂j)

}
κj if z = x̂N ,

0 otherwise
and

λ′N (z) =

 λ̄N (x̂k) if z = x̂k, k ∈ [N − 1],
λ̄N (x̂′N ) + κN if z = x̂N ,
0 otherwise.

One can readily verify that using the collection {λ′j}j∈[N ] to define ν′ in (A.8) results in a probability
measure ν′ ∈ BW(ν̂, ε) that attains a strictly higher objective value than ν̄. Notice that this construc-
tion satisfies supp(ν′) ⊆ Ŝ, and hence we can conclude that when x ∈ Ŝ, the optimal measure ν?W
satisfies supp(ν?W) ⊆ Ŝ. This completes the proof.

Proof of Theorem 4.3. As a result of Proposition 4.2, we can restrict ourselves to probability measures
that are supported on supp(ν̂) ∪ {x}. Thus, it suffices to optimize over the set of discrete probability
measures of the form

ν =
∑
j∈[N ]

yjδx̂j +

1−
∑
j∈[N ]

yj

 δx
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for some y ∈ ∆N , where ∆N is the simplex defined in (A.4). Using the Definition 4.1 of the type-1
Wasserstein distance, we can rewrite the optimistic likelihood problem over the Wasserstein ball
BW(ν̂, ε) as the linear program

sup
ν∈BW(ν̂,ε)

ν(x) =



sup 1−
∑
j∈[N ]

yj

s. t. y ∈ ∆N , λ ∈ RN×(N+1)
+∑

j∈[N ]

∑
j′∈[N ]

d(x̂j , x̂j′)λjj′ +
∑
j∈[N ]

d(x̂j , x)λj(N+1) ≤ ε∑
j′∈[N+1]

λjj′ = ν̂j ∀j ∈ [N ]∑
j∈[N ]

λjj′ = yj ∀j′ ∈ [N ]∑
j∈[N ]

λj(N+1) = 1−
∑
j∈[N ]

yj .

From the last constraint, we can see that maximizing 1 −
∑
j∈[N ] yj is equivalent to maximizing∑

j∈[N ] λj(N+1). In particular, we thus conclude that it is optimal to set λjj′ = 0 for any j ∈
[N ], j′ ∈ [N ] such that j 6= j′. We thus have

sup
ν∈BW(ν̂,ε)

ν(x) =



sup
∑
j∈[N ]

λj(N+1)

s. t. y ∈ ∆N , λ ∈ RN×(N+1)
+

λjj′ = 0 ∀j ∈ [N ], j′ ∈ [N ], j 6= j′∑
j∈[N ]

d(x̂j , x)λj(N+1) ≤ ε

λjj + λj(N+1) = ν̂j , λjj = yj ∀j ∈ [N ].

By letting Tj = λj(N+1) and eliminating the redundant components of λ, we obtain the desired
reformulation. This completes the proof.

Proof of Proposition 4.4. By a change of variables, we define the weight ŵj = d(x̂j , x)ν̂j and the
decision variables zj = ν̂−1

j Tj for every j ∈ [N ]. The optimal value of problem (9) then coincides
with the optimal value of

max

∑
j∈[N ]

ν̂jzj : z ∈ RN+ ,
∑
j∈[N ]

ŵjzj ≤ ε, zj ≤ 1 ∀j ∈ [N ]

 , (A.10)

which is a continuous (or fractional) knapsack problem. The special structure of (A.10) guarantees

ν̂j
ŵj

=
1

d(x̂j , x)
∀j ∈ [N ],

and hence the continuous knapsack problem (A.10) admits an optimal solution z? that can be found
by sorting the support points x̂j in increasing order of distance from x and then exhausting the budget
ε according to the sorted order (see [3] or [6, Proposition 17.1]). Since sorting an array of N scalars
can be achieved in time O(N logN), problem (A.10) can be solved efficiently, and the optimal
solution T ? of (9) can be constructed from the optimal solution z? of (A.10) by setting

T ?j = ν̂jz
?
j ∀j ∈ [N ].

