
This Looks Like That: Deep Learning for
Interpretable Image Recognition

Chaofan Chen∗
Duke University

cfchen@cs.duke.edu

Oscar Li∗
Duke University

oscarli@alumni.duke.edu

Chaofan Tao
Duke University

chaofan.tao@duke.edu

Alina Jade Barnett
Duke University

abarnett@cs.duke.edu

Jonathan Su
MIT Lincoln Laboratory†

su@ll.mit.edu

Cynthia Rudin
Duke University

cynthia@cs.duke.edu

Abstract

When we are faced with challenging image classification tasks, we often explain
our reasoning by dissecting the image, and pointing out prototypical aspects of
one class or another. The mounting evidence for each of the classes helps us
make our final decision. In this work, we introduce a deep network architecture –
prototypical part network (ProtoPNet), that reasons in a similar way: the network
dissects the image by finding prototypical parts, and combines evidence from the
prototypes to make a final classification. The model thus reasons in a way that is
qualitatively similar to the way ornithologists, physicians, and others would explain
to people on how to solve challenging image classification tasks. The network uses
only image-level labels for training without any annotations for parts of images.
We demonstrate our method on the CUB-200-2011 dataset and the Stanford Cars
dataset. Our experiments show that ProtoPNet can achieve comparable accuracy
with its analogous non-interpretable counterpart, and when several ProtoPNets
are combined into a larger network, it can achieve an accuracy that is on par with
some of the best-performing deep models. Moreover, ProtoPNet provides a level
of interpretability that is absent in other interpretable deep models.

1 Introduction

How would you describe why the image in Figure 1 looks like a clay colored sparrow? Perhaps
the bird’s head and wing bars look like those of a prototypical clay colored sparrow. When we
describe how we classify images, we might focus on parts of the image and compare them with
prototypical parts of images from a given class. This method of reasoning is commonly used
in difficult identification tasks: e.g., radiologists compare suspected tumors in X-ray scans with
prototypical tumor images for diagnosis of cancer [13]. The question is whether we can ask a
machine learning model to imitate this way of thinking, and to explain its reasoning process in a
human-understandable way.

The goal of this work is to define a form of interpretability in image processing (this looks like that)
that agrees with the way humans describe their own thinking in classification tasks. In this work,
∗Contributed equally
†DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. This material is

based upon work supported by the Under Secretary of Defense for Research and Engineering under Air Force
Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the Under Secretary of Defense for
Research and Engineering.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



looks like

looks like

looks like

looks like

Leftmost:	a	test	image	of	a	clay-colored	sparrow
Second	column:	same	test	image,	each	with	a
																bounding	box	generated	by	our	model
																--	the	content	within	the	bounding	box
																is	considered	by	our	model	to	look	similar
																to	the	prototypical	part	(same	row,	third
																column)	learned	by	our	algorithm
Third	column:	prototypical	parts	learned	by	our
																algorithm
Fourth	column:	source	images	of	the	prototypical
																parts	in	the	third	column
Rightmost	column:	activation	maps	indicating	how
																similar	each	prototypical	part		resembles
																part	of	the	test	bird

Figure 1: Image of a clay colored sparrow and how parts of it look like some learned prototypical
parts of a clay colored sparrow used to classify the bird’s species.

we introduce a network architecture – prototypical part network (ProtoPNet), that accommodates
this definition of interpretability, where comparison of image parts to learned prototypes is integral
to the way our network reasons about new examples. Given a new bird image as in Figure 1, our
model is able to identify several parts of the image where it thinks that this part of the image looks
like that prototypical part of some class, and makes its prediction based on a weighted combination
of the similarity scores between parts of the image and the learned prototypes. In this way, our model
is interpretable, in the sense that it has a transparent reasoning process when making predictions.
Our experiments show that our ProtoPNet can achieve comparable accuracy with its analogous
non-interpretable counterpart, and when several ProtoPNets are combined into a larger network,
our model can achieve an accuracy that is on par with some of the best-performing deep models.
Moreover, our ProtoPNet provides a level of interpretability that is absent in other interpretable deep
models.

Our work relates to (but contrasts with) those that perform posthoc interpretability analysis for a
trained convolutional neural network (CNN). In posthoc analysis, one interprets a trained CNN by
fitting explanations to how it performs classification. Examples of posthoc analysis techniques include
activation maximization [5, 12, 22, 44, 30, 38, 50], deconvolution [51], and saliency visualization [38,
42, 41, 36]. All of these posthoc visualization methods do not explain the reasoning process of how a
network actually makes its decisions. In contrast, our network has a built-in case-based reasoning
process, and the explanations generated by our network are actually used during classification and
are not created posthoc.

Our work relates closely to works that build attention-based interpretability into CNNs. These models
aim to expose the parts of an input the network focuses on when making decisions. Examples of
attention models include class activation maps [56] and various part-based models (e.g., [55, 53, 15,
57, 43, 10, 9, 34, 37, 49, 7]; see Table 1). However, attention-based models can only tell us which
parts of the input they are looking at – they do not point us to prototypical cases to which the parts
they focus on are similar. On the other hand, our ProtoPNet is not only able to expose the parts of
the input it is looking at, but also point us to prototypical cases similar to those parts. Section 2.5
provides a comparison between attention-based models and our ProtoPNet.

