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Abstract

Min-cost flow has been a widely used paradigm for solving data association prob-
lems in multi-object tracking (MOT). However, most existing methods of solving
min-cost flow problems in MOT are either direct adoption or slight modifications
of generic min-cost flow algorithms, yielding sub-optimal computation efficiency
and holding the applications back from larger scale of problems. In this paper, by
exploiting the special structures and properties of the graphs formulated in MOT
problems, we develop an efficient min-cost flow algorithm, namely, minimum-
update Successive Shortest Path (muSSP). muSSP is proved to provide exact
optimal solution and we demonstrated its efficiency through 40 experiments on five
MOT datasets with various object detection results and a number of graph designs.
muSSP is always the most efficient in each experiment compared to the three peer
solvers, improving the efficiency by 5 to 337 folds relative to the best competing
algorithm and averagely 109 to 4089 folds to each of the three peer methods.

1 Introduction

Multi-object tracking (MOT) is a fundamental task in computer vision and has a wide range of
applications from traffic surveillance, self-driving cars to cell/particle tracking in microscopy images
[7, 20, 15]. In recent years, the min-cost flow formulation of MOT has enjoyed popularity and served
as a workhorse in addressing MOT problems [21, 16, 4, 14, 13]. On the one hand, it is a result of the
substantial improvement of object detectors which enables the tracking-by-detection strategy [20, 13].
On the other hand, this formulation has great flexibility, for example, it can automatically determine
the number of trajectories and deal with missing or spurious detections [15, 4]. Since the min-cost
flow problems have been well studied and there exist polynomial-time algorithms [1], it was natural
to directly apply the existing algorithms or modify them slightly. Indeed, Zhang et al. [21] used the
cost-scaling approach and Pirsiavash et al. [16] proposed to adopt the successive shortest path (SSP)
approach. These approaches can guarantee global optimality and are widely considered as the most
efficient solvers for generic min-cost flow problems. However, their efficiency is suboptimal by a
large margin for the MOT problems [14] as confirmed in our experiments.

With the ever increasing number of objects and duration of tracking, more efficient algorithms for
solving MOT min-cost flow problems are in urgent need. In this paper, we identify several important
special structures and properties of the graph in the MOT min-cost flow problem and show that they
can be used to design efficient algorithms, resulting in a dramatic reduction of computation time.
Specifically, the graph in a min-cost flow problem for MOT has the following four specialties: (1)
It is a directed acyclic graph (DAG) with single source node s and single sink node t. (2) All arcs’
capacities are one. (3) Each detection is represented with a pair of nodes, a pre-node and a post-node,
with a transition arc between them to incorporate detection confidence. (4) For each detection, the
pre-node is linked from s through an inward arc and the post-node is linked to t through an outward
arc. Such arcs allow every detection to be the start or the end of a trajectory. An example of a typical
min-cost flow graph generated from MOT problem is shown in Fig. 1(b).
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Figure 1: (a) Objects detected in three frames. The first frame has two detections and misses one.
Lines between detections are possible ways of linking them. Each line is associated with a cost.
Detections 1, 3 and 6 should be linked together as a single trajectory. (b) Typical min-cost flow model
for MOT problem. Detection i is represented by a pair of nodes: a pre-node oi and a post-node hi.
The source node s is linked to all pre-nodes and all post-nodes are linked to the sink node t. These
edges are shown in dashed lines. Edges between detections are shown in blue.

Taking advantage of the specialties, we designed the minimum-update successive shortest path
(muSSP) algorithm, an efficient solver for the min-cost flow in MOT problem. While inspired by SSP
algorithm [1, 16], muSSP made fundamental changes to its framework by leveraging the observation
that, in SSP, most updates in building the shortest path tree through Dijkstra’s algorithm were wasted
(actually only the shortest s-t paths were useful for finding the min-cost flow). As detailed in the
method section and Fig. 2 and 3, muSSP consists of four strategies which were guided by theoretical
analysis of the graph properties. muSSP follows the philosophy of minimally updating the shortest
path tree, only when it is necessary to identify the shortest s-t path.

