
A Jacobian determinant and inverse of coupling convoultional flow358

equation 6359

Due to its modular structure, the Jacobian of (6) can be expressed in terms of the Jacobian of its360

sub-flow. More precisely, its Jacobian is361

Jy =
@y

@x> =

Id1 0
@y2

@x>
1

@y2

@x>
2

�
. (7)

Noticeably, the Jacobian is a block triangular matrix, so its determinant can be readily computed as362

the product of determinant of the square diagonal blocks, therefore363

log |detJy| =
MX

i=1

log
���detJ (i)

w,s

���

=
MX

i=1

log
���detJ (i)

g↵0

���+ log
���detJ (i)

�

���+ log
���detJ (i)

f↵

���+ log
���detJ (i)

⇤

��� (8)

where J (i)
w,s denotes the Jacobian of f (i)

w,s. According to the results presented for invertible convolutions364

in section 1, log
���detJ (i)

⇤

��� can be computed efficiently in O(N logN) times using the fast Fourier365

transform algorithm. Also, it is worth noting that this term plays the role of a log barrier in the final366

loss function that prevents the eigenvalues of the Jacobian from falling to zero hence guarantees the367

invertibility of the convolution transform. Then, the inverse transform of (6) is5368

(
x1 = y1

x2 = (g(1)w,s � ... � g
(M)
w,s)(y2 � t(x1);x1)

where gw,s(y2;x1) = winv
⇤ g↵(s

inv
� g↵0(y2).)

B Ablations study369

The coupling convolution flow (6) composed of two new components compared to the affine coupling370

flow, 1) the pointwise nonlinear bijector and 2) the data-adaptive convolution. In this ablation study,371

we asses the contribution of each of these components on the overall performance of the CONF. The372

results in Table 4 highlights the effect of each ablation relative to CONF. These results show that the373

nonlinear bijector, S-Log, contributes more than the data-adaptive convolution in the performance374

improvement of CONF, in this case study.375

Table 4: Average validation negative log-likelihood (in nats) of the ablations on GAS dataset at 5600 epochs.
CONF ablation: linear gates ablation: no convolution

GAS -10.89 ± .13 -10.12 ± .29 -10.74 ± .06

C Model architecture and training procedure376

C.1 Density estimation377

To train the model, we used the Adam optimizer [Kingma and Ba, 2014] with initial learning rate of378

.001 which was decayed slowly to 0.0001 with exponentially decaying of rate .97. We apply sigm()379

to the output of conditioning network to obtain the scaling filters, s and the convolution kernels at380

the frequency domain, wf . Actnorm [Kingma and Dhariwal, 2018] is employed as normalization381

bijector in the chain of flow and as a layer in the NN. An l2 regularizer with coefficient of 5e-5 is382

applied on all the weights. Also to control overfitting, we use dropout layer with pdrop = .2 for383

MNIST. To transform MNIST data from a bounded to an unbounded domain, a logit mapping of the384

5The inverse kernel w(y1)
inv can indeed be derived through the procedure explained in Theorem 1 for

circular convolution or in a similar way for symmetric convolution.

11

form y = logit(↵+ (1� ↵) x

256) is applied with ↵ = 10�6. All datasets are dequantized by adding385

uniform distributed noise to each dimension, and then they are scaled to [0, 1] values.386

The aforementioned setting is used for both density estimation experiments in Table 1 and Table 2.387

Normalizing flow architecture, NN architecture for parameter generation and other hyper parameters388

of the results reported in Table 1 are outlined in Table 5. Squeezing from space to channel dimension389

is applied Q times and followd by K flow step after each squeeze, that is showed in the format390

Q ⇥K for MNIST and CIFAR10 in the Table. No factor out (splitting) is used. The squeeze and391

convolution together can be interpreted as dilated convolution of factor 2. Although, we used 2D392

invertible convolution flow for these two datasets but the general purpose fully connected feedforward393

conditioning NN is applied for parameter generation.394

Table 5: Hyper parameters of the results reported in Table 1.

normalizing flow architecture NN architecture
Dataset # flow steps M (itertes per step) # layers # hidden units Minibatch size
POWER 10 2 2 200 10000
GAS 10 2 2 100 10000
BSDS300 10 1 2 512 10000
MNIST 2⇥5 1 2 1024 512
CIFAR10 3⇥4 2 2 1024 512

For the CNN based NN experiments of Table 2, the results of realNVP and GLOW on CIFAR10395

dataset are adopted from Kingma and Dhariwal [2018]. GLOW uses multiscale architecture with396

3 scales each one composed of 32 steps of flow and use different shallow neural networks with 2397

hidden layers and 512 channels (width) for each parameter of the flow. Splitting is performed on the398

channels dimension only. After each scale a factor out with rate 1/2 is applied. We used the same399

architecture except that we use one NN to generate all parameters of a flow step but we doubled its400

width to 1024 channels. For MNIST, we again followed similar architecture for the normalizing flow401

where 2 scales each one composed of 12 steps of flow. The NN of depth 2 hidden layers with width of402