Recently there have also been attempts to quantify the interpretability of visual representations
in a CNN, by measuring the overlap between highly activated image regions and labeled visual
concepts [1, 54]. However, to quantitatively measure the interpretability of a convolutional unit in a
network requires fine-grained labeling for a significantly large dataset specific to the purpose of the
network. The existing Broden dataset for scene/object classification networks [1] is not well-suited
to measure the unit interpretability of a network trained for fine-grained classification (which is our
main application), because the concepts detected by that network may not be present in the Broden
dataset. Hence, in our work, we do not focus on quantifying unit interpretability of our network, but
instead look at the reasoning process of our network which is qualitatively similar to that of humans.

Our work uses generalized convolution [8, 29] by including a prototype layer that computes squared
L2 distance instead of conventional inner product. In addition, we propose to constrain each
convolutional filter to be identical to some latent training patch. This added constraint allows us
to interpret the convolutional filters as visualizable prototypical image parts and also necessitates a
novel training procedure.

2



Our work relates closely to other case-based classification techniques using k-nearest neighbors
[47, 35, 32] or prototypes [33, 2, 48], and very closely, to the Bayesian Case Model [18]. It relates
to traditional “bag-of-visual-words” models used in image recognition [21, 6, 17, 40, 31]. These
models (like our ProtoPNet) also learn a set of prototypical parts for comparison with an unseen
image. However, the feature extraction in these models is performed by Scale Invariant Feature
Transform (SIFT) [27], and the learning of prototypical patches (“visual words”) is done separately
from the feature extraction (and the learning of the final classifier). In contrast, our ProtoPNet uses
a specialized neural network architecture for feature extraction and prototype learning, and can be
trained in an end-to-end fashion. Our work also relates to works (e.g., [3, 24]) that identify a set
of prototypes for pose alignment. However, their prototypes are templates for warping images and
similarity with these prototypes does not provide an explanation for why an image is classified in a
certain way. Our work relates most closely to Li et al. [23], who proposed a network architecture
that builds case-based reasoning into a neural network. However, their model requires a decoder (for
visualizing prototypes), which fails to produce realistic prototype images when trained on datasets of
natural images. In contrast, our model does not require a decoder for prototype visualization. Every
prototype is the latent representation of some training image patch, which naturally and faithfully
becomes the prototype’s visualization. The removal of the decoder also facilitates the training of
our network, leading to better explanations and better accuracy. Unlike the work of Li et al., whose
prototypes represent entire images, our model’s prototypes can have much smaller spatial dimensions
and represent prototypical parts of images. This allows for more fine-grained comparisons because
different parts of an image can now be compared to different prototypes. Ming et al. [28] recently
took the concepts in [23] and the preprint of an earlier version of this work, which both involve
integrating prototype learning into CNNs for image recognition, and used these concepts to develop
prototype learning in recurrent neural networks for modeling sequential data.

2 Case study 1: bird species identification

In this case study, we introduce the architecture and the training procedure of our ProtoPNet in
the context of bird species identification, and provide a detailed walk-through of how our network
classifies a new bird image and explains its prediction. We trained and evaluated our network on
the CUB-200-2011 dataset [45] of 200 bird species. We performed offline data augmentation, and
trained on images cropped using the bounding boxes provided with the dataset.

2.1 ProtoPNet architecture

Figure 2 gives an overview of the architecture of our ProtoPNet. Our network consists of a regular
convolutional neural network f , whose parameters are collectively denoted by wconv, followed by a
prototype layer gp and a fully connected layer h with weight matrix wh and no bias. For the regular
convolutional network f , our model use the convolutional layers from models such as VGG-16,
VGG-19 [39], ResNet-34, ResNet-152 [11], DenseNet-121, or DenseNet-161 [14] (initialized with
filters pretrained on ImageNet [4]), followed by two additional 1 × 1 convolutional layers in our
experiments. We use ReLU as the activation function for all convolutional layers except the last for
which we use the sigmoid activation function.

Given an input image x (such as the clay colored sparrow in Figure 2), the convolutional layers of
our model extract useful features f(x) to use for prediction. Let H ×W ×D be the shape of the
convolutional output f(x). For the bird dataset with input images resized to 224 × 224 × 3, the
spatial dimension of the convolutional output is H = W = 7, and the number of output channels
D in the additional convolutional layers is chosen from three possible values: 128, 256, 512, using
cross validation. The network learns m prototypes P = {pj}mj=1, whose shape is H1 ×W1 ×D
with H1 ≤ H and W1 ≤ W . In our experiments, we used H1 = W1 = 1. Since the depth of
each prototype is the same as that of the convolutional output but the height and the width of each
prototype is smaller than those of the whole convolutional output, each prototype will be used to
represent some prototypical activation pattern in a patch of the convolutional output, which in turn
will correspond to some prototypical image patch in the original pixel space. Hence, each prototype
pj can be understood as the latent representation of some prototypical part of some bird image in
this case study. As a schematic illustration, the first prototype p1 in Figure 2 corresponds to the head
of a clay colored sparrow, and the second prototype p2 the head of a Brewer’s sparrow. Given a
convolutional output z = f(x), the j-th prototype unit gpj

in the prototype layer gp computes the

3



3.954

1.447

2.617

5.030

4.738

5.662

27.895

5.443

max	pool

gp1

gp2

gpm

Black	footed	albatross

Indigo	bunting

Cardinal

Clay	colored	sparrow

Common	yellowthroat

Convolutional	layers	f Prototype	layer	gp Fully	connected	layer	h Output	logits

p1

p2

pm Similarity	score

Figure 2: ProtoPNet architecture.

Why	is	this	bird	classfied	as	a	red-bellied	woodpecker?