More specifically, firstly, if the cost of linking two detections is too high, we can always have a better
association where they are in different trajectories, so these arcs can be safely deleted (specialty 3
and 4). Secondly, it can be proved from specialty 1 and 2 that once an arc connected to either s or
t becomes non-empty, the flow in it will always be 1. Pruning these arcs decreases the graph size
and, more importantly, makes the following search of s-t shortest paths much more efficient. Thirdly,
specialty 1 and 4 enable us to simultaneously augment multiple shortest s-t paths. Lastly, since we
only have one source and all edges have unit capacity (specialty 1 and 2), the nodes to be reviewed
for finding shortest s-t path can be quickly targeted and form a special tree structure. Dijkstra’s
algorithm can be modified to leverage this structure, which dramatically decreases the computation.

It appears that muSSP belongs to the solvers of a dynamic single-source shortest path (dSSSP)
problem [17, 10, 18]. dSSSP aims to efficiently retrieve the shortest path of each reachable node from
the single source node, after the original graph being modified. dSSSP was directly applied to MOT
by one of our peer methods, FollowMe [14]. However, our problem is different from the generic
dSSSP problem because dSSSP tries to re-build the whole shortest path tree, while we care only the
shortest s-t path. A large amount of computation is wasted on updating those unrelated vertices.

muSSP has the same theoretical worst-case complexity as SSP, but brings dramatic efficiency boost in
real applications. The effectiveness of muSSP is evidenced by forty experiments on five MOT datasets
combined with three widely used graph design methods [16, 14, 19]. Because min-cost flow was also
frequently used as a sub-routine to approximate the quadratic programming formulation for MOT
problems [13, 4], our experiments include both these two kinds of scenarios. Compared with three
peer algorithms, SSP, FollowMe [14], and a well-known implementation of cost-scaling algorithm
cs2 [12], muSSP is always the most efficient in all experiments, with an efficiency improvement
ranging from 5 to 337 folds relative to the best competing algorithm. Regarding to each individual
algorithm, muSSP is averagely 4089 times faster than SSP, 1590 times faster than FollowMe, and
109 times faster than cs2. These improvements are achieved without sacrificing the space efficiency.

2 Problem Formulation

The problem of associating detections from all frames (data association) can be formulated as a
unit capacity min-cost flow problem on a DAG [21, 2] as in Fig.1. In this paper, the term "object"
represents a physical object existing over time (e.g. a person), and "detection" indicates a detected
snapshot of an object at some time point. An object corresponds to a series (trajectory) of detections.
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We denote the graph built in min-cost flow formulation of MOT as G(V,E,C), with node set V , arc
set E, and real-valued arc cost function C. The graph has one source s and one sink t. For each
detection i, we create a pre-node oi and a post-node hi, and three arcs, (oi, hi), (s, oi) and (hi, t).
Any possible spatiotemporal transition of an object is corresponding to some pair of detections, i and
j (i before j in time), and an arc (hi, oj) is created for it. The capacity of any arc is 1. Any directed
path between node u and node v on graph G is denoted as πG(u, v). Under such construction, we can
interpret each s-t path πG(s, t) as an object trajectory candidate, linking a sequence of detections.

The problem is then turned into selecting a set of object trajectories from all the candidates. In the
min-cost flow formulation, this is done by sending flow from s to t, and the s-t paths eventually
with flow inside are selected. Due to unit capacities and the total unimodularity of the problem, the
capacity constraints can be reduced to fuv ∈ {0, 1},∀(u, v) ∈ E. The set of arc flows is denoted by
f = {fuv|(u, v) ∈ E}. We ask for in-out balance at any v ∈ V \ {s, t} (conservation constraints),
so a flow with total integer amount K can only be sent through K distinctive s-t paths, reflecting the
assumption of non-overlapping object trajectories.

The selection of s-t paths is guided by the design of arc cost C. MOT looks for object trajectories
with stronger evidences of detection, smaller change of a single object across time, and stronger
evidences of initial and terminate points. Accordingly, the arc cost C(oi, hi) reflects the reward of
including the detection i. C(hi, oj) encodes the similarity between detection i and j. C(s, oi) and
C(hi, t) represent respectively how likely the detection i is the initial point or the terminate point of a
trajectory. The flow f with the minimum overall cost Cflow(f) =

∑
(u,v)∈E C(u, v)fuv is optimal

and denoted by f∗ (with f∗uv in arc (u, v) ∈ E). The costs can be negative, and therefore min-cost
flow formulation automatically leads to the optimal amount of flow when minimizing Cflow(f).