This completes the proof.

Corollary A.2 (Comparative statics). If the radius ε of the Wasserstein ball is strictly positive, then
ν?W(x) > 0. Moreover, if the radius satisfies ε ≥

∑
j∈[N ] d(x, x̂j)ν̂j , then ν?W(x) = 1.

The proof of Corollary A.2 follows directly from examining the optimal value of the linear program (9)
and is thus omitted.
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A.3 Proofs of Section 5

In the proofs of this section, we denote by ν true
i the unknown true probability measure that induces

the probability mass function p(·|θi) for each i ∈ [C].

Proof of Theorem 5.3. Define for each i ∈ [C] the set

Φi ,
{
νi ∈M(X ) : KL(νi ‖ ν true

i ) > εi
}
,

where the dependence of Φi on εi and ν true
i has been made implicit. Under Assumption 5.2, the

empirical measure ν̂Nii satisfies the large deviation principle with rate function KL(· ‖ ν true
i ) [4,

Theorem 6.2.10]. Sanov’s theorem then implies that

lim sup
Ni→∞

1

Ni
logP∞

(
ν̂Nii ∈ Φi

)
≤ −εi < 0 ∀i ∈ [C]. (A.11)

This in turn implies that there exist positive constants κi <∞ such that

PNi
(
ν̂Nii ∈ Φi

)
≤ κi exp(−Niεi) as Ni →∞.

We now have

P∞(J true ≥ ĴBN ) ≥ P∞
(
ν true
i ∈ BKL(ν̂Nii , εi) ∀i ∈ [C]

)
(A.12)

=
∏
i∈[C]

PNi
(
ν true
i ∈ BKL(ν̂Nii , εi)

)
(A.13)

=
∏
i∈[C]

(
1− PNi

(
ν̂Nii ∈ Φi

))
(A.14)

≥ 1−
∑
i∈[C]

PNi
(
ν̂Nii ∈ Φi

)
. (A.15)

Here, equality (A.13) follows from our i.i.d. assumption. Equality (A.14) follows from the fact that
the event ν true

i ∈ BKL(ν̂Nii , εi) is the complement of the event ν̂Nii ∈ Φi. Inequality (A.15), finally, is
due to the Weierstrass product inequality. Thus, for each i there exists Ci <∞ such that as Ni →∞,
we have

P∞(J true < ĴBN ) ≤
∑
i∈[C]

PNi
(
ν̂Nii ∈ Φi

)
≤
∑
i∈[C]

κi exp
(
−Niεi

)
≤ κC exp

(
− n min

i∈[C]
{εi}

)
for some κ = maxi∈[C] κi <∞. This further implies that

lim sup
n→∞

1

n
logP∞(J true < ĴBN ) ≤ − min

i∈[C]
{εi} < 0.

This observation completes the proof.

Proof of Theorem 5.5. If εi is chosen as in the statement of the theorem, then the measure concentra-
tion result for the Wasserstein distance [5, Theorem 2] implies that

PNi
(
W(ν true

i , ν̂Nii ) ≥ εi(β,C,Ni)
)
≤ β

C
.

Thus, by applying the union bound, we obtain

PN
(
W(ν true

i , ν̂Nii ) ≥ εi(β,C,Ni) ∀i
)

=
∑
i

PNi
(
W(ν true

i , ν̂Nii ) ≥ εi(β,C,Ni)
)
≤ β,

which implies that

PN
(
ν true
i ∈ BW

(
ν̂Nii , εi(β,C,Ni)

)
∀i
)
≥ 1− β.

