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min LA(tree,{(xl., y.)}.) where
tree
n | :
L(tree,{(x,,y)}) == L ...\, + C(#leaves in tree)
e |
/ |

Misclassification error  Sparsity

We solve this to optimality.
No greedy splitting and pruning like C4.5 and CART
The key: very efficient branch & bound combined with computer systems.
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min i(tree,{(xi, y.)}.) where

tree
1 n
L(tree,{(x.,y.)} )= ;Zl[ wee(x ey, + C(#leaves in tree)
\ i=1 ) \ /
Prior offenses > 3 Y Y
V N Misclassification error  Sparsity
Age< 26 Predict Arrest
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/ Predict Arrest === An example of an optimal tree on the re-arrest data
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Analytical Bounds Reduce the Search Space

This collection of theorems show that some partial trees can
never be extended to form optimal trees.
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Represent a tree by its leaves
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Permutation map: Discover identical trees already evaluated
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Bit-vectors describe data represented by each leaf
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Incremental computation of objective and bounds
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Strong analytical bounds

o

Leaf-based representation

o

. [ -
Permutation map mm Fast Implementation

o

Caching of intermediate results

o

Incremental computation
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Monk 1 dataset
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(a) BNT (accuracy: 91.129%)\ (b) OSDT (accuracy: 100%)



COMPAS dataset
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Execution Traces of OSDT, RBinOCT and CART (tictactoe Dataset)
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Summarize

e First practical method for optimal sparse binary split decision trees

e Current work:

* Non-straightforward speedup for continuous variables
* Generalization to other objectives
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