Appendix

A Experimental Details

[Layer [CNN-9 (CIFAR-10/100) | CNN-10 (ImageNet-2012) |
[7x7, 64], Stride 2
Convl.x [3x3,32]x3 3 %3, Max Pooling, Stride 2
[3%3,64]x3
Pooll 2 %2 Max Pooling, Stride 2
Conv2.x [3%3,64]x3 [[3x3, 128]x3
Pool2 2% 2 Max Pooling, Stride 2
Conv3.x [3x3, 128]x3 [[3%x3,256]%x3
Pool3 2x2 Max Pooling, Stride 2
Fully Connected 256 [512

Table 7: Our plain CNN architectures with different convolutional layers. Conv1l.x, Conv2.x and Conv3.x
denote convolution units that may contain multiple convolution layers. E.g., [3x3, 64]x3 denotes 3 cascaded
convolution layers with 64 filters of size 3x3.

In CIFAR-10/100, our DNS predictor utilizes the structure of “Input - 64 hidden units (SphereConv,
only x being normalized) - 9 output units (no ReLU)”, and our UNS predictor uses the structure of
“Input - 128 hidden units (SphereConv, only x being normalized) - 81 output units (no ReLU)”. Note
that, SphereConv comes from [39]. For DNS predictor, we will add an identity matrix to the output
of the predictor to improve its initialization point. For UNS predictor, we simply use the output
of the network as the neural similarity matrix. For CIFAR-10/100, we use the same training data
augmentation as in [36].

On ImageNet-2012 dataset, the DNS predictor uses the structure of “Input - 32 hidden units (Sphere-
Conv, only input is normalized) - 9 output units (no ReLU)”

For meta-learning on Mini-ImageNet dataset, we use DNS for all experiments. For our non-MAML
baseline and NSN models, we train the models on both training and validation set of Mini-ImageNet,
while we train the MAML-trained static NSN model with the training set only.

For non-MAML training, we use Adam optimizer with Ir = le — 3, 81 = 0.9, 52 = 0.999. For
non-MAML testing, we finetune the model on query sets with SGD with Ir = 0.01, momentum = 0.9,
dampening = 0.9 and weight decay = 0.001 for 100 epochs.

In non-MAML static NSN experiments, We train the whole model from scratch and fix the static
similarity matrices to be identity; during testing, we only finetune the matrices and the classifier.
The (non-MAML) dynamic NSN experiments are similar excluding that we have no static similarity
matrix anymore.

In MAML-trained static NSN experiments, we use the trained non-MAML static NSN as a pretrained
model, and meta-train both the static similarity matrices and the classifier. For the MAML gradient
steps on the support set, we first run 5 gradient steps on both the static similarity matrices and the
classifier with step size = 0.2. Because MAML-trained static NSN has less capacity for finetuning
on query sets, we run additional 20 gradient steps with the same step size but on the classifier only.

The CNN-9 network architecture of dynamic NSN on Mini-ImageNet is the same as the one we use
on CIFAR-10/100.

Our code is publicly available at https://github.com/wyliu/NSL. For all the missing experi-
mental details, please refer to our code repository.

13

https://github.com/wy1iu/NSL
https://github.com/wy1iu/NSL

B Local and Global Neural Similarity

B.1 Formulation

The original dynamic neural similarity is performed in a local fashion, meaning that the similarity
matrix operates on the local patch instead of the entire input feature map. We extend the original
neural similarity from operating on the local patch to operating on the global input feature map. As
a result, we call the original neural similarity as local neural similarity (LNS). Specifically, for the
input feature map X € R™*™*¢ with size m x m x c and a convolution kernel W € R¥*Fx¢ of
size k X k x c (stride 1 and dimension-preserving padding), the global neural similarity (GNS) for
convolution is formulated as

Fy =W4 MgXp (8)

where F]%/I is a vector of size mm x 1 which is different from the standard neural similarity (with stride
1 and dimension-preserving padding), W7 is the block circulant matrix (a special case of Toeplitz
matrix) for performing 2D convolution, My is the neural similarity matrix, and X € R™mex1
is flattened vector of the input feature map X. The block circulant matrix W§ converts the 2D
convolution into a matrix multiplication. The GNS matrix Mg € R™™¢X™™m¢ ygually takes the
following block-diagonal form with the same block matrix Mg:

X
Mg e Rmmxmm
Mg — ..] c Rmmcxmmc (9)
S mmXmm
M eR
where there are ¢ matrices M, 5 € Rmmxmm Note that, if M, 5 is a diagonal matrix, then it will serve
as arole similar to a spatial attention mask for the input feature map (The spatial attention map is also

shared across different channels of the input feature map if we require Mg to be a block-diagonal
matrix with sharing blocks).

Local Neural Similarity Global Neural Similarity
models single location models multiple locations

L N oo

1 AN -,

OO0 . | _-~f0000

IR NN e I mIn [n

""""" AN ’/ /

IO 3 |O0000

S o -~ P //
> ~
Input Feature Map Output Feature Map

Figure 4: Comparison between neural similarity and generalized neural similarity.

