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Abstract

Constructing and maintaining useful representations of sensory experience is es-
sential for reasoning about ones environment. High-level associative (topological)
maps can be useful for efficient planning and are easily constructed from experience.
Conversely, embedding new experiences within a metric structure allows them to
be integrated with existing ones and novel associations to be implicitly inferred.
Neurobiologically, the synaptic associations between hippocampal place cells and
entorhinal grid cells are thought to represent associative and metric structures,
respectively. Learning the place-grid cell associations can therefore be interpreted
as learning a mapping between these two spaces. Here, we show how this map
could be constructed by probabilistic message-passing through the hippocampal-
entorhinal system, where messages are scheduled to reduce the propagation of
redundant information. We propose that this offline inference corresponds to co-
ordinated hippocampal-entorhinal replay during sharp wave ripples. Our results
also suggest that the metric map will contain local distortions that reflect the in-
ferred structure of the environment according to associative experience, explaining
observed grid deformations.

1 Introduction

Localizing in an environment relies on two sources of information. Firstly, unique sensory inputs
may indicate absolute location in space. Secondly, path integration (PI) can update previous location
on a metric map by integrating self-motion. Sensory inputs are required to correct the accumulation
of error by PI, but problems arise when their role in localization occurs simultaneously with learning
of their correspondence to locations on the metric map (SLAM) [10]. In general, computing the joint
map-location distribution requires probabilistic inference over previous sensory observations and
movements given their respective uncertainties. Associative representations can be computationally
cheaper when used to perform high-level planning [56]. However, organizing associative structure
in a metric space allows for efficient integration of new experience and the inference of metric
relationships between sensory states in the absence of physical experience. This ‘short-cutting’ ability
is crucial for efficient exploration and navigation [58; 55].

1.1 Place and grid cells

Neurobiologically, grid cells (GC) in the medial entorhinal cortex (mEC), whose firing fields are
arranged on a periodic hexagonal lattice in space, are thought to play a role in PI [17] and constitute
a metric map of space [22]. Their firing patterns are stable over time suggesting stabilization by
environmental cues [24; 12]. Conversely, place cells (PC) in the hippocampus (HPC) fire at distinct
locations [43] and are thought to respond to specific sensory stimuli such as environmental geometry
[44; 30]. PCs represent states in sensory space such that their activity most often reflects the animal’s
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current location, their synaptic associations constitute an associative map of an environment [40]
and their connections to GCs stabilize the GC metric map. Although PC and GC activity most often
represents the current location, coordinated sequential ‘replay’ of remote cells (i.e. whose firing fields
are non-local) also occurs [15; 45].

1.2 Summary of contributions

This work proposes a novel dual-systems account of probabilistic localization and learning in the
HPC-mEC system, on both an algorithmic and implementation level [33]. Predictions from our
hypothesis are evaluated by comparison to existing experimental data by both numerical simulations
and theoretical analyses.

We propose that the HPC-mEC system operates in two distinct regimes. When navigating using
a known map (i.e. locations of sensory states in metric space), an online system probabilistically
integrates PI and sensory information for localization (Fig. 4A). A simple learning mechanism allows
the online system to learn initial priors over the map structure (Fig. 4B). However, conflicts in the
PI and sensory estimates of location necessitate more complex offline inference to correct the map,
which requires inference over previous sensory observations and movements (Fig. 2) [48].

We show how this offline system can use the associative structure stored in the recurrent CA3 synapses
between PCs to construct and correct a metric map stored in the synaptic associations between GCs
and PCs, corresponding to one-shot learning. The distribution over landmark locations is computed
via message passing [47] between PCs. Scheduling messages to minimize the propagation of
redundant information not only improves performance, but also produces structured reactivations
of PCs resembling those observed during hippocampal ‘replay’ [15; 9; 50]. Our model provides
both a functional and mechanistic interpretation for observations of coordinated HPC-mEC replay
[45; 64] and makes novel experimental predictions. In contrast to reward-based interpretations [36],
our model poses replay as structured coordinated information transfer though complementary metric
and associative representations of the world. Sharp-wave ripples [7; 42] which coincide with replay
events may correspond to structural prediction errors.

Lastly, when the learned associative structure is non-Euclidean, organization within a metric space
predicts recently observed local distortions in GC firing patterns, such that the underlying structure
represented by GCs reflects the informational ‘similarity’ of distinct locations in stimulus space.

2 Related work

Previous theoretical models have proposed how current location might be represented in the population
firing rates of grid cells [35], updated by PI information and corrected by sensory inputs [24; 17; 13].
However, these mechanisms do not describe how uncertainty in either the PI or sensory inputs could
be integrated probabilistically, instead assuming that input from familiar landmarks ’reset‘ the current
distribution.