Evidence	for	this	bird	being	a	red-bellied	woodpecker:

Prototype Activation	map Similarity
score

Class
connection

Points
contributed

Total	points	to	red-bellied	woodpecker:

6.499

4.392

3.890

1.180

1.127

1.108

7.669

4.950

4.310

×

×

×

=

=

=

32.736

.	.	.	
.	.	.	

.	.	.	
.	.	.	

.	.	.	

Original	image
(box	showing	part	that
looks	like	prototype)

Training	image
where	prototype
comes	from

Evidence	for	this	bird	being	a	red-cockaded	woodpecker:

Prototype Activation	map Similarity
score

Class
connection

Points
contributed

Original	image
(box	showing	part	that
looks	like	prototype)

Training	image
where	prototype
comes	from

.	.	.	
.	.	.	

Total	points	to	red-cockaded	woodpecker:

2.452

2.125

1.945

1.046

1.091

1.069

2.565

2.318

2.079

×

×

×

=

=

=

16.886

.	.	.	
.	.	.	

.	.	.	
.	.	.	

.	.	.	
.	.	.	

.	.	.	

Figure 3: The reasoning process of our network in deciding the species of a bird (top).

looks like

looks like

looks like

(a)	Object	attention
(class	activation	map)

(b)	Part	attention
(attention-based	models)

(c)	Part	attention	+	comparison	with	learned
prototypical	parts	(our	model)

Figure 4: Visual comparison of different types of model interpretability: (a) object-level attention
map (e.g., class activation map [56]); (b) part attention (provided by attention-based interpretable
models); and (c) part attention with similar prototypical parts (provided by our model).

Florida	jay

Cardinal

(a)	nearest	prototypes	of	two	test	images
left:	original	test	image
right:	top:	three	nearest	prototypes	of	the	image,	
																		with	prototypical	parts	shown	in	box
										below:	test	image	with	patch	closest	to	each
																					prototype	shown	in	box

(b)	nearest	image	patches	to	prototypes
left:	prototype,	with	prototypical	parts	in	box
middle:	nearest	training	images	to	prototype,	with	patch	closest	to	prototype	in	box
right:	nearest	test	images	to	prototype,	with	patch	closest	to	prototype	in	box

Prototype
(in	bounding	box)

Nearest	training	patches
(in	bounding	box)

Nearest	test	patches
(in	bounding	box)

Figure 5: Nearest prototypes to images and nearest images to prototypes. The prototypes are learned
from the training set.

4



squared L2 distances between the j-th prototype pj and all patches of z that have the same shape
as pj , and inverts the distances into similarity scores. The result is an activation map of similarity
scores whose value indicates how strong a prototypical part is present in the image. This activation
map preserves the spatial relation of the convolutional output, and can be upsampled to the size of the
input image to produce a heat map that identifies which part of the input image is most similar to the
learned prototype. The activation map of similarity scores produced by each prototype unit gpj

is
then reduced using global max pooling to a single similarity score, which can be understood as how
strongly a prototypical part is present in some patch of the input image. In Figure 2, the similarity
score between the first prototype p1, a clay colored sparrow head prototype, and the most activated
(upper-right) patch of the input image of a clay colored sparrow is 3.954, and the similarity score
between the second prototype p2, a Brewer’s sparrow head prototype, and the most activated patch of
the input image is 1.447. This shows that our model finds that the head of a clay colored sparrow has
a stronger presence than that of a Brewer’s sparrow in the input image. Mathematically, the prototype
unit gpj computes gpj (z) = maxz̃∈patches(z) log

(
(‖z̃− pj‖22 + 1)/(‖z̃− pj‖22 + ε)

)
. The function

gpj
is monotonically decreasing with respect to ‖z̃ − pj‖2 (if z̃ is the closest latent patch to pj).

Hence, if the output of the j-th prototype unit gpj
is large, then there is a patch in the convolutional

output that is (in 2-norm) very close to the j-th prototype in the latent space, and this in turn means
that there is a patch in the input image that has a similar concept to what the j-th prototype represents.

In our ProtoPNet, we allocate a pre-determined number of prototypes mk for each class k ∈
{1, ...,K} (10 per class in our experiments), so that every class will be represented by some pro-
totypes in the final model. Section S9.2 of the supplement discusses the choice of mk and other
hyperparameters in greater detail. Let Pk ⊆ P be the subset of prototypes that are allocated to class
k: these prototypes should capture the most relevant parts for identifying images of class k.

Finally, the m similarity scores produced by the prototype layer gp are multiplied by the weight
matrix wh in the fully connected layer h to produce the output logits, which are normalized using
softmax to yield the predicted probabilities for a given image belonging to various classes.

ProtoPNet’s inference computation mechanism can be viewed as a special case of a more general
type of probabilistic inference under some reasonable assumptions. This interpretation is presented
in detail in Section S2 of the supplementary material.

2.2 Training algorithm

The training of our ProtoPNet is divided into: (1) stochastic gradient descent (SGD) of layers before
the last layer; (2) projection of prototypes; (3) convex optimization of last layer. It is possible to
cycle through these three stages more than once. The entire training algorithm is summarized in an
algorithm chart, which can be found in Section S9.3 of the supplement.

