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Proof of Lemma 1. Suppose that P 1(A) = 0. By definition of conditional measures we have that

P 1(A) =

∫
P 1
t (A)dQ1(t). However, if the above is zero, then it must be the case that P 1

t (A) = 0

for all t except possibly on a set of Q1 measure zero. By the assumed equivalence of Q1 and Q2 as
well as the conditional measures, it follows that P 2

t (A) = 0 for all t except possibly on a set of Q2

measure zero. Therefore P 2(A) =

∫
P 2
t (A)dQ2(t) = 0. Since we can swap the roles of P 1 and

P 2, it follows that they agree on the zero sets.

Proof of Theorem 2. The first direction is easier. Namely, if µ1−µ2 resides in the Cameron-Martin
space of C then it resides in the Cameron-Martin space of any vC for v > 0. To see this, note that
C and vC induce equivalent norms; the latter is just scaled by v compared to the former. Since
the norms are equivalent, the resulting Cameron-Martin spaces are the same. Thus, conditioned on
the mixture V = v, the measures are equivalent for all v (Bogachev, 1998, Theorem 2.4.5 ). Thus
Lemma 1 implies they are equivalent.

The harder part is the reverse. If the mixture is discrete, i.e. V takes on at most a countable number
of values, then we could, in principle, piece together a countable number of appropriate spaces (since
σ-algebras are closed under countable unions). However, when V is continuous, this approach won’t
work as it requires considering an uncountable number of sets. Thus, we have to be more explicit
in terms of our construction. We consider, without loss of generality, X1 ∼ E(0, C, ψ) versus
X2 ∼ E(µ,C, ψ) where µ is not in H, the Cameron-Martin space of C. To show that the two
measures are orthogonal, it is enough to show that, for any fixed ε ∈ (0, 1) we can construct a set
A such that P (X1 ∈ A) ≥ 1 − ε while P (X2 ∈ A) ≤ ε. Since µ is not in H, it implies that
the functional Tµ : K → R defined as Tµ(f) = f(µ) is not continuous, or equivalently, it is not
bounded. So we can construct a sequence g1, g2, · · · ∈ K such that Tµ(gi) = gi(µ)→∞ as i→∞,
but ‖gi‖K = 1.

Now the random variable gi(X1) ∈ R has the same distribution as V gi(Z) and gi(X2) the same
as gi(µi) + V gi(Z), where gi(Z) has, by construction, a standard normal distribution. Let cε be a
finite constant such that

P (V gi(Z) ≤ cε) ≥ 1− ε,
which does not depend on i since gi(Z) is standard normal for all i. Define Ai as

Ai = {x ∈ X : gi(x) ≤ cε},
which is a measurable set since any element of K is either an element of X∗ or an appropriate limit.
Then, for any cε we have that

P (gi(X2) ∈ Ai) = P (gi(µ) + V gi(Z) ≤ cε)→ 0 as i→∞,
since gi(µ) → ∞. So, we can choose i and A = Ai such that P (gi(X2) ∈ Ai) ≤ ε and thus the
distributions of X1 and X2 must be orthogonal.
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Proof of Theorem 3. Since σ2Σ is also a valid covariance matrix, we can always combine the two
into one matrix, and thus, without loss of generality, we take σ = 1. To show ε-DP it suffices to
check that the ratio of the densities is bounded by exp(ε), since the two are equivalent (Awan et al.,
2019). Let D,D′ ∈ D be fixed adjacent databases, D ∼ D′. Denote µ1 = T (D) and µ2 = T (D′)
and then the ratio of densities is given by

sup
x∈Rd

f((x− µ1)>Σ−1(x− µ1))

f((x− µ2)>Σ−1(x− µ2))
.

Since Σ has full rank, we can make the following change of variables without changing the maxi-
mization problem: y = Σ−1/2(x− µ2), which yields

sup
y∈Rn

f((Σ1/2y + µ2 − µ1)>Σ−1(Σ1/2y + µ2 − µ1))

f(y>y)
.