Probabilistic localization assumes an existing mapping from sensory stimuli to location in metric
space. Although several studies have demonstrated how this mapping might be learned [39; 38; 41],
these models do not link experimentally observed local distortions [23; 54] in the firing patterns
of grid cells to non-uniformities in their underlying stimulus input, or to non-uniform behavioural
sampling.

Neither do these models link to the phenomenon of coordinated HPC/mEC replay. During replay,
place and grid cells with overlapping spatial firing fields are observed to reactivate during offline
states (such as sleep, grooming or pausing at choice points), in spatial sequences that recapitulate
behavioural trajectories experienced by the animal during online behaviour [16; 9]. Forward [9] and
reverse [16] is thought to be associated with planning and consolidation during reward-based learning,
respectively. Of existing models, only one provides normative insights [37] and none account for
coordinated mEC-HPC replay [29; 46; 64]. Ours is the first model to implicate replay in probabilistic
learning of spatial structure, providing an alternative view to reward-based accounts.

Our model does not tackle the problem of learning the form of the metric mEC space into which the
environmental structure is embedded, although it is possible that these representations can emerge
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Figure 1: A The online model. The GC firing rates at time t are updated by PI before correction by
weighted input from PC firing. Each hexagon defines a single grid module with NG GCs. Plotting
spikes from a single GC against the position of the animal generates the GC firing pattern. B Learning
corrects the observation model towards the predicted estimate.

from unsupervised learning in navigational tasks [2; 62] or as the eigendecomposition of the transition
matrix between states in an environment [52] or as predictive functions of sensory inputs [61].

3 Model

3.1 Grid and place cells

A single GC will fire periodically at the vertices of a triangular lattice in 2D space (Fig. 1A). GCs
exist in anatomical ‘modules’, groups of GCs whose firing patterns share the same spatial scale
(distance between vertices) and orientation relative to the environment, but differ in their spatial
offsets [22]. Moreover, the spatial scale increases in discrete ‘jumps’ along one anatomical axis of
the mEC, suggesting that these modules encode a hierarchical representation of space [3; 14; 34].
G(x) describes the probability distribution over current location within a periodic, discretized region
of state space x. Biophysically, this would be represented by the firing rates of NG GCs G (i.e.
a discretization over the support of G(x)). Although we only consider a single grid scale, our
results naturally extend to multi-scale architectures, theoretically allowing encoding of ranges up to
[21; 34; 60] or beyond [14] the largest grid scale.

PC firing P represents the probability of the presence of specific sensory stimuli, which in a spatial
context can be considered as ‘landmarks’ whose location in physical space is denoted by µp. In
our simulations, the firing of each of the NP PCs is described by a Gaussian receptive field ppt ∼
f(x̂′t|µp, σ

2
PCI), where x̂′t ∼ N (x′t, σ2

PCI) is a noisy estimate of the current position in physical space
x′. We will use the notation Bp(x) to denote the continuous distribution over the location of landmark
p in metric (GC) space (its belief ). Biophysically however, this would be encoded in the synaptic
associations between PC p and the GCs, i.e. the pth column of the matrix B ∈ RNP×NG . We consider
these synaptic associations to constitute the metric embedding of sensory experience (Fig. 4A).

3.2 Online localization and learning

Given a suitable representation of uncertainty and a known map, localization is achieved by a
process of recursive Bayesian estimation (RBE), where a model-based prediction based on perceived
movement is corrected by incoming sensory information (Fig. 1A).

Movement update The location distribution (grid module activity) from the previous time-step
G(xt−1) is updated according to perceived movement given a transition model T (xt|xt−1, ût):

G′(xt) =

∫
T (xt|xt−1, ût) ·G(xt−1)dxt−1 (1)

where G′(xt) is the movement estimate and ût ∼ N (ut, σ
2
PIuI) is the noisy perceived movement

at time t, where σPI scales the noise with distance travelled. Since the firing of GCs are periodic
across space, we use a wrapped Gaussian function defined over the triangular lattice to account for

3



Figure 2: The offline model. A Inferred distance is a function of the ‘overlap’ in the receptive fields.
B Inferred pairwise distances between place fields. C Inferred distances are used to recover the
absolute structure of the world. D Structural inference on static structures with noisy initial priors
("Initial"). Inferred structure is sensitive to the topology of the environment ("Broken Ring").

the probability of having transitioned from any of the infinite grid tilings:

T (xt|xt−1, ût) =

∞∑
m,n=−∞

f(xt − xt−1|ût + cmn, σ
2
PIûtI) (2)

where and cmn = 2λ(mv1 + nv2) is a spatial offset of scale λ given the lattice basis vectors
v1 = [cos(φ), sin(φ)] and v2 = [cos(φ+ π/3), sin(φ+ π/3)] and φ is the global orientation of the
grid pattern. Where grid space is represented discretely by the firing rates of a population of GCs, the
periodic form of the transition function can be replaced by multiplication by a velocity dependent
circulant matrix T(ût) (see Appendix C.1), linking to the eigendecomposition of diffusive transition
matrices [51] and generalizing a previous mechanism to the case of noisy PI [5].