Stochastic gradient descent (SGD) of layers before last layer: In the first training stage, we aim
to learn a meaningful latent space, where the most important patches for classifying images are
clustered (in L2-distance) around semantically similar prototypes of the images’ true classes, and the
clusters that are centered at prototypes from different classes are well-separated. To achieve this goal,
we jointly optimize the convolutional layers’ parameters wconv and the prototypes P = {pj}mj=1

in the prototype layer gp using SGD, while keeping the last layer weight matrix wh fixed. Let
D = [X,Y] = {(xi, yi)}ni=1 be the set of training images. The optimization problem we aim to
solve here is:

min
P,wconv

1

n

n∑
i=1

CrsEnt(h ◦ gp ◦ f(xi),yi) + λ1Clst + λ2Sep, where Clst and Sep are defined by

Clst =
1

n

n∑
i=1

min
j:pj∈Pyi

min
z∈patches(f(xi))

‖z− pj‖22; Sep = − 1

n

n∑
i=1

min
j:pj 6∈Pyi

min
z∈patches(f(xi))

‖z− pj‖22.

The cross entropy loss (CrsEnt) penalizes misclassification on the training data. The minimization of
the cluster cost (Clst) encourages each training image to have some latent patch that is close to at
least one prototype of its own class, while the minimization of the separation cost (Sep) encourages
every latent patch of a training image to stay away from the prototypes not of its own class. These
terms shape the latent space into a semantically meaningful clustering structure, which facilitates the
L2-distance-based classification of our network.

5



In this training stage, we also fix the last layer h, whose weight matrix is wh. Let w(k,j)
h be the

(k, j)-th entry in wh that corresponds to the weight connection between the output of the j-th
prototype unit gpj and the logit of class k. Given a class k, we set w(k,j)

h = 1 for all j with pj ∈ Pk

and w(k,j)
h = −0.5 for all j with pj 6∈ Pk (when we are in this stage for the first time). Intuitively,

the positive connection between a class k prototype and the class k logit means that similarity to a
class k prototype should increase the predicted probability that the image belongs to class k, and the
negative connection between a non-class k prototype and the class k logit means that similarity to a
non-class k prototype should decrease class k’s predicted probability. By fixing the last layer h in
this way, we can force the network to learn a meaningful latent space because if a latent patch of a
class k image is too close to a non-class k prototype, it will decrease the predicted probability that
the image belongs to class k and increase the cross entropy loss in the training objective. Note that
both the separation cost and the negative connection between a non-class k prototype and the class k
logit encourage prototypes of class k to represent semantic concepts that are characteristic of class k
but not of other classes: if a class k prototype represents a semantic concept that is also present in a
non-class k image, this non-class k image will highly activate that class k prototype, and this will be
penalized by increased (i.e., less negative) separation cost and increased cross entropy (as a result
of the negative connection). The separation cost is new to this paper, and has not been explored by
previous works of prototype learning (e.g., [3, 23]).

Projection of prototypes: To be able to visualize the prototypes as training image patches, we
project (“push”) each prototype pj onto the nearest latent training patch from the same class as that
of pj . In this way, we can conceptually equate each prototype with a training image patch. (Section
2.3 discusses how we visualize the projected prototypes.) Mathematically, for prototype pj of class
k, i.e., pj ∈ Pk, we perform the following update:

pj ← arg min
z∈Zj

‖z− pj‖2,where Zj = {z̃ : z̃ ∈ patches(f(xi)) ∀i s.t. yi = k}.

The following theorem provides some theoretical understanding of how prototype projection affects
classification accuracy. We use another notation for prototypes pkl , where k represents the class
identity of the prototype and l is the index of that prototype among all prototypes of that class.
Theorem 2.1. Let h ◦ gp ◦ f be a ProtoPNet. For each k, l, we use bkl to denote the value of the l-th
prototype for class k before the projection of pkl to the nearest latent training patch of class k, and
use akl to denote its value after the projection. Let x be an input image that is correctly classified by
the ProtoPNet before the projection, zkl = arg minz̃∈patches(f(x)) ‖z̃− bkl ‖2 be the nearest patch of
f(x) to the prototype pkl before the projection (i.e., bkl ), and c be the correct class label of x.

Suppose that: (A1) zkl is also the nearest latent patch to prototype pkl after the projection (akl ),
i.e., zkl = arg minz̃∈patches(f(x)) ‖z̃ − akl ‖2; (A2) there exists some δ with 0 < δ < 1 such that:
(A2a) for all incorrect classes’ prototypes k 6= c and l ∈ {1, ...,mk}, we have ‖akl − bkl ‖2 ≤
θ‖zkl −bkl ‖2−

√
ε, where we define θ = min

(√
1 + δ − 1, 1− 1√

2−δ

)
(ε comes from the prototype

activation function gpj defined in Section 2.1); (A2b) for the correct class c and for all l ∈ {1, ...,mc},
we have ‖acl − bcl ‖2 ≤ (

√
1 + δ − 1)‖zcl − bcl ‖2 and ‖zcl − bcl ‖2 ≤

√
1− δ; (A3) the number of

prototypes is the same for each class, which we denote by m′. (A4) for each class k, the weight
connection in the fully connected last layer h between a class k prototype and the class k logit is
1, and that between a non-class k prototype and the class k logit is 0 (i.e., w(k,j)

h = 1 for all j with
pj ∈ Pk and w(k,j)

h = 0 for all j with pj 6∈ Pk).

Then after projection, the output logit for the correct class c can decrease at most by ∆max =
m′ log((1 + δ)(2− δ)), and the output logit for every incorrect class k 6= c can increase at most by
∆max. If the output logits between the top-2 classes are at least 2∆max apart, then the projection of
prototypes to their nearest latent training patches does not change the prediction of x.

Intuitively speaking, the theorem states that, if prototype projection does not move the prototypes
by much (assured by the optimization of the cluster cost Clst), the prediction does not change for
examples that the model predicted correctly with some confidence before the projection. The proof is
in Section S1 of the supplement.