512 channels are applied as the conditioning network. The results of realNVP and GLOW on MNIST403

dataset are adopted from Grathwohl et al. [2019] where they used the following flow structure:404

3 ⇤ (coupling layers with checkerboard masking) + squeeze + 3 ⇤ (coupling layers with channel masking)+
3 ⇤ (coupling layers with checkerboard masking) + squeeze + 3 ⇤ (coupling layers with channel masking)+
4 ⇤ (coupling layers with channel masking)

Each CONF is composed of M = 2 iterates of convolution-multiplication on both datasets.405

C.2 Variational inference406

We employed the encoder/decoder architecture of Berg et al. [2018] with different optimization407

setting. We apply exp() to the output of encoder to obtain the scaling filters, s and the convolution408

kernels at the frequency domain, wf . Minibatch size of 500 samples (100 for FreyFaces) is selected409

and the other hyper parameters are adjusted according to get better training. The Adam optimizer410

[Kingma and Ba, 2014] is used for training with learning rate decaying from initial value lrinit to411

.1⇥ lrinit after warmup.412

The annealing, a.k.a. warm-up, procedure is used that gradually increase the effect of KL divergence413

term in the loss function Sønderby et al. [2016], but we found that, on FreyFaces dataset, our model414

train better without warm-up. The hyper-parameters are summarized in Table 6.415

12

Table 6: Hyper parameters of VAE results reported in Table 3.

Dataset Minibatch size # warmup lr ✏Adam

MNIST 500 100 0.001 0.1
Omniglot 500 100 0.001 0.1
FreyFaces 100 0 0.0005 0.1
Caltech 500 2000 0.001 0.1

D Samples generated from the CONF model416

(a) (b)

Figure 3: Samples generated from an CONF model using CNN based conditioning NN that is trained on (a) the
MNIST dataset and (b) the CIFAR-10 dataset.

(a) (b)

Figure 4: Samples generated from an CONF model using general purpose fully connected NN as conditioning
network that is trained on (a) the MNIST dataset and (b) the CIFAR-10 dataset.

13

Figure 5: Even-symmetric expansion around first and last element of the base sequence, where the base
sequence specified by dark solid lines.

E Another symmetric convolution417

There exist different extensions, here we define another type that can have straightforward interpreta-418

tion. Let a base sequence be extended by an even-symmetric operation "{.} around its last element419

as420

x̂(n) = "{x(n)} :=

⇢
x(n) n = 0, 1, ..., N
x(2N � n) n = N + 1, ..., 2N � 1

(9)

this type of even-symmetric expansion is depicted in Figure 5. Again, the symmetric convolution421

of two sequences can be defined in terms of the circular convolution of their corresponding even-422

symmetric extensions as y = w ⇤s x = R{x̂~ ŵ} and also the convolution-multiplication property423

holds for this type given the discrete cosine transform defined as424

xc(k) = Fdct{x}k =
NX

n=0

x(n)⇥ 2↵n cos

✓
⇡kn

N

◆
(10)

where ↵n =

⇢
1/2 n = 0, N
1 otherwise

This is called DCT-I in the literature. It can be shown that the Jacobian matrix of this transform have425

the following structure426

JS =

2

6664

w0 w1 + w1 . . . wN�2 + wN�2 wN�1

w1 w0 + w2 . . . wN�3 + wN�1 wN�2

...
...

...
...

wN�2 wN�3 + wN�1 . . . w0 + w2 w1

wN�1 wN�2 + wN�2 . . . w1 + w1 w0

3

7775

Since scaling a column or row of a square matrix with factor ↵, multiply its determinant by ↵, hence427

the multiplying the first and last column of this matrix by factor of two give rise to428

J 0
S
=

2

66664

2w0 w1 + w1 . . . wN�2 + wN�2 2wN�1

2w1 w0 + w2 . . . wN�3 + wN�1 2wN�2
...

...
...

...
2wN�2 wN�3 + wN�1 . . . w0 + w2 2w1

2wN�1 wN�2 + wN�2 . . . w1 + w1 2w0

3

77775

=

2

6666664

w0 w1 . . . wN�2 wN�1

w1 w0
. . . wN�3 wN�2

...
.

...

wN�2 wN�3
. . . w0 w1

wN�1 wN�2 . . . w1 w0

3

7777775
+

2

6666664

w0 w1 . . . wN�2 wN�1

w1 w2
... wN�1 wN�2

...
...

...

wN�2 wN�1
... w2 w1

wN�1 wN�2 . . . w1 w0

3

7777775

where det(J 0
S
) = 4 det(JS). Therefore, this symmetric convolution provides a structured Jacobian429

matrix that can be specified in terms of a Toeplitz matrix and an upside-down Toeplitz (also called a430

Hankel) matrix for determinant computation.431

14