We can now conclude that ĴBN ≤ J true with probability at least 1− β.
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Proof of Theorem 5.6. For every i ∈ [C], let ν?i ∈ BNii (ν̂Nii ) be an optimal solution of the problem

sup
νi∈B

Ni
i (ν̂

Ni
i )

νi(x), (A.16)

where the dependence of ν?i on the number of samples Ni has been omitted to avoid clutter. The
existence of ν?i ∈ BNii (ν̂Nii ) is guaranteed by Proposition 4.2. By [7, Lemma 3.7], for every i ∈ [C]
it holds (ν true

i )∞-almost surely that

lim
Ni→∞

W
(
ν true
i , ν?i

)
= 0.

Therefore, by [10, Theorem 6.9], ν?i converges to ν true
i weakly as Ni →∞. Since 1x(·) is a bounded,

upper semicontinuous function, the weak continuity implies that (ν true
i )∞-almost surely as Ni →∞,

we have that
ν?i (x)→ ν true

i (x) = p(x|θi). (A.17)
Let utrue ∈ [0, 1]C be the vector defined by (utrue)i = p(x|θi) for i ∈ [C]. Since (utrue)i > 0 for
i = 1, . . . , C, there exists u > 0 such that utrue ∈ [u, 1]C . Consider the parametrized optimization
problems

J ?(u) , min
q∈Q

J (q, u) ,
∑
i∈[C]

qi(log qi − log πi)−
∑
i∈[C]

qi log ui

 , u ∈ [u, 1]C .

We observe that J (·, ·) is jointly continuous on Q× [u, 1]C , Q is compact, and the level setsq ∈ Q : J (q, u) ≤ −
∑
i∈[C]

πi log u


are non-empty and uniformly bounded over all u ∈ [u, 1]C . By [2, Proposition 4.4] and the
discussion following its proof, J ?(u) is continuous on [u, 1]C . The continuity of J ?(·) and the
convergence (A.17) together imply that (ν true

1 )∞ × · · · × (ν true
C )∞-almost surely, and we thus have

ĴBN = J ?((ν?1 (x), . . . , ν?C(x)))→ J ?(utrue) = J true as N1, . . . , NC →∞.

This observation completes the proof.
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Appendix B Additional Material

B.1 A Measure-Theoretic Derivation of the Evidence Lower Bound Problem

To keep the paper self-contained, we present in this section a derivation of the evidence lower bound
(ELBO), which is a fundamental building block of the variational Bayes method.

Consider a standard Bayesian inference model where the random vector x̃, supported on a sample
space X , is governed by one of the distributions Pθ parameterized by θ ∈ Θ. We assume that there
exists a measure ν̄ on X such that Pθ is absolutely continuous with respect to ν̄ for all θ ∈ Θ.
Moreover, we denote by fx̃|θ the Radon-Nikodym derivative of Pθ with respect to ν̄, that is

fx̃|θ(x|θ) =
dPθ
dν̄

(x) ∀x ∈ X .

Finally, we denote by π the prior measure on the parameter space Θ, while Px denotes the posterior
measure on Θ after observing x.

Consider an optimal solution Q? of the optimization problem

Q? ∈ arg min
Q∈Q

KL(Q ‖ Px),

where KL(· ‖ ·) denotes the KL divergence defined in Definition 2.1. If the feasible set Q is the
collection of all possible probability measures supported on Θ, then Q? = Px. The objective function
of this problem can be re-expressed as

KL(Q ‖ Px) =

∫
Θ

log

(
dQ
dPx

)
dQ (B.1a)

=

∫
Θ

log

(
dQ
dπ

)
dQ−

∫
Θ

log

(
dPx
dπ

)
dQ (B.1b)

= KL(Q ‖ π)−
∫

Θ

log

(
dPθ
dν̄

(x)

)
dQ + log

∫
Θ

fx̃|θ(x|θ)dπ, (B.1c)

where the equality (B.1a) follows from the definition of KL divergence, and (B.1b) is due to the chain
rule for the Radon-Nikodym derivatives because Px � π [9, Theorem 1.31]. Equality (B.1c), finally,
holds since

dPx
dπ

(θ) =
fx̃|θ(x|θ)∫

Θ
fx̃|θ(x|θ)dπ(θ)