Observation update The predicted estimate is refined by incoming sensory input to give the
integrated estimate G(xt):

G(xt) =
1

Kt
H(pt|xt) ·G′(xt) (3)

whereH(Pt|xt) =
∑

p=1:NP
pptBp(xt) is the observation model defining the likelihood of the current

sensory inputs Pt given the predicted location. The normalization constant Kt is the sum over the
current GC activity, implemented by a simple inhibitory feedback circuit: τ dG(x)

dt = −
∫
G(x)dx +E

, where E = 1 is a constant excitatory drive such that the sum of the GC activity sums to unity at
steady-state.

Online learning as prior formation Where the distribution over landmark locations are encoded
in the PC-GC synaptic weights matrix B and the predicted estimate of location by the GC firing rates
G′t, a simple error-based learning rule with learning rate α = 1e− 4 minimizes the error between the
observation and movement models (Fig. 1B):

1

α

dB
dt

= 2p>t (G′t − PtB) (4)

3.3 Offline message passing for probabilistic structural inference

During exploration of a novel environment, the online model produces stable learning when PI noise
is low and the transition structure is static (Fig. 1A). However, all learning is local: only the synaptic
weights of the currently active cells are modified at each time-step. This is not a full solution to the
SLAM problem, which requires finding the most likely configuration of sensory observations (land-
marks) {bp}p=1:NP

and current location (in grid space) given all historic observations and perceived
movements, described by the joint map-location distribution p(xt, {bp}p=1:NP

|P0:t, û0:t, x0) (see
Appendix Fig. 1 for a summary of the anatomical mapping). Computing this requires integrating
over all possible configurations of PC locations, which requires inference over previous and non-local
observations. There are several advantages of a system capable of propagating information through
non-local locations. Firstly, updates to the perceived location of a given landmark cause associated
landmarks to also be updated without needing to be re-visited. Secondly, multiple weak (high
variance) observations can together form strong hypotheses if those observations are consistent.
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The hippocampus as a cognitive graph The structure of an environment can be inferred from
pairwise distance observations between landmarks [10; 40]. Intuitively, consider a ‘spring network’ of
connected landmarks, where the edges represent noisy pairwise observations with stiffness and length
equal to the certainty and estimated pairwise distance, respectively (see Appendix D.1). Convergence
is contingent on the fact that, despite large absolute errors in landmark location (due to noisy PI),
errors in relative pairwise distance measurements are correlated such that their variance decreases
over time [10]. Relaxing the ‘spring mesh’ is equivalent to finding the maximally likely configuration
of landmarks, if pairwise distance observations (pairwise potentials ψij) are described by Gaussians
with mean dij and variance σij = σPC + dijσ

PI that are equal to and proportional to the perceived
distance, respectively (the latter reflecting accumulation of PI noise in Eq. 2; Fig. 2C; Appendix D.1).
The PC-GC synaptic associations can then be viewed as priors over the locations of each landmark
in metric space, ‘anchoring’ the inferred structure which would otherwise be translation / rotation
invariant. Together, the associative structure and metric mapping, encoded in the PC-PC (A) and
PC-GC (B) associations respectively, define the posterior distribution over the landmark locations bi:

P ({bp}p=1:NP
) = 2

∏
1≤i≤NP

∏
i≤j≤NP

ψij(bi,bj)
∏

1≤i≤NP

Bi(bi) (5)

where the ψij(bi,bj) = ψji(bj ,bi) =
∑∞

m,n=−∞ exp
(
− 1

2σ
−2
ij (dij − ||bi− bj + cmn||2)2

)
terms

define the pairwise potentials between PCs and λ is the grid scale. Note that Bp(bp) here defines
the continuous distribution of the location of PC p in metric (GC) space for consistency with the
literature; in reality it is a discrete vector described by the pth row of B.

Associative encoding in the hippocampus We propose that these pairwise distance measurements
are encoded in the recurrent synaptic associations between CA3 PCs, constituting an associative
representation of the structure of space [40]. Given Gaussian place fields, a simple modified Hebbian
learning rule with constant decay learns the pairwise PC weights (associative map) A:

1

α

dAij

dt
= pi(t)pj(t)−A2

ij (6)

which converges in the steady-state to Aij =
√
< pi(t), pj(t) >, the square root of the correlation

between the firing of two PCs (see Appendix D.1 for more details on the choice of learning rule).
Where all place fields have equivalent receptive field covariance, the inferred Euclidean distance of
PC j from the perspective of i is then proportional to the true distance given a simple transformation:
d2
ij = −log(Aij) = (µi − µj)

2/2σ2
PC. The resulting form for the recovered distance is also scaled

by the receptive fields’ variance (the Bhattacharyya distance) [4], such that ‘closeness’ is related
also to the ‘discriminability’ (Fig. 2A). We discuss this scaling constant later (see also Appendix
D.3). Our approach differs subtly from typical graph-based SLAM systems [31; 57] which treat each
observation independently. Instead, the CA3 synapses effectively average over multiple pairwise
measurements. By assuming that noise in the pairwise distance measurements scale linearly with
distance, both the mean and variance of the Gaussian describing this distribution is efficiently encoded
in a single PC-PC synapse.

