
Optimal Sparse Decision Trees
Xiyang Hu1, Cynthia Rudin2, Margo Seltzer3∗

xiyanghu@cmu.edu, cynthia@cs.duke.edu, mseltzer@cs.ubc.ca
1Carnegie Mellon University, 2Duke University, 3The University of British Columbia

∗Author names are in alphabetic order.

Overview
• Decision Trees: Extremely popular form for interpretable ML

models since the 1980’s.
• Existing algorithms use greedy splitting and pruning, providing

no guarantee of optimality.
• OSDT is the first practical algorithm for construction of optimal

decision trees for binary variables.
• OSDT combines analytical bounds, computational caching, and

fast bit-vector operations to efficiently prune the search space.

Notation

We focus on binary classification, and our decision trees are Boolean
functions.

• A tree can be expressed in terms of its leaves.
• A leaf, pk, is the classification rule of the path from the root to leaf k.
• Let H be the number of leaves in a tree and K <= H be the number

of leaves that will not be split.
• We represent a decision tree, d as (dun, δun, dsplit, δsplit, K,H), where

• dun = (p1, . . . , pK) are the unchanged leaves of d,
• δun = (ŷ(leaf)

1 , . . . , ŷ
(leaf)
K ) ∈ {0, 1}K are the predicted

labels of leaves dun,
• dsplit = (pK+1, . . . , pH) are the leaves we are going to
split, and

• δsplit = (ŷ(leaf)
K+1, . . . , ŷ

(leaf)
H ) ∈ {0, 1}H−K are the predicted

labels of leaves dsplit.

Objective Function

For a tree d = (dun, δun, dsplit, δsplit, K,H), we define its objective func-
tion as a combination of the misclassification error and a sparsity penalty
on the number of leaves:

R(d,x,y) = `(d,x,y) + λH(d). (1)
where R(d,x,y) is a regularized empirical risk, H(d) is the number of
leaves in the tree d, and the loss `(d,x,y) is the misclassification error
of d, i.e., the fraction of training data with incorrectly predicted labels.

Optimization Framework

We minimize the objective function based on a branch-and-bound frame-
work. We prove a series of useful bounds that work together to eliminate
a large part of the search space.

Hierarchical objective lower bound

Optimization Framework Cont’d

Objective lower bound with one-step lookahead

Lower bound on node support

Lower bound on incremental classification accuracy

Leaf accurate support bound

Leaf permutation bound

Equivalent points bound

Algorithm

The loss can be decomposed into two parts corresponding to the un-
changed leaves and the leaves to be split:

• `(d,x,y) ≡ `p(dun, δun,x,y) + `p(dsplit, δsplit,x,y),
where dun = (p1, . . . , pK), δun = (ŷ(leaf)

1 , . . . , ŷ
(leaf)
K ),

dsplit = (pK+1, . . . , pH) and δsplit = (ŷ(leaf)
K+1, . . . , ŷ

(leaf)
H );

• `p(dun, δun,x,y) = 1
N

∑N
n=1

∑K
k=1 cap(xn, pk) ∧ 1[ŷ(leaf)

k 6= yn] is the
proportion of data in the unchanged leaves that are misclassified;

• `p(dsplit, δsplit,x,y) = 1
N

∑N
n=1

∑H
k=K+1 cap(xn, pk) ∧ 1[ŷ(leaf)

k 6= yn] is the
proportion of data in the leaves we are going to split that are
misclassified.

• Define a lower bound b(dun,x,y) on the objective by leaving out the
latter loss,

b(dun,x,y) ≡ `p(dun, δun,x,y) + λH ≤ R(d,x,y), (2)
where the leaves dun are kept and the leaves dsplit are going to be
split. Here, b(dun,x,y) gives a lower bound on the objective of any
child tree of d.

Incremental Computation

During the execution of our algorithm, for each tree d, we compute the
lower bound b(dun,x,y) of the tree based on its unchanged leaves dun
and the corresponding objective R(d,x,y) of the tree. Given the hi-
erarchical nature of the parent-children relationship, we incrementally
compute the objective function and the lower bound throughout the
brand-and-bound execution of the algorithm. Together, these ideas save
>97% execution time.

Experiments

•Accuracy and optimality

Training accuracy of OSDT, CART, BinOCT on different data (time limit: 30min). Horizontal lines indicate the accuracy of the
best OSDT tree. On most datasets, all trees of BinOCT and CART are below this line.

•Convergence

Example OSDT execution traces (COMPAS Dataset, λ = 0.005). Lines are the objective value and dashes are the lower bound for
OSDT. For each scheduling policy, we mark the time to optimum and the optimal objective value using a star.

•Scalability

Scalability with respect to number of samples and number of features using (multiples of) the ProPublica data set. (λ = 0.005).

Sample Trees

Figure: The optimal decision tree generated by OSDT on COMPAS dataset. (λ = 0.005)

Figure: The decision tree generated by BinOCT and OSDT on the Tic-Tac-Toe data. Trees of BinOCT must be complete binary
trees, while OSDT can generate trees of any shape.

Figure: The decision tree generated by BinOCT and OSDT on Monk1 dataset. The tree generated by BinOCT includes useless
splits, while OSDT can avoid this problem.

Paper and Code

•Paper: https://arxiv.org/abs/1904.12847
•Code: https://github.com/xiyanghu/OSDT

http://
http://