This min-cost flow problem can also be formulated in an integer linear programming form:

min
f

∑
(u,v)∈EC(u, v)fuv (1)

s.t. fuv ∈ {0, 1}, for all (u, v) ∈ E (2)
and

∑
v:(v,u)∈Efvu =

∑
v:(u,v)∈Efuv , for all u ∈ V \ {s, t}, (3)

which is guaranteed to have global optimal solution [1]. In the rest of this paper, the term "graph"
and symbol G(V,E,C) all represent the graph built in min-cost flow formulation of MOT problem,
and all discussions are specifically for this family of graphs. Besides, the terms node and vertex, edge
and arc, shortest path and least-cost path will be used interchangeably.

3 Method

muSSP uses four major strategies that take advantage of the special properties of our problem (Fig. 2).
We will detail each strategy after giving an overview of the framework. Proofs for lemmas/theorems
as well as the time/space complexity analysis can be found in the supplementary.

3.1 Overall framework

We first define residual graphs used by min-cost flow solvers before we give an overview of muSSP.
Definition 1. The residual graph Gr(V,Er, Cr) of G(V,E,C) with respect to a flow f is generated
by replacing each arc (u, v) ∈ E by two residual arcs (u, v) ∈ Er and (v, u) ∈ Er, where
(u, v) ∈ Er has cost Cr(u, v) = C(u, v) and residual capacity ruv = 1 − fuv, while (v, u) ∈ Er

has cost Cr(v, u) = −C(u, v) and rvu = fuv .

Given an input graph G(V,E,C), muSSP first removes unnecessary edges in the graph cleaning
module. Then an initial shortest path tree (TSP ) is obtained. If the stopping criteria is not met, muSSP
sends a unit flow from s to t along the shortest s-t path in the graph (AugmentFlow). The stopping
criteria is defined in the same ways as the SSP algorithm in [16]. The multi-path finding module
tries to find extra s-t paths on which we can send flow without updating the residual graph and
shortest path distances (FindMultiPath). If it succeeds, we can directly obtain the next s-t shortest
path (ExtractPath). Otherwise, the residual graph is updated based on the s-t path found above
(ResidualGraph). Edges in residual graph that are proved to be never involved in future shortest s-t
paths are clipped (ClipPermanentEdge). The algorithm then updates the shortest path tree and a
new s-t path is extracted.
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Figure 2: (a) muSSP algorithm. The four modules/strategies are shown with different shaded colors.
(b) Flowchart of muSSP. Each module has the same color as (a). (c) Graph cleaning module for
dummy edge removal. The blue arc between h1 and o5 are thicker as it has larger arc cost. If
C(h1, o5) > C(s, o5) + C(h1, t), arc (h1, o5) will be removed.

In the initialization step, we use topological sorting to find shortest path (DAG-SP). As the graph
contains negative-cost edges, we convert the edge cost to reduced cost as Cd(u, v) = C(u, v) +
d(u)− d(v) (ConvertEdgeCost), where d(v) is the cost of the shortest path from source node s to v.
The shortest paths found with the reduced cost can be proved to be the same as before [1]. The new
edge costs are non-negative and Dijkstra’s algorithm can be applied.

3.2 The independent flipping lemma

We present a lemma that plays an important role in the muSSP algorithm. Since each time we push a
unit flow in a unit-capacity residual graph, the residual graph can be updated by flipping the direction
of arcs on the path though which we push flow. The costs of those flipped arcs have the same absolute
values as the original ones but have the opposite signs. We denote the set of all simple paths in G
from u to v as ΠG(u, v). Π∗G(u, v) is the set of all simple least-cost paths in G from u to v. The
corresponding least cost is denoted as d∗u(v). Tree is a special type of graph. If tree T is rooted at v0,
πT (v0, vi) is uniquely determined and we replace it with πT (vi). A tree T (V ′, E′, C) is embedded
in graph G(V,E,C) if V ′ ⊆ V , E′ ⊆ E.