Offline message passing for probabilistic structural inference The map configuration in Eq. 5
is approximated by message passing between PCs via the belief propagation algorithm (BP) [47], a
single update cycle consisting of a message broadcast and a belief update. A message is defined as
the probability distribution of a receiving node given the broadcasting node’s belief and the pairwise
potential ψij between the two (see below). Firstly, at iteration n the node t integrates all messages
m

(n)
u→t(bt) received from its neighbours u ∈ Γt with its prior self-belief B(0)

t (bt) to compute its
updated self-belief:

B
(n)
t (bt) ∝ B(0)

t (bt)
∏
u∈Γt

m
(n)
u→t(bt) (7)

Eq. 7 therefore represents the belief of node t over its own state (location) given all messages from
its connected neighbours in the graph and its prior. Secondly, node t broadcasts messages back to its
neighbours expressing its belief over their states:

m
(n+1)
t→u (bu) ∝

∫
ψtu(bt,bu)B

(n)
t (bt)/m

(n)
u→t(bt)dbt (8)

where the new message is divided by the reciprocal message from the previous iteration [47].
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Figure 3: The loop-closure
task. A The agent navigates a
novel circular track, accumu-
lating PI error. Lap comple-
tion (iii) triggers an offline in-
ference event (see main text
and Supp. Video 1) for de-
tails). B Structure inferred af-
ter loop-closure. C PE is re-
duced on completion of sub-
sequent laps. D Offline infer-
ence allows one-shot learn-
ing when compared to the on-
line system.

Principled message scheduling In a naiive ‘sequential’ schedule, all PCs broadcast messages
before updating their beliefs. Instead, we implement an asynchronous message schedule (‘Max-
Entropy’) in which only cells whose belief has changed by some threshold amount broadcast
messages at the next time-step [11]. The ‘message tension’ Tn

i is defined by the cumulative Jensen-
Shannon divergence (symmetric KL; see Appendix E) between beliefs at successive time-steps:
Tn
i = Tn−1

i + JS(bn
i ||b

n−1
i ). When the message tension is below a predefined threshold Tmin, a

node is considered converged and stops broadcasting messages. A single offline inference event is
defined by the convergence of all nodes of the graph.

3.4 Prediction errors as an arbitration mechanism

Rather than continually perform map updates, we propose a more computationally (and energetically)
favourable scheme in which the offline system is only recruited when the online system is performing
poorly (batch updates are also known to be more robust [1]). We define the ‘prediction error’ (PE) of
the online system: Et = H(G′t)−H(ptB), to compare the predicted and observed GC distribution,
where H(·) is the information entropy such that the PE term is positive when the inbound sensory
information has a lower entropy than the current location estimate. Offline inference events are then
initiated by positive PEs above a threshold E0. Note that the form of the PE update rule is similar
but not identical to the rule for broadcasting messages during offline inference; sensory input that
increases the entropy should not trigger offline inference events.

4 Results

4.1 Inference on static structures

We first tested the ability of the offline system to infer the structure of three environments (Fig. 2).
Given erroneous initial estimates corresponding to priors formed during noisy PI, the system is able
to correctly infer the true structures as those that satisfied pairwise measurements between states
(Fig. 2D). However, an immediate consequence of the system is that this inferred structure will be
sensitive to topology. Although PI will impose metric priors, where these priors are unreliable (as in
the case of navigating around an unfamiliar ring environment under noisy PI), the inferred structure
is sensitive to the ‘closure’ of loops (Fig. 2D, "Broken Ring").

4.2 Loop closure experiment

In the loop closure task (Fig. 3; Supp. Video 1), place fields are distributed uniformly around a circular
1D track. Initial location confidence is high, such that place and GCs active at the start location
(0 rads) form strong associations. As the agent navigates around the track, PI error accumulates and
the confidence in location decreases, resulting in subsequent PC-GC associations becoming more
diffuse and less likely to correspond to the true structure (Fig. 3Ai). Due to the accumulated error,
when the agent completes a full lap it receives a sharp input from the PCs initially active at the starting
location, producing a strong positive PE and triggering an offline inference event (Fig. 3Aiii).
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