LNS vs. GNS. The difference between neural similarity and global neural similarity lies in whether
the convolution is taken into consideration. For the original neural similarity, although we apply it
to convolution kernel, we do not consider the sliding window operation. Instead, we only consider
the local inner product operation and combine the neural similarity matrix locally. For global neural
similarity, we take the convolution into account and transform the original convolution operation to a
matrix multiplication (using Toeplitz matrix). An intuitive comparison is given in Figure 4. From
the computation perspective, GNS and LNS are not equivalent in general. For example, we consider
the case where both M in LNS and Mg in GNS are diagonal matrix. Although both similarity
matrix share the same structure, the equivalent outputs are totally different. For LNS, each position
in the output feature map is obtained with a weighted inner product. Diagonal M serves as the
element-wise weighting factor for computing the inner product, and the same set of weighting factor
will repeatedly be applied to every sliding window (with the same size of convolution kernel) in the
input feature map. In contrast, Diagonal M in GNS serves as a spatial attention mask for the entire
input feature map. It is equivalent to first compute a Hadamard product between the input feature
map and the spatial mask induced by Mg, and then perform standard 2D convolution with kernel W

14

on the result. GNS and LNS are only equivalent when GNS only considers an input feature map of
size 1 X 1 X c (i.e., the input feature map contains only one spatial location). Both static GNS and
dynamic GNS are similar to the corresponding variant in LNS.

Self-attention as Dynamic GNS. Dynamic GNS can be written as follows:
Fiy =Wy - Mg(X;0) Xp (10)

where Mg (X; 6) is a function dependent on X . We show that self-attention [62] is a special case of
dynamic GNS. We first resize the dimension of X in Eq. (10) to mm X ¢ when multiplying with
Mg (X ;0). Then after the multiplication, we resize X back to m x m X ¢. We consider the case of
Mg (X;0)=G1(X)G2(X) T where G;(X)isa 1 x 1 convolution that transforms X € R™*mx¢
to a new feature map with size m x m X ¢ and then resize the new feature map to G1(X) € R™™*¢,
G2(X) is also a combination of 1 x 1 convolution and a resize operation, same as G1 (X). One can
see that Mg (X ;0)=G1(X)G2(X)T is essentially a self-attention map. By multiplying the self
attention map back to the feature map, we have exactly the same self-attention mechanism as in [62].
As a form of dynamic GNS, the self attention operation can be written as

Figrauention — W T . Resize <G1(X)G2(X)T - Resize(Xy, mm,), mme, 1) (11)

Connection to spatial transformer. Dynamic GNS is also closely related to spatial transformer
networks [24]. Spatial transformer contains localization network, grid generator, and sampler. In
fact, the localization networks take the feature map as input and output parameters for grid generator.
Then the grid generator and the sampler transform the feature map. The pipeline resembles the neural
similarity learning, and can be viewed as a special case of GNS.

B.2 Preliminary Experiments

We implement self-attention with our dynamic GNS in both standard CNN and SphereNet [39],
and then evaluate them with image classification on CIFAR-10. To simplify evaluation, we only
perform mild data augmentation on CIFAR-10 training set, unlike the main paper. We use the CNN-9
architecture in [39] for both standard CNN and SphereNet, but we use 128, 192 and 256 as the
number of filters in Conv1.x, Conv2.x and Conv3.x. For more details, refer to our code repository.
Table 8 shows the results of CNN and SphereNet with and without self-attention. We can see that
self-attention does not seem to bring too many gains to the image classification task. However, we
observe that using SphereNet can boost the advantages of self-attention and achieve considerable
accuracy gain.

Method [Accuracy (%)
CNN 90.86
CNN w/ self-attention 90.69
SphereNet 91.31
SphereNet w/ self-attention 91.76

Table 8: CNN and SphereNet with self-attention (dynamic GNS) on CIFAR-10.

15

https://github.com/wy1iu/NSL

C Significance of NSL for Meta-Learning

One of the key in MAML [14] is that it uses the gradient update to make the network parameter
dynamically dependent on the input. Essentially, we can view it as a novel realization of dynamic
neural networks except that the network parameters are dynamically changed following the gradient
direction. Different from MAML, dynamic NSL realizes the dynamic neural network with an
additional neural similarity predictor (i.e., an additional neural network). Essentially, we learn the
most suitable direction to update the network parameters adaptively based on the input. As a result,
the biggest difference between MAML and dynamic NSL is how we make the network parameters
dynamically dependent on the input. MAML uses the gradient information from the gallery set in
testing stage, while dynamic NSL learns how to change the network parameters with a neural network
during training. Empirically, we find that dynamic NSL outperforms MAML with a significant
margin, partially validating that using a neural network to approximate the update of the network
parameters yields better generalizability.

16