Definition 2. A single-source shortest path tree (SP) is a tree T (V ′, E′, C) embedded in a graph
G(V,E,C), rooted at node s, such that πT (v) ∈ Π∗G(s, v) for all v reachable from s in G.

Examples of SP are shown in Fig. 3(a,c,e). Searching for the shortest s-t path can be done by
maintaining an SP and dynamically updating it when changes in the graph happen. To update the
SP in a changed graph, we (1) identify the nodes whose lowest-cost paths in the SP no longer exist
in the new graph; (2) update their least-cost paths from s in the new graph and rebuild SP .

Definition 3. Given a tree T (V ′, E′, C) rooted at v0, we define the branch node and the set
of descendant nodes for a node v ∈ V ′: branch(v) = u ∈ V ′ such that (v0, u) ∈ πT (v);
descendants(v) = {u ∈ V ′|∃vx ∈ V ′, (v, vx) ∈ πT (u)}.
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Figure 3: (a) A single source shortest path tree (SP) shown with bold edges. The red path is the
shortest s-t path. (b) The shortest path in (a) is flipped (shown in green). (c) SP based on the updated
residual graph in (b). The red path is the new shortest path. The path through t makes the branch
containing the shortest s-t path large and we have more nodes to update. (d) Updated residual graph
with permanent edges clipped (red crosses). (e) With clipping, the branch containing the shortest path
is much smaller than (c). (f) Two branches in the SP , each containing a shortest s-t path (red and
purple). Only the red one connects to t in SP as it has a lower cost. We can push flows on both paths
without updating residual graph (Theorem 3). Post-nodes h8 and h6 are independent while h8 and h7
are not (Def. 4). (g) After removing permanent edges in the residual graph (b), we need to update the
distances from s to the red nodes, because the shortest paths from s to these nodes no longer exist
due to the flipping operations. These nodes form a 0-tree. Note that edges in SP of (a) all have zero
costs. We initialize the distances from s to them using external edges (in blue) connecting to them.
For example, pre-node o5 is linked by arc (h1,o5) and (s,o5), so the initial distance is 2. Based on the
initial distance, only a subset of red nodes need to be pushed to the heap (Lemma 7) in Dijkstra’s
algorithm. Once a node is popped from the heap, we can batch update its descendants. For example,
if o5 is firstly popped, all its descendants will be assigned the same distance as o5 (Theorem 4).

Two branches are shown in Fig. 3(f). For a node v in an SP , its branch node is the second node in
path πT (v). Here we show that once the shortest s-t path is flipped and the residual graph is updated,
all nodes whose distances need to be updated share the same branch node.
Definition 4. In an SP , two nodes u and v are independent, if and only if branch(u) 6= branch(v).
Lemma 1 (Independent flipping). Given a residual graph Gr(Vr, Er, Cr) and its SP denoted as T
rooted at s, if we flip all edges in path πT (t) and get new graphG′r, for node v ∈ Vr that is independent
with node t in T , its least-cost path πT (v) is still valid in the new graph, i.e., πT (v) ∈ Π∗G′

r
(s, v).

Lemma 1 shows that when we flip the shortest path π = {(s, v0), (v0, v1), . . . , (vx, t)}, only the
nodes whose branch node is v0 need update. Reducing the size of descendants(v0) directly helps to
improve the efficiency. The first two edge clipping strategies we proposed are to fulfill this task.

3.3 Graph cleaning with dummy edge clipping

Given a min-cost flow graph G(V,E,C) for MOT problem, an edge (u, v) ∈ E connecting a post-
node to a pre-node is defined as a dummy edge if C(u, v) > C(s, v) + C(u, t) (Fig. 2(c)), In graph
cleaning module, this kind of edges are removed to reduce the graph size and the computational cost
(ClipDummyEdge). Linkage between dissimilar objects tends to be a dummy edge. Therefore, we
hypothesize this linkage will not be included in a path, which is proved in the lemma below:
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Lemma 2. No dummy edges will appear in any optimal solution.