=
1∫

Θ
fx̃|θ(x|θ)dπ(θ)

· dPθ
dν̄

(x),

where the first equality follows from Bayes’ theorem [9, Theorem 1.31] and the second equality is
due to the definition of fx̃|θ. Since the last term in (B.1c) does not involve the decision variable Q,
the measure Q? can be equivalently expressed as the optimal solution of

min
Q∈Q

KL(Q ‖ π)−
∫

Θ

log

(
dPθ
dν̄

(x)

)
dQ.

If we define the conditional density p(x|θ) with respect to ν̄ of x̃ given the parameter θ [9, Sec-
tion 1.3.1], that is,

p(x|θ) = fx̃|θ(x|θ),
then Q? solves

min
Q∈Q

KL(Q ‖ π)− EQ[log p(x|θ)].

The function p(x|θ), considered as a function of the parameter θ after x has been observed, is often
called the likelihood function. If p(x|θ) is considered as a function of x given the parameter θ, then it
is often called the conditional density.

B.2 Generalization to f -Divergence Ambiguity Sets

In this section, we consider the class of ambiguity sets described by f -divergences, which generalizes
the KL ambiguity set from Section 2.
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Definition B.1 (f -divergence). The f -divergence Df between two measures ν1 and ν2 supported on
X is defined as

Df (ν1 ‖ ν2) =

∫
z∈X

f

(
ν1(z)

ν2(z)

)
ν2(z),

where f : R→ R is a convex function satisfying f(1) = 0. More specifically,

• If f(t) = t log(t)− t+ 1, then Df is the Kullback-Leibler divergence.

• If f(t) = 1−
√
t, then Df is the Hellinger distance.

• If f(t) = (t− 1)2, then Df is the Pearson’s χ2-divergence.

• If f(t) = |t− 1|, then Df is the total variation distance.

We now consider the f -divergence ball Bf (ν̂, ε) of radius ε ≥ 0, which contains all probability
measures in the neighborhood of ν̂ as measured by the f -divergence:

Bf (ν̂, ε) , {ν ∈M(X ) : Df (ν̂ ‖ ν) ≤ ε} (B.2)

Moreover, we assume that the nominal distribution ν̂ is supported on N distinct points x̂1, . . . , x̂N ,
that is, ν̂ =

∑
j∈[N ] ν̂jδx̂j with ν̂j > 0 ∀j ∈ [N ] and

∑
j∈[N ] ν̂j = 1.

In analogy to Section 2, we first provide a generalized version of Proposition 2.2.

Corollary B.2 (Existence of optimizers; f -divergence ambiguity). For any ε ≥ 0 and x ∈ X , there
exists a measure ν?f ∈ Bf (ν̂, ε) such that

sup
ν∈Bf (ν̂,ε)

ν(x) = ν?f (x). (B.3)

Moreover, ν?f is supported on at most N + 1 points satisfying supp(ν?f ) ⊆ supp(ν̂) ∪ {x}.

The proof of Corollary B.2 follows from the proof of Proposition 2.2 and thus it is omitted.

Theorem B.3 (Optimistic likelihood; f -divergence ambiguity). Suppose that ν̂ =
∑
j∈[N ] ν̂jδx̂j .

For any data point x ∈ X , the optimization problem in (B.3) can be reformulated as a finite convex
program. Moreover, if x 6= x̂j for all j ∈ [N ], then:

1. If Df is the Hellinger distance, then for any ε ∈ [0, 1], we have ν?Hellinger(x) = 1− (1− ε)2.

2. If Df is the Pearson’s χ2-divergence, then for any ε ∈ R+, we have ν?χ2(x) = 1− (1 + ε)
−1.

3. If Df is the total variation distance, then for any ε ∈ R+, we have ν?TV(x) = ε/2.

Proof of Theorem B.3. The reformulation as a convex program follows directly from the first part of
the proof of Theorem 2.3 using the general function f , and it is thus omitted. We now proceed to
consider the case when x 6∈ Ŝ, and we derive the optimal value ν?f (x) for each divergence f .