Note that prototype projection has the same time complexity as feedforward computation of a regular
convolutional layer followed by global average pooling, a configuration common in standard CNNs

6



(e.g., ResNet, DenseNet), because the former takes the minimum distance over all prototype-sized
patches, and the latter takes the average of dot-products over all filter-sized patches. Hence, prototype
projection does not introduce extra time complexity in training our network.

Convex optimization of last layer: In this training stage, we perform a convex optimization on
the weight matrix wh of last layer h. The goal of this stage is to adjust the last layer connection
w

(k,j)
h , so that for k and j with pj 6∈ Pk, our final model has the sparsity property w(k,j)

h ≈ 0
(initially fixed at −0.5). This sparsity is desirable because it means that our model relies less on
a negative reasoning process of the form “this bird is of class k′ because it is not of class k (it
contains a patch that is not prototypical of class k).” The optimization problem we solve here is:
minwh

1
n

∑n
i=1 CrsEnt(h◦gp ◦f(xi),yi)+λ

∑K
k=1

∑
j:pj 6∈Pk

|w(k,j)
h |. This optimization is convex

because we fix all the parameters from the convolutional and prototype layers. This stage further
improves accuracy without changing the learned latent space or prototypes.

2.3 Prototype visualization

Given a prototype pj and the training image x whose latent patch is used as pj during prototype
projection, how do we decide which patch of x (in the pixel space) corresponds to pj? In our work,
we use the image patch of x that is highly activated by pj as the visualization of pj . The reason
is that the patch of x that corresponds to pj should be the one that pj activates most strongly on,
and we can find the patch of x on which pj has the strongest activation by forwarding x through a
trained ProtoPNet and upsampling the activation map produced by the prototype unit gpj

(before max-
pooling) to the size of the image x – the most activated patch of x is indicated by the high activation
region in the (upsampled) activation map. We then visualize pj with the smallest rectangular patch
of x that encloses pixels whose corresponding activation value in the upsampled activation map from
gpj is at least as large as the 95th-percentile of all activation values in that same map. Section S7 of
the supplement describes prototype visualization in greater detail.

2.4 Reasoning process of our network

Figure 3 shows the reasoning process of our ProtoPNet in reaching a classification decision on a
test image of a red-bellied woodpecker at the top of the figure. Given this test image x, our model
compares its latent features f(x) against the learned prototypes. In particular, for each class k, our
network tries to find evidence for x to be of class k by comparing its latent patch representations
with every learned prototype pj of class k. For example, in Figure 3 (left), our network tries to
find evidence for the red-bellied woodpecker class by comparing the image’s latent patches with
each prototype (visualized in “Prototype” column) of that class. This comparison produces a map of
similarity scores towards each prototype, which was upsampled and superimposed on the original
image to see which part of the given image is activated by each prototype. As shown in the “Activation
map” column in Figure 3 (left), the first prototype of the red-bellied woodpecker class activates most
strongly on the head of the testing bird, and the second prototype on the wing: the most activated
image patch of the given image for each prototype is marked by a bounding box in the “Original
image” column – this is the image patch that the network considers to look like the corresponding
prototype. In this case, our network finds a high similarity between the head of the given bird and the
prototypical head of a red-bellied woodpecker (with a similarity score of 6.499), as well as between
the wing and the prototypical wing (with a similarity score of 4.392). These similarity scores are
weighted and summed together to give a final score for the bird belonging to this class. The reasoning
process is similar for all other classes (Figure 3 (right)). The network finally correctly classifies the
bird as a red-bellied woodpecker. Section S3 of the supplement provides more examples of how our
ProtoPNet classifies previously unseen images of birds.

2.5 Comparison with baseline models and attention-based interpretable deep models

The accuracy of our ProtoPNet (with various base CNN architectures) on cropped bird images is
compared to that of the corresponding baseline model in the top of Table 1: the first number in
each cell gives the mean accuracy, and the second number gives the standard deviation, over three
runs. To ensure fairness of comparison, the baseline models (without the prototype layer) were
trained on the same augmented dataset of cropped bird images as the corresponding ProtoPNet.
As we can see, the test accuracy of our ProtoPNet is comparable with that of the corresponding

7



Table 1: Top: Accuracy comparison on cropped bird images of CUB-200-2011
Bottom: Comparison of our model with other deep models

Base ProtoPNet Baseline Base ProtoPNet Baseline
VGG16 76.1 ± 0.2 74.6 ± 0.2 VGG19 78.0 ± 0.2 75.1 ± 0.4
Res34 79.2 ± 0.1 82.3 ± 0.3 Res152 78.0 ± 0.3 81.5 ± 0.4
Dense121 80.2 ± 0.2 80.5 ± 0.1 Dense161 80.1 ± 0.3 82.2 ± 0.2

Interpretability Model: accuracy
None B-CNN[25]: 85.1 (bb), 84.1 (full)
Object-level attn. CAM[56]: 70.5 (bb), 63.0 (full)

Part-level
attention

Part R-CNN[53]: 76.4 (bb+anno.); PS-CNN [15]: 76.2 (bb+anno.);
PN-CNN [3]: 85.4 (bb+anno.); DeepLAC[24]: 80.3 (anno.);
SPDA-CNN[52]: 85.1 (bb+anno.); PA-CNN[19]: 82.8 (bb);
MG-CNN[46]: 83.0 (bb), 81.7 (full); ST-CNN[16]: 84.1 (full);
2-level attn.[49]: 77.9 (full); FCAN[26]: 82.0 (full);
Neural const.[37]: 81.0 (full); MA-CNN[55]: 86.5 (full);
RA-CNN[7]: 85.3 (full)