From lemma 2, we can immediately get the following theorem.

Theorem 1. Given a graph G(V,E,C) for MOT, removing all its dummy edges does not influence
the optimality of the final solution.

3.4 Residual graph with permanent edge clipping

After the step of updating the residual graph in each iteration, nodes tend to quickly accumulate to
the same branch especially when the graph is sparse (Fig. 3(a,b,c)). The main reason is that after
flipping paths, the least-cost path from s to some nodes goes through the sink node t. However, we
will prove that paths from t to other nodes will never be part of a valid s-t shortest path. Therefore, all
paths that go through t will be replaced by other paths in future iterations. Thus, the updates of those
nodes should not consider the arc originating from t. Here we theoretically prove our observation
and propose a way to diminish the effects of node accumulation in branches (Fig. 3(d,e)). This is the
key step (ClipPermanentEdge) in our residual graph updating module.

Definition 5. Given a residual graph Gr(Vr, Er, Cr) in MOT, we define the set of permanent edges
as {(u, v) ∈ Er|v = s OR u = t}.

Now we show the permanent edges are not necessary in finding a shortest path.

Lemma 3. Any s-t path with permanent edge is not a simple path.

Lemma 4. Given a residual graph, we can always find a shortest s-t path which is also a simple path,
unless t cannot be reached from s.

The above two lemmas imply that we can always find a shortest s-t path with no permanent edges.

Theorem 2. Given a residual graph Gr(Vr, Er, Cr), removing all its permanent edges does not
influence the optimality of the final solution.

When the flow amount is 0, we have no permanent edge. Each time we instantiate a shortest s-t
path and flip the arcs on it, we create two permanent edges. From the above theorem, these two
edges can be safely removed from current residual graph (Fig. 3(d)). Other than s and t, the nodes
related to permanent edges can also be removed from the graph, but its contribution to the efficiency
improvement is quite limited compared with edge clipping.

3.5 Multi-path finding and flipping

Denote the sequentially instantiated shortest paths as {π1, π2, . . . , πK}. We observe that the SP in
the ith iteration may contain not only πi, but also the following shortest paths πi+1, πi+2, . . ., with
only t missed in them (Fig.3(f)). Simultaneously instantiating and flipping all these shortest paths
will save the computation on converting edge costs and decrease the number of duplicated updates,
because some nodes may be updated several times if we instantiate the shortest paths one by one (Fig.
3(f)).

Here we analogize the idea of A* algorithm and propose an efficient way to check if current SP can
instantiate more than one shortest path. For each node v in graph G(V,E,C), we define a distance
function dt(v), whose value is C(v, t) if (v, t) ∈ E and∞ otherwise. Though dt is not an admissible
search heuristic as commonly used in A* algorithm, we can still find the shortest s-t path based on it:

Lemma 5. Given a residual graph Gr(Vr, Er, Cr), its SP rooted at s, and the shortest distance
function d from s to each node, we have d(t) = min(d(v) + dt(v)), v ∈ Vr \ {t}.
Theorem 3. Given a residual graph Gr(Vr, Er, Cr), its SP denoted as T (V ′r , E

′
r, Cr) rooted

at s and a sorted list of {d(v) + dt(v)} with v ∈ Vr with ascending order, if the k nodes
{v1, v2, . . . , vk} that occupy the top k locations of the list are mutually independent, the k paths
{πT (v1), πT (v2), . . . , πT (vk)} can be simultaneously instantiated as k shortest paths.

Based on theorem 3, we can efficiently check whether we can instantiate multiple paths from current
SP . This is achieved by function FindMultiPath given the information of the branches to be updated
(IdentifyNode4Update). An example of multi-path flipping is shown in Fig. 3(f).
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3.6 Batch updating and heap shrinking for shortest path tree

In the shortest path tree updating module, we will discuss two approaches that reduce the running time
of Dijkstra’s algorithm (DijkstraWithBatchProc). The first is to simultaneously update the distances
of multiple nodes. The second is to push less nodes into the heap used in Dijkstra’s algorithm.