1. Hellinger distance. Following the same approach as in the proof of Theorem 2.3, we employ the
definition of the Hellinger distance to obtain the equivalent minimization problem

OPT?Hellinger = min
y∈∆N

∑
j∈[N ]

yj :
∑
j∈[N ]

ν̂j −
∑
j∈[N ]

√
ν̂j
√
yj ≤ ε

 .
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Suppose that ε ∈ (0, 1]. Using a duality argument, we have

OPT?Hellinger = min
y∈∆N

max
γ≥0

∑
j∈[N ]

yj + γ

∑
j∈[N ]

ν̂j −
∑
j∈[N ]

√
ν̂j
√
yj − ε


= max

γ≥0

γ
∑
j∈[N ]

ν̂j − ε

+ min
y∈∆N

∑
j∈[N ]

yj − γ
∑
j∈[N ]

√
ν̂j
√
yj




≥ sup
2≥γ>0

γ
∑
j∈[N ]

ν̂j − ε

+ min
y∈∆N

∑
j∈[N ]

yj − γ
∑
j∈[N ]

√
ν̂j
√
yj




= sup
2≥γ>0

γ
∑
j∈[N ]

ν̂j − ε

− γ2

4

∑
j∈[N ]

ν̂j

 ,

where we have used the optimal solution y?j = γ2ν̂j/4 to arrive at the last equation. The
supremum over γ admits the optimal solution γ? = 2 (1− ε). We can thus show that

OPT ?Hellinger ≥ (1− ε)2 ∀ε ∈ (0, 1].

The rest of the proof is analogous to the proof of Theorem 2.3.

2. Pearson’s χ2-divergence. By definition of the divergence, we obtain

OPT?χ2 = min
y∈∆N

∑
j∈[N ]

yj :
∑
j∈[N ]

ν̂2
j y
−1
j −

∑
j∈[N ]

ν̂j ≤ ε

 .

Suppose that ε > 0. Using a duality argument, we have

OPT?χ2 = min
y∈∆N

max
γ≥0

∑
j∈[N ]

yj + γ

∑
j∈[N ]

ν̂2
j y
−1
j −

∑
j∈[N ]

ν̂j − ε


= max

γ≥0

−γ
∑
j∈[N ]

ν̂j + ε

+ min
y∈∆N

∑
j∈[N ]

yj + γ
∑
j∈[N ]

ν̂2
j y
−1
j




≥ sup
1≥γ>0

−γ
∑
j∈[N ]

ν̂j + ε

+ min
y∈∆N

∑
j∈[N ]

yj + γ
∑
j∈[N ]

ν̂2
j y
−1
j




= sup
1≥γ>0

−γ
∑
j∈[N ]

ν̂j + ε

+ 2
√
γ
∑
j∈[N ]

ν̂j

 ,

where we have used the optimal solution y?j =
√
γν̂j to arrive at the last equation. The supremum

over γ admits the optimal solution γ? = (1 + ε)
−2, which implies that

OPT?χ2 ≥ (1 + ε)
−1 ∀ε > 0.

The rest of the proof is analogous to the proof of Theorem 2.3.

3. Total variation distance. We have

OPT?TV = min
y∈∆N

∑
j∈[N ]

yj :
∑
j∈[N ]

|ν̂j − yj |+ 1−
∑
j∈[N ]

yj ≤ ε

 .
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Figure 1: Approximations of the likelihood p(x|θ) under two different nominal measures. The
approximation offered by the mean-variance ambiguity set is the same for both ν̂(1) and ν̂(2). In
contrast, the approximation offered by the Wasserstein ambiguity set produces a fatter tail under the
nominal measure ν̂(2), whose support is more spread out.