Part-level attn. +
prototypical cases

ProtoPNet (ours): 80.8 (full, VGG19+Dense121+Dense161-based)
84.8 (bb, VGG19+ResNet34+DenseNet121-based)

baseline (non-interpretable) model: the loss of accuracy is at most 3.5% when we switch from the
non-interpretable baseline model to our interpretable ProtoPNet. We can further improve the accuracy
of ProtoPNet by adding the logits of several ProtoPNet models together. Since each ProtoPNet
can be understood as a “scoring sheet” (as in Figure 3) for each class, adding the logits of several
ProtoPNet models is equivalent to creating a combined scoring sheet where (weighted) similarity with
prototypes from all these models is taken into account to compute the total points for each class – the
combined model will have the same interpretable form when we combine several ProtoPNet models
in this way, though there will be more prototypes for each class. The test accuracy on cropped bird
images of combined ProtoPNets can reach 84.8%, which is on par with some of the best-performing
deep models that were also trained on cropped images (see bottom of Table 1). We also trained a
VGG19-, DenseNet121-, and DenseNet161-based ProtoPNet on full images: the test accuracy of the
combined network can go above 80% – at 80.8%, even though the test accuracy of each individual
network is 72.7%, 74.4%, and 75.7%, respectively. Section S3.1 of the supplement illustrates how
combining several ProtoPNet models can improve accuracy while preserving interpretability.

Moreover, our ProtoPNet provides a level of interpretability that is absent in other interpretable
deep models. In terms of the type of explanations offered, Figure 4 provides a visual comparison of
different types of model interpretability. At the coarsest level, there are models that offer object-level
attention (e.g., class activation maps [56]) as explanation: this type of explanation (usually) highlights
the entire object as the “reason” behind a classification decision, as shown in Figure 4(a). At a finer
level, there are numerous models that offer part-level attention: this type of explanation highlights the
important parts that lead to a classification decision, as shown in Figure 4(b). Almost all attention-
based interpretable deep models offer this type of explanation (see the bottom of Table 1). In contrast,
our model not only offers part-level attention, but also provides similar prototypical cases, and uses
similarity to prototypical cases of a particular class as justification for classification (see Figure 4(c)).
This type of interpretability is absent in other interpretable deep models. In terms of how attention is
generated, some attention models generate attention with auxiliary part-localization models trained
with part annotations (e.g., [53, 52, 3, 24, 15]); other attention models generate attention with “black-
box” methods – e.g., RA-CNN [7] uses another neural network (attention proposal network) to
decide where to look next; multi-attention CNN [55] uses aggregated convolutional feature maps
as “part attentions.” There is no explanation for why the attention proposal network decides to
look at some region over others, or why certain parts are highlighted in those convolutional feature
maps. In contrast, our ProtoPNet generates attention based on similarity with learned prototypes: it
requires no part annotations for training, and explains its attention naturally – it is looking at this
region of input because this region is similar to that prototypical example. Although other attention
models focus on similar regions (e.g., head, wing, etc.) as our ProtoPNet, they cannot be made into a
case-based reasoning model like ours: the only way to find prototypes on other attention models is to
analyze posthoc what activates a convolutional filter of the model most strongly and think of that as a

8



prototype – however, since such prototypes do not participate in the actual model computation, any
explanations produced this way are not always faithful to the classification decisions. The bottom
of Table 1 compares the accuracy of our model with that of some state-of-the-art models on this
dataset: “full” means that the model was trained and tested on full images, “bb” means that the model
was trained and tested on images cropped using bounding boxes (or the model used bounding boxes
in other ways), and “anno.” means that the model was trained with keypoint annotations of bird
parts. Even though there is some accuracy gap between our (combined) ProtoPNet model and the
best of the state-of-the-art, this gap may be reduced through more extensive training effort, and the
added interpretability in our model already makes it possible to bring richer explanations and better
transparency to deep neural networks.

2.6 Analysis of latent space and prototype pruning

In this section, we analyze the structure of the latent space learned by our ProtoPNet. Figure 5(a)
shows the three nearest prototypes to a test image of a Florida jay and of a cardinal. As we can
see, the nearest prototypes for each of the two test images come from the same class as that of the
image, and the test image’s patch most activated by each prototype also corresponds to the same
semantic concept as the prototype: in the case of the Florida jay, the most activated patch by each
of the three nearest prototypes (all wing prototypes) indeed localizes the wing; in the case of the
cardinal, the most activated patch by each of the three nearest prototypes (all head prototypes) indeed
localizes the head. Figure 5(b) shows the nearest (i.e., most activated) image patches in the entire
training/test set to three prototypes. As we can see, the nearest image patches to the first prototype
in the figure are all heads of black-footed albatrosses, and the nearest image patches to the second
prototype are all yellow stripes on the wings of golden-winged warblers. The nearest patches to
the third prototype are feet of some gull. It is generally true that the nearest patches of a prototype
all bear the same semantic concept, and they mostly come from those images in the same class as
the prototype. Those prototypes whose nearest training patches have mixed class identities usually
correspond to background patches, and they can be automatically pruned from our model. Section S8
of the supplement discusses pruning in greater detail.