If a tree has zero cost for all edges, we call it a 0-tree (Fig. 3(g)). A 0-tree can emerge after edge
cost conversion and flipping. We can utilize 0-tree to reduce the computational cost of updating
distances of nodes in each iteration. After identifying the nodes that must be updated for finding the
next shortest s-t path, we can fulfill this task using Dijkstra’s algorithm, as the edge costs have been
converted to non-negative values. Given G and its SP denoted as T rooted at s, after conversion, T
becomes not only an SP but also a 0-tree. This property can help to accelerate Dijkstra’s algorithm.
For clarity and simplicity, we assume the updating happens with only one path flipped as is shown in
Fig.3(d). The condition of updating nodes after simultaneously flipping multiple paths is the same.

Suppose shortest s-t path to be flipped in current iteration is π = {(s, v0), (v0, v1), . . . , (vx, t)}.
Since the SP is a 0-tree now, after flipping and permanent edge clipping, the nodes to update can be
divided into two sets: {t} and another 0-tree rooted at vx (Fig. 3(g)). As t can be efficiently updated
by the sorted list discussed in Theorem 3, here we only show how to update nodes in the 0-tree rooted
at vx.
Lemma 6. Given a 0-tree T0(V0, E0, Cr) embedded in residual graph Gr(Vr, Er, Cr), if v ∈
descendants(v0), d∗u(v) ≤ d∗u(v0), ∀u ∈ Vr,∀v0 ∈ V0.

Lemma 6 shows that for a node in the 0-tree, the shortest distance from s to its descendants nodes
is smaller than or equal to the distance from s to itself. Besides, Dijkstra’s algorithm always first
deals with node with shorter distances from s. Combining these two facts leads to our batch updating
strategy below.
Theorem 4. In Dijkstra’s algorithm, if the distance from s to a node v in a 0-tree is permanently
labeled as d(v), d(v) is also the permanent label for the nodes in descendants(v) that haven’t been
permanently labeled.

It shows that we can permanently label a batch of nodes each time in Dijkstra’s algorithm (Fig. 3(g)).

Dijkstra’s algorithm is commonly implemented with heap. Decreasing the heap size saves the time
consumption of popping/pushing operation on it and increases efficiency. Inspired by the idea in [17]
for dSSSP, we found the heap size can also be shrunk based on Lemma 6.

The way we update the 0-tree rooted at vx with Dijkstra’s algorithm is to relax all the edges that link
nodes outside the 0-tree to nodes inside it. Then push their temporary distances to the heap. Thus the
initial size of the heap will be the node number of the tree. We divide the nodes in the 0-tree into two
sets: P and Q. Set P contains nodes that cannot be correctly updated without checking the other
nodes in the 0-tree and set Q is the complementary set of P . Only nodes in Q need to be inserted to
the heap. We propose an efficient way to estimate the set of P and only need to insert the remaining
nodes in the 0-tree into the heap.
Lemma 7. In a 0-tree, nodes with larger temporary distance labels than their parent belong to set P .

From Lemma 7, we can use a breadth-first search starting from root (vx) of the 0-tree, pushing only
nodes whose temporary distance labels are not larger than their parents in the 0-tree (Fig. 3(g)). In
the best case, the heap size could be 0 and updating of the 0-tree takes linear-time.

4 Experiments

We conducted three sets of experiments for the detailed analysis of efficiency improvement. First,
muSSP is used to directly solve min-cost flow based data association problems in MOT. Second,
we test the efficiency of muSSP as a sub-routine to iteratively approximate the quadratic program-
ming formulation in MOT. Third, to further understand the improvement, we examine the relative
contributions of each key strategy we proposed, which can be found in the supplementary.