Let u = Σ−1/2(µ2 − µ1), then we equivalently have the maximization

sup
y∈Rn

f((y − u)>(y − u))

f(y>y)
.

Next, notice that for any y, we can increase the ratio by rotating y to point in the direction of u. This
is because f is decreasing and

(y − u)>(y − u) = y>y − 2y>u+ u>u,

will be made smaller if y>u is made larger, and the largest it can be while fixing the length ‖y‖2 = c
is when y = cu/‖u‖2. So, we can express the maximization problem as

sup
c≥0

f(c2 − 2c‖u‖+ ‖u‖2)

f(c2)
= sup

c≥0

f((c− ‖u‖)2)

f(c2)
.

Since f is monotonically decreasing the above is finite if and only if f(0) < ∞ and
lim supc→∞ f((c − ‖u‖)2)f(c2)−1 is finite. We can also restrict the supremum to c ≥ ‖u‖ as the
supremum will never occur when 0 ≤ c < ‖u‖. To see this, consider a ∈ R such that 0 ≤ a < ‖u‖,
and its reflection about ‖u‖ given by b = 2‖u‖ − a, which satisfies b > ‖u‖. Then we have the nu-
merators are the same, f((a−‖u‖)2) = f((b−‖u‖)2), but the denominators satisfy f(b2) ≤ f(a2)
since f is strictly decreasing, which implies the ratio at c = b is larger than at c = a.

Finally, u still depends on µ1 and µ2. However, ‖u‖ ≤ ∆ and using that f is monotonially decreas-
ing, we have

sup
c≥‖u‖

f((c− ‖u‖)2)

f(c2)
≤ sup
c≥∆

f((c−∆)2)

f(c2)
:= exp{ε}.

To obtain different values of ε we can replace ∆ with σ−1∆ and adjust σ until the desired ε is
achieved.

Proof of Theorem 4. We can assume that TD ∈ H as otherwise T̃D and T̃D′ are orthogonal (in
which case it is trivial that DP doesn’t hold). The key issue is that, in infinite dimensions, one
learns too much about the mixing coefficient. In particular, consider functionals gi ∈ K such that
C(gi, gj) = δij . One can find an infinite number of such functionals as long as C does not have
finite rank. Then consider

Vn =
1

n

n∑
i=1

gi(T̃D)2 =
1

n

n∑
i=1

gi(TD)2 + 2V
1

n

n∑
i=1

gi(Z) + V 2 1

n

n∑
i=1

Ti(Z)2.

Now notice that, by Parceval’s identity,
∑n
i=1 gi(f(D))2 ≤ ‖f(D)‖K and that gi(Z) are iid standard

normal. Thus the first two terms converge to 0 with probability 1, while the second term converges
to V 2. So, if we observe T̃D then we can reconstruct V perfectly (since V > 0) and thus, in the DP
calculation it can be treated as fixed, V = v. Now notice that T̃D|V = v is simply Gaussian and
does not achieve ε-DP, meaning, for any ε > 0 we can find a setAv where P (f̃(D) ∈ Av|V = v) >

eεP (f̃(D′) ∈ Av|V = v). Thus the mechanism is not ε-DP.
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Proof of Theorem 5. Notice that conditioned on V = v, we have that f̃(D) = f(D) + σvZ and

σ2 =
2 log(2/δ′)

ε2
∆2. So, the noise is scaled by v. If we absorb this into the δ′ then v log(2/δ′) =

log((2/δ′)v). Finally,

P (f̃(D) ∈ A) =

∫
P (f̃(D) ∈ A|V = v)dψ(v) ≤ eεP (f̃(D′) ∈ A) + 2 E[(δ′/2)V ]

= eεP (f̃(D′) ∈ A) + 2MV (log(δ′/2)) = eεP (f̃(D′) ∈ A) + δ.
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