For any ε ≥ 0, the optimal solution y? satisfies y?j ≤ ν̂j , and thus we have

OPT?TV = min
y∈∆N

∑
j∈[N ]

yj :
∑
j∈[N ]

(ν̂j − yj) + 1−
∑
j∈[N ]

yj ≤ ε


= min
y∈∆N

∑
j∈[N ]

yj : 2− 2
∑
j∈[N ]

yj ≤ ε

 = 1− ε

2
,

which finishes the proof for the total variation distance.

These observations complete the proof.

B.3 Comparison of Moment and Wasserstein Ambiguity Sets

In this section, we empirically demonstrate that the approximation using the Wasserstein ambiguity
set can capture the tail behavior of the nominal distribution ν̂ better than the approximation using the
moment ambiguity set. To this end, consider the two univariate discrete nominal measures

ν̂(1) =
1

2
δ−1 +

1

2
δ1 and ν̂(2) = 0.1δ−2 + 0.4δ− 1

2
+ 0.4δ 1

2
+ 0.1δ2.

Notice that both ν̂(1) and ν̂(2) share the same mean 0 and the same variance 1, and thus we find that

sup
ν∈BMV(ν̂(1))

ν(x) = sup
ν∈BMV(ν̂(2))

ν(x) ∀x ∈ X .

However, if we use the Wasserstein ambiguity set BW(·), then in general we have

sup
ν∈BW(ν̂(1),ε)

ν(x) 6= sup
ν∈BW(ν̂(2),ε)

ν(x).

Figure 1 illustrates the approximations p(x|θ) offered by the optimal value of the optimistic likelihood
problem (3) over these two ambiguity sets. If we choose ν̂(2) as the nominal measure, we would
expect the true distribution p(·|θ) to be more spread out than when we choose ν̂(1). Nevertheless,
this structural information is discarded by the moment ambiguity set, and the optimal value of the
optimistic likelihood problem is the same for ν̂(1) and ν̂(2). In contrast, the Wasserstein ambiguity
set produces a fatter tail under the nominal measure ν̂(2) than under ν̂(1), which better reflects the
information contained in the nominal distribution.
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Interestingly, if x = 0, then we have
sup

ν∈BMV(ν̂(1))

ν(0) = sup
ν∈BMV(ν̂(2))

ν(0) = 1.

Indeed, consider the family of discrete measures {νk}k∈N+ defined as

νk =

(
1− 1

k2

)
δ0 +

1

2k2
(δk + δ−k) ∀k ∈ N+.

By construction, νk has mean 0 and variance 1, and thus {νk}k∈N+
belong to BMV(ν̂(1)) and attain

the optimal value of 1 asymptotically.

B.4 Approximation of the Log-Likelihood for Multiple Observations

In many cases, the update of the posterior is carried out after observing a batch of L i.i.d. samples
xL1 , {x1, . . . , xL}. In this case, the log-likelihood of the data xL1 can be written as

log p(xL1 |θ) = log
∏
`∈[L]

p(x`|θ) =
∑
`∈[L]

log p(x`|θ).

When p(·|θ) is intractable, we propose the optimistic log-likelihood approximation

log p(xL1 |θ) ≈ sup
ν∈Bθ(ν̂θ)

∑
`∈[L]

log ν(x`) (B.4)

for some ambiguity set Bθ(ν̂θ) defined below. Note that the optimistic log-likelihood approxima-
tion (B.4) follows the spirit of the optimistic likelihood approximation (3).

Because the log function attains −∞ at 0, we need to restrict ourselves to a subset ofM(X ) over
which the objective function of (B.4) is well-defined. For any batch data xL1 , we denote byMxL1

(X )

the set of measures supported on X with positive mass at any x` ∈ xL1 , that is,
MxL1

(X ) = {ν ∈M(X ) : ν(x`) > 0 ∀` ∈ [L]} .