We compared muSSP with three popular methods, SSP, FollowMe [14], and cs2 [12]. Written in C
language, cs2 is an efficient implementation of cost-scaling algorithm, which is widely considered
as the best solver for generic min-cost flow problems and was used in [21, 16] for MOT problems.
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Table 1: Efficiency comparison on MOT datasets (in seconds)
Datasets KITTI(DPM) KITTI(reglets)

seq00 seq10 seq11 seq14 seq00 seq10 seq11 seq14
(a) graph design from [16]
SSP 18.4(108) 142.8(269) 68.0(200) 120.8(448) 6.2(89) 9.1(129) 9.4(156) 31.8(245)
FollowMe 3.4(20) 12.7(24) 6.4(19) 12.0(44) 1.4(20) 1.8(26) 1.5(25) 6.4(49)
cs2 11.8(70) 88.4(167) 42.6(125) 41.1(152) 4.3(61) 7.2(103) 5.7(95) 10.3(79)
muSSP 0.17(1) 0.53(1) 0.34(1) 0.27(1) 0.07(1) 0.07(1) 0.06(1) 0.13(1)
(b) graph design from [14]
SSP 20.9(116) 266.9(523) 77.9(223) 96.1(291) 9.4(117) 12.8(160) 18.1(227) 54.7(421)
FollowMe 3.2(18) 34.4(67) 9.6(28) 12.0(36) 3.8(48) 3.1(39) 5.9(74) 15.3(118)
cs2 13.6(76) 98.6(193) 45.1(129) 39.8(121) 5.0(63) 6.0(75) 6.3(78) 8.9(69)
muSSP 0.18(1) 0.51(1) 0.35(1) 0.33(1) 0.08(1) 0.08(1) 0.08(1) 0.13(1)
(c) graph design from [19]
SSP 1.2h(24.5k) 10.0h(46.2k) 4.5h(26.0k) 5.2h(37.6k) 437.6(4.4k) 235.8(1.6k) 246.8(1.8k) 605.9(3.0k)
FollowMe 917.9(5.1k) 3.7h(16.9k) 1.0h(5.5k) 0.9h(6.7k) 198.4(2.0k) 224.5(1.5k) 242.2(1.7k) 649.1(3.2k)
cs2 24.6(137) 184.3(236) 78.7(127) 69.7(139) 5.9(59) 8.5(57) 7.7(55) 12.8(64)
muSSP 0.18(1) 0.78(1) 0.62(1) 0.50(1) 0.10(1) 0.15(1) 0.14(1) 0.20(1)
Datasets CVPR19 ETHZ(DPM) PTC

seq04 seq06 seq07 seq08 seq03 seq04 High Mid
(a) graph design from [16] (d) probability principled
SSP 1.8h(4.9k) 370.9(976) 23.5(235) 136.2(619) 85.7(204) 173.0(455) 0.4h(106) 379.2(134)
FollowMe 2.4h(6.5k) 801.1(2.1k) 43.4(434) 220.6(1.0k) 21.2(50) 26.2(69) 1.2h(339) 0.3h(430)
cs2 441.3(337) 73.7(194) 16.2(162) 34.5(157) 39.4(94) 46.1(121) 71.5(5) 20.2(7)
muSSP 1.31(1) 0.38(1) 0.10(1) 0.22(1) 0.42(1) 0.38(1) 13.10(1) 2.82(1)
(b) graph design from [14] Low
SSP 1.6h(4.3k) 513.7(1.3k) 21.2(236) 38.5(167) 183.9(400) 137.3(490) 10.7(41)
FollowMe 2.3h(6.2k) 803.3(2.0k) 36.2(402) 62.1(270) 53.1(115) 36.8(131) 40.4(155)
cs2 137.2(103) 35.7(87) 6.7(74) 16.0(70) 63.1(137) 57.8(206) 3.0(12)
muSSP 1.33(1) 0.41(1) 0.09(1) 0.23(1) 0.46(1) 0.28(1) 0.25(1)

SSP and our muSSP were implemented in C++. To perform a fair comparison, FollowMe was
re-implemented from their python package in C++. The implementation details can be found in the
supplementary.

4.1 Solving the direct min-cost flow model of data association problems in MOT

To represent the wide range of real world applications, we selected four public datasets including
three natural image MOT datasets (ETHZ (BAHNHOF and JELMOLI) [8], KITTI-Car [11], MOT
CVPR 2019 Challenge[6]) and one particle tracking dataset (ISBI12 Particle Tracking Challenge
(PTC) [5]). For natural image MOT, we designed the graphs using three methods [16, 14, 19]. The
difference among them is how to measure the similarity between detections and thus leads to different
arc cost functions in the graphs. As [19] is specifically designed for road scene, it was only applied to
KITTI-Car dataset. For particle tracking, we used a probability principled way to design the graph,
as detailed in supplementary.