3 Case study 2: car model identification

In this case study, we apply our method to car model identification. We trained our ProtoPNet on
the Stanford Cars dataset [20] of 196 car models, using similar architectures and training algorithm
as we did on the CUB-200-2011 dataset. The accuracy of our ProtoPNet and the corresponding
baseline model on this dataset is reported in Section S6 of the supplement. We briefly state our
performance here: the test accuracy of our ProtoPNet is comparable with that of the corresponding
baseline model (≤ 3% difference), and that of a combined network of a VGG19-, ResNet34-, and
DenseNet121-based ProtoPNet can reach 91.4%, which is on par with some state-of-the-art models
on this dataset, such as B-CNN [25] (91.3%), RA-CNN [7] (92.5%), and MA-CNN [55] (92.8%).

4 Conclusion

In this work, we have defined a form of interpretability in image processing (this looks like that)
that agrees with the way humans describe their own reasoning in classification. We have presented
ProtoPNet – a network architecture that accommodates this form of interpretability, described our
specialized training algorithm, and applied our technique to bird species and car model identification.

Supplementary Material and Code: The supplementary material and code are available at https:
//github.com/cfchen-duke/ProtoPNet.

Acknowledgments

This work was sponsored in part by a grant from MIT Lincoln Laboratory to C. Rudin.

9

https://github.com/cfchen-duke/ProtoPNet
https://github.com/cfchen-duke/ProtoPNet


References
[1] D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba. Network Dissection: Quantifying Interpretability of

Deep Visual Representations. In Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference
on, pages 3319–3327. IEEE, 2017.

[2] J. Bien and R. Tibshirani. Prototype Selection for Interpretable Classification. Annals of Applied Statistics,
5(4):2403–2424, 2011.

[3] S. Branson, G. Van Horn, S. Belongie, and P. Perona. Bird Species Categorization Using Pose Normalized
Deep Convolutional Nets. In Proceedings of the British Machine Vision Conference. BMVA Press, 2014.

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image
Database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 248–255. IEEE, 2009.

[5] D. Erhan, Y. Bengio, A. Courville, and P. Vincent. Visualizing Higher-Layer Features of a Deep Network.
Technical Report 1341, the University of Montreal, June 2009. Also presented at the Workshop on Learning
Feature Hierarchies at the 26th International Conference on Machine Learning (ICML 2009), Montreal,
Canada.

[6] L. Fei-Fei and P. Perona. A Bayesian Hierarchical Model for Learning Natural Scene Categories. In
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR), volume 2, pages 524–531. IEEE, 2005.

[7] J. Fu, H. Zheng, and T. Mei. Look Closer to See Better: Recurrent Attention Convolutional Neural Network
for Fine-grained Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 4438–4446, 2017.

[8] K. Ghiasi-Shirazi. Generalizing the Convolution Operator in Convolutional Neural Networks. Neural
Processing Letters, 2019.

[9] R. Girshick. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), pages 1440–1448, 2015.

[10] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 580–587, 2014.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

[12] G. E. Hinton. A Practical Guide to Training Restricted Boltzmann Machines. In Neural Networks: Tricks
of the Trade, pages 599–619. Springer, 2012.

[13] A. Holt, I. Bichindaritz, R. Schmidt, and P. Perner. Medical applications in case-based reasoning. The
Knowledge Engineering Review, 20:289–292, 09 2005.

[14] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. Densely Connected Convolutional Networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
4700–4708, 2017.

[15] S. Huang, Z. Xu, D. Tao, and Y. Zhang. Part-Stacked CNN for Fine-Grained Visual Categorization.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
1173–1182, 2016.

[16] M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial Transformer Networks. In Advances in Neural
Information Processing Systems 28 (NIPS), pages 2017–2025, 2015.

[17] Y.-G. Jiang, C.-W. Ngo, and J. Yang. Towards Optimal Bag-of-Features for Object Categorization and
Semantic Video Retrieval. In Proceedings of the 6th ACM International Conference on Image and Video
Retrieval, pages 494–501. ACM, 2007.

[18] B. Kim, C. Rudin, and J. Shah. The Bayesian Case Model: A Generative Approach for Case-Based
Reasoning and Prototype Classification. In Advances in Neural Information Processing Systems 27 (NIPS),
pages 1952–1960, 2014.

[19] J. Krause, H. Jin, J. Yang, and L. Fei-Fei. Fine-Grained Recognition without Part Annotations. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 5546–
5555, 2015.

10



[20] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3D Object Representations for Fine-Grained Categorization.
In 4th International IEEE Workshop on 3D Representation and Recognition (3dRR-13), Sydney, Australia,
2013.

[21] S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing
Natural Scene Categories. In Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), volume 2, pages 2169–2178. IEEE, 2006.

[22] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional Deep Belief Networks for Scalable Unsu-
pervised Learning of Hierarchical Representations. In Proceedings of the 26th International Conference
on Machine Learning (ICML), pages 609–616, 2009.

[23] O. Li, H. Liu, C. Chen, and C. Rudin. Deep Learning for Case-Based Reasoning through Prototypes: A
Neural Network that Explains Its Predictions. In Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence (AAAI), 2018.

[24] D. Lin, X. Shen, C. Lu, and J. Jia. Deep LAC: Deep Localization, Alignment and Classification for
Fine-grained Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1666–1674, 2015.

[25] T.-Y. Lin, A. RoyChowdhury, and S. Maji. Bilinear CNN Models for Fine-grained Visual Recognition. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV), pages 1449–1457, 2015.

[26] X. Liu, T. Xia, J. Wang, Y. Yang, F. Zhou, and Y. Lin. Fully Convolutional Attention Networks for
Fine-Grained Recognition. arXiv preprint arXiv:1603.06765, 2016.

[27] D. G. Lowe et al. Object Recognition from Local Scale-Invariant Features. In Proceedings of the
International Conference on Computer Vision (ICCV), volume 99, pages 1150–1157, 1999.