We first establish the upper semicontinuity of the objective function in (B.4).
Lemma B.4 (Upper semicontinuity). For any batch data xL1 , the functionalG(ν) =

∑
`∈[L] log ν(x`)

is upper semicontinuous overMxL1
(X ).

Proof. Let {νk}k∈N+ be a sequence of probability measures in MxL1
(X ) converging weakly to

ν ∈MxL1
(X ). We have

lim sup
k→∞

G(νk) = lim sup
k→∞

∑
`∈[L]

log νk(x`) =
∑
`∈[L]

log

(
lim sup
k→∞

νk(x`)

)
≤
∑
`∈[L]

log ν(x`) = G(ν),

where the first and last equalities are from the definition of G, the second equality is from the
continuity of the log function overMxL1

(X ), and the inequality is due to the upper semicontinuity of
the function F (ν) = ν(x) established in Lemma A.1. This completes the proof.

Given batch data xL1 , we now consider the Wasserstein ambiguity set centered at the nominal
distribution ν̂,

BW(ν̂, ε) = {ν ∈MxL1
(X ) : W(ν, ν̂) ≤ ε},

where the dependence on θ and xL1 has been made implicit to avoid clutter.
Theorem B.5 (Optimistic log-likelihood; Wasserstein ambiguity). Suppose that Assumption ??
holds. For any batch data xL1 and radius ε > 0, the optimistic log-likelihood problem (B.4) under the
Wasserstein ball BW(ν̂, ε) is equivalent to the finite convex program

sup
ν∈BW(ν̂,ε)

∑
`∈[L]

log ν(x) =



max
∑
`∈[L]

log

∑
j∈[N ]

Tj`


s. t. T ∈ RN×L+ ,

∑
j∈[N ]
`∈[L]

d(x̂j , x`)Tj` ≤ ε

∑
`∈[L]

Tj` ≤ ν̂j ∀j ∈ [N ].

(B.5)
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Proof. We first combine the fact that the logarithm is strictly increasing with the proof of Proposi-
tion 4.2 to show that there is an optimal measure ν?W that is supported on supp(ν?W) ⊆ supp(ν̂)∪xL1 ,
a finite set of cardinalityN+L. Notice that the existence of this optimal measure is guaranteed by the
upper semicontinuity of the objective function established in Lemma B.4 and the weak compactness
of BW(ν̂, ε) established in [8, Proposition 3]. The details of this step are omitted for brevity.

Since the optimal measure is supported on supp(ν̂)∪ xL1 , it suffices to consider measures of the form

ν =
∑
j∈[N ]

yjδx̂j +
∑
`∈[L]

z`δx`

for some y ∈ RN+ , z ∈ RL+ satisfying
∑
j∈[N ] yj +

∑
`∈[L] z` = 1. Using the Definition 4.1 of

the type-1 Wasserstein distance, we can rewrite the optimistic log-likelihood problem over the
Wasserstein ball BW(ν̂, ε) as the convex program

sup
∑
`∈[L]

log(z`)

s. t. y ∈ RN+ , z ∈ RL+, λ ∈ RN×(N+L)
+∑

j∈[N ]

∑
j′∈[N ]

d(x̂j , x̂j′)λjj′ +
∑
j∈[N ]

∑
`∈[L]

d(x̂j , x`)λj(N+`) ≤ ε∑
j′∈[N+L]

λjj′ = ν̂j ∀j ∈ [N ]∑
j∈[N ]

λjj′ = yj ∀j′ ∈ [N ]∑
j∈[N ]

λjj′ = zj′−N ∀j′ ∈ [N + L]\[N ]∑
j∈[N ] yj +

∑
`∈[L] z` = 1.

By letting Tj` = λj(N+`) and eliminating the redundant components of λ, we obtain the desired
reformulation. This completes the proof.
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