All the experiments were based on the detection results either included in the datasets or provided by
the authors of [16, 14, 19]. The number of the detections varies from ∼7k to ∼200k. We performed
experiments with 39 combinations of detection results, graph design methods, and datasets. Summary
of the detected objects, frames and the vertices and edges of the resultant graphs can be found in the
supplementary.

Table 1 records the computation time for all experiments on a single core of 2.40GHz Xeon(R) CPU
E5-2630. Each cell of the table represents the time consumed by a specific method under a graph
design. The time was reported in seconds and sometimes in hours as denoted by the appending letter
’h’. The numbers in the brackets indicate how many folds the method is slower than the most efficient
one. Bold font indicates the most efficient method. Overall, muSSP is always the fastest method
in all 39 experiments. For majority of the experiments, muSSP achieved sub-second performance,
while peer methods need up to several hours. Averagely muSSP is 4193 times faster than SSP, 1630
times faster than FollowMe and 111 times faster than cs2. It can be seen from the table that SSP
and FollowMe vary greatly with different graph settings from seconds to several hours. Interestingly,
as an improved version of SSP, FollowMe usually performs better than SSP but when the object
number is large (e.g., CVPR19), its performance drops quickly and is even worse than SSP. This
is because FollowMe does not explicitly know that whether the paths containing flipped edge(s) in
current residual graph are all valid in updating the shortest path tree (Lemma 1). To make sure not to
miss those valid ones, FollowMe inserts the nodes incident to the flipped edges to the heap used in
Dijkstra’s algorithm first. This operation will make the heap size huge when we have a large number
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of paths flipped. Our experiment on heap shrinking strategy in supplementary clearly shows this.
cs2 performs relatively stable and outperforms SSP and FollowMe when the number of objects is
large. It is likely that the local updating strategy of cs2 scales better with graph size than SSP and
FollowMe. Note that the tracking results comparison is not listed since the solutions obtained by our
proposed approach and baseline approaches are the same. This is also true for the following quadratic
programming problem where the initialization and step function in Frank-Wolfe algorithm are the
same for each method.

4.2 Solving the min-cost flow approximation to the high-order modeling in MOT

High-order relationships between detected objects have been incorporated for more accurate tracking,
which, however, leads to NP-hard problems [4, 13, 3]. Existing methods approximate the solution
with the help of Frank-Wolfe algorithm or Lagrangian relaxation, where min-cost flow solvers were
frequently used as a sub-routine. Here we test the efficiency of our muSSP in approximating the
solution of a quadratic programming problem formulated in [4] for the tracking problem. The
quadratic objective function is provided by the authors in their software package derived from the
sequence ’Time_13-59/View_002’ of dataset PETS09 S1.L1 [9]. We firstly relax its integer solution
constraint and then use Frank-Wolfe algorithm to iteratively solve this quadratic programming
problem. In each iteration, the problem is reduced to a min-cost flow problem. The graph has 5866
vertices and 36688 edges, and the algorithm runs totally 400 iterations. Results are shown in Table 2.
muSSP is 19 times faster than SSP, 27 times faster than FollowMe and 30 times faster than cs2.

Table 2: Efficiency comparison of solving quadratic programming problem
Method SSP FollowMe cs2 muSSP
PETS S1.L1-2 391.9(19) 557.0(27) 613.1(30) 20.3(1)

5 Conclusion

In this paper, we proposed an efficient yet exact min-cost flow solver muSSP for the data association
in MOT problems, taking advantage of the specialties of the graphs built in MOT problems. muSSP is
applicable not only to the direct min-cost flow modeling but also to the min-cost flow approximation
to the high-order modeling in MOT. The efficiency was demonstrated on a wide range of public
datasets combined with various object detection results and graph designs. We expect this large
degree of efficiency improvement will save computational time for existing applications, enable
engineers to tackle larger scale of problems, and inspire researchers to build more accurate modeling
for tracking, for instance, refining iteratively the graph designs based on the tracking results.
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