[28] Y. Ming, P. Xu, H. Qu, and L. Ren. Interpretable and Steerable Sequence Learning via Prototypes. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
(KDD’19), pages 903–913. ACM, 2019.

[29] K. Nalaie, K. Ghiasi-Shirazi, and M.-R. Akbarzadeh-T. Efficient Implementation of a Generalized
Convolutional Neural Networks based on Weighted Euclidean Distance. In 2017 7th International
Conference on Computer and Knowledge Engineering (ICCKE), pages 211–216. IEEE, 2017.

[30] A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and J. Clune. Synthesizing the preferred inputs for
neurons in neural networks via deep generator networks. In Advances in Neural Information Processing
Systems 29 (NIPS), pages 3387–3395, 2016.

[31] D. Nister and H. Stewenius. Scalable Recognition with a Vocabulary Tree. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), volume 2, pages
2161–2168. IEEE, 2006.

[32] N. Papernot and P. McDaniel. Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust
Deep Learning. arXiv preprint arXiv:1803.04765, 2018.

[33] C. E. Priebe, D. J. Marchette, J. G. DeVinney, and D. A. Socolinsky. Classification Using Class Cover
Catch Digraphs. Journal of Classification, 20(1):003–023, 2003.

[34] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks. In Advances in Neural Information Processing Systems 28 (NIPS), pages 91–99, 2015.

[35] R. Salakhutdinov and G. Hinton. Learning a Nonlinear Embedding by Preserving Class Neighbourhood
Structure. In Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics
(AISTATS), volume 2 of Proceedings of Machine Learning Research, pages 412–419. PMLR, 2007.

[36] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-CAM: Visual Explana-
tions from Deep Networks via Gradient-Based Localization. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Oct 2017.

[37] M. Simon and E. Rodner. Neural Activation Constellations: Unsupervised Part Model Discovery with
Convolutional Networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV),
pages 1143–1151, 2015.

[38] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep Inside Convolutional Networks: Visualising Image
Classification Models and Saliency Maps. In Workshop at the 2nd International Conference on Learning
Representations (ICLR Workshop), 2014.

11



[39] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition.
In Proceedings of the 3rd International Conference on Learning Representations (ICLR), 2015.

[40] J. Sivic and A. Zisserman. Video Google: A Text Retrieval Approach to Object Matching in Videos. In
Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV), page 1470. IEEE,
2003.

[41] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg. SmoothGrad: removing noise by adding
noise. arXiv preprint arXiv:1706.03825, 2017.

[42] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic Attribution for Deep Networks. In Proceedings of
the 34th International Conference on Machine Learning (ICML), volume 70 of Proceedings of Machine
Learning Research, pages 3319–3328. PMLR, 2017.

[43] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders. Selective Search for Object
Recognition. International Journal of Computer Vision, 104(2):154–171, 2013.

[44] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel Recurrent Neural Networks. In Proceedings
of the 33rd International Conference on Machine Learning (ICML), pages 1747–1756, 2016.

[45] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-200-2011 Dataset.
Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.

[46] D. Wang, Z. Shen, J. Shao, W. Zhang, X. Xue, and Z. Zhang. Multiple Granularity Descriptors for
Fine-grained Categorization. In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), pages 2399–2406, 2015.

[47] K. Q. Weinberger and L. K. Saul. Distance Metric Learning for Large Margin Nearest Neighbor Classifica-
tion. Journal of Machine Learning Research, 10(Feb):207–244, 2009.

[48] C. Wu and E. G. Tabak. Prototypal Analysis and Prototypal Regression. arXiv preprint arXiv:1701.08916,
2017.

[49] T. Xiao, Y. Xu, K. Yang, J. Zhang, Y. Peng, and Z. Zhang. The Application of Two-Level Attention Models
in Deep Convolutional Neural Network for Fine-grained Image Classification. In Computer Vision and
Pattern Recognition (CVPR), 2015 IEEE Conference on, pages 842–850. IEEE, 2015.

[50] J. Yosinski, J. Clune, T. Fuchs, and H. Lipson. Understanding Neural Networks through Deep Visualization.
In Deep Learning Workshop at the 32nd International Conference on Machine Learning (ICML), 2015.

[51] M. D. Zeiler and R. Fergus. Visualizing and Understanding Convolutional Networks. In Proceedings of
the European Conference on Computer Vision (ECCV), pages 818–833, 2014.

[52] H. Zhang, T. Xu, M. Elhoseiny, X. Huang, S. Zhang, A. Elgammal, and D. Metaxas. SPDA-CNN: Unifying
Semantic Part Detection and Abstraction for Fine-grained Recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 1143–1152, 2016.

[53] N. Zhang, J. Donahue, R. Girshick, and T. Darrell. Part-based R-CNNs for Fine-grained Category Detection.
In Proceedings of the European Conference on Computer Vision (ECCV), pages 834–849. Springer, 2014.

[54] Q. Zhang, Y. N. Wu, and S.-C. Zhu. Interpretable Convolutional Neural Networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[55] H. Zheng, J. Fu, T. Mei, and J. Luo. Learning Multi-Attention Convolutional Neural Network for Fine-
Grained Image Recognition. In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), pages 5209–5217, 2017.

[56] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning Deep Features for Discriminative
Localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2921–2929. IEEE, 2016.

[57] B. Zhou, Y. Sun, D. Bau, and A. Torralba. Interpretable Basis Decomposition for Visual Explanation. In
Proceedings of the European Conference on Computer Vision (ECCV), pages 119–134, 2018.

12


