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Abstract

We introduce a variant of the k-nearest neighbor classifier in which k is chosen
adaptively for each query, rather than being supplied as a parameter. The choice
of k depends on properties of each neighborhood, and therefore may significantly
vary between different points. For example, the algorithm will use larger k for
predicting the labels of points in noisy regions.
We provide theory and experiments that demonstrate that the algorithm performs
comparably to, and sometimes better than, k-NN with an optimal choice of k.
In particular, we bound the convergence rate of our classifier in terms of a lo-
cal quantity we call the “advantage”, giving results that are both more general
and more accurate than the smoothness-based bounds of earlier nearest neighbor
work. Our analysis uses a variant of the uniform convergence theorem of Vapnik-
Chervonenkis that is for empirical estimates of conditional probabilities and may
be of independent interest.

1 Introduction

We introduce an adaptive nearest neighbor classification rule. Given a training set with labels {±1},
its prediction at a query point x is based on the training points closest to x, rather like the k-nearest
neighbor rule. However, the value of k that it uses can vary from query to query. Specifically, if there
are n training points, then for any query x, the smallest k is sought for which the k points closest to x
have labels whose average is either greater than +∆(n, k), in which case the prediction is +1, or less
than −∆(n, k), in which case the prediction is −1; and if no such k exists, then “?” (“don’t know”)
is returned. Here, ∆(n, k) ∼

√
(log n)/k corresponds to a confidence interval for the average label

in the region around the query.

We study this rule in the standard statistical framework in which all data are i.i.d. draws from some
unknown underlying distribution P on X ×Y , where X is the data space and Y is the label space. We
takeX to be a separable metric space, with distance function d : X×X → R, and we take Y = {±1}.
We can decompose P into the marginal distribution µ on X and the conditional expectation of the
label at each point x: if (X,Y ) represents a random draw from P , define η(x) = E(Y |X = x). In
this terminology, the Bayes-optimal classifier is the rule g∗ : X → {±1} given by

g∗(x) =

{
sign(η(x)) if η(x) 6= 0
either −1 or +1 if η(x) = 0

(1)

and its error rate is the Bayes risk, R∗ = 1
2EX∼µ [1− |η(X)|]. A variety of nonparametric classi-

fication schemes are known to have error rates that converge asymptotically to R∗. These include
k-nearest neighbor (henceforth, k-NN) rules [FH51] in which k grows with the number of training
points n according to a suitable schedule (kn), under certain technical conditions on the metric
measure space (X , d, µ).
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Figure 1: For values of x on the left half of the shown interval, the pointwise bias η(x) is close to
−1 or 1, and thus a small value of k will yield an accurate prediction. Larger k will not do as well,
because they may run into neighboring regions with different labels. For values of x on the right half
of the interval, η(x) is close to 0, and thus large k is essential for accurate prediction.

In this paper, we are interested in consistency as well as rates of convergence. In particular, we find
that the adaptive nearest neighbor rule is also asymptotically consistent (under the same technical
conditions) while converging at a rate that is about as good as, and sometimes significantly better
than, that of k-NN under any schedule (kn).

Intuitively, one of the advantages of k-NN over nonparametric classifiers that use a fixed bandwidth
or radius, such as Parzen window or kernel density estimators, is that k-NN automatically adapts to
variation in the marginal distribution µ: in regions with large µ, the k nearest neighbors lie close to
the query point, while in regions with small µ, the k nearest neighbors can be further afield. The
adaptive NN rule that we propose goes further: it also adapts to variation in η. In certain regions of
the input space, where η is close to 0, an accurate prediction would need large k. In other regions,
where η is near −1 or 1, a small k would suffice, and in fact, a larger k might be detrimental because
neighboring regions might be labeled differently. See Figure 1 for one such example. A k-NN
classifier is forced to pick a single value of k that trades off between these two contingencies. Our
adaptive NN rule, however, can pick the right k in each neighborhood separately.

Our estimator allows us to give rates of convergence that are tighter and more transparent than those
customarily obtained in nonparametric statistics. Specifically, for any point x in the instance space
X , we define a notion of the advantage at x, denoted adv(x), which is rather like a local margin.
We show that the prediction at x is very likely to be correct once the number of training points
exceeds Õ(1/adv(x)). Universal consistency follows by establishing that almost all points have
positive advantage.

1.1 Relation to other work in nonparametric estimation

For linear separators and many other parametric families of classifiers, it is possible to give rates
of convergence that hold without any assumptions on the input distribution µ or the conditional
expectation function η. This is not true of nonparametric estimation: although any target function can
in principle be captured, the number of samples needed to achieve a specific level of accuracy will
inevitably depend upon aspects of this function such as how fast it changes [DGL96, chapter 7]. As a
result, nonparametric statistical theory has focused on (1) asymptotic consistency, ideally without
assumptions, and (2) rates of convergence under a variety of smoothness assumptions.

Asymptotic consistency has been studied in great detail for the k-NN classifier, when k is allowed
to grow with the number of data points n. The risk of the classifier, denoted Rn, is its error rate
on the underlying distribution P ; this is a random variable that depends upon the set of training
points seen. Cover and Hart [CH67] showed that in general metric spaces, under the assumption
that every x in the support of µ is either a continuity point of η or has µ({x}) > 0, the expected
risk ERn converges to the Bayes-optimal risk R∗, as long as k → ∞ and k/n → 0. For points
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in finite-dimensional Euclidean space, a series of results starting with Stone [Sto77] established
consistency without any assumptions on µ or η, and showed that Rn → R∗ almost surely [DGKL94].
More recent work has extended these universal consistency results—that is, consistency without
assumptions on η—to arbitrary metric measure spaces (X , d, µ) that satisfy a certain differentiation
condition [CG06, CD14].

Rates of convergence have been obtained for k-nearest neighbor classification under various smooth-
ness conditions including Holder conditions on η [KP95, Gyö81] and “Tsybakov margin” condi-
tions [MT99, AT07, CD14]. Such assumptions have become customary in nonparametric statistics,
but they leave a lot to be desired. First, they are uncheckable: it is not possible to empirically
determine the smoothness given samples. Second, they view the underlying distribution P through
the tiny window of two or three parameters, obscuring almost all the remaining structure of the
distribution that also influences the rate of convergence. Finally, because nonparametric estimation is
often local, there is the intriguing possibility of getting different rates of convergence in different
regions of the input space: a possibility that is immediately defeated by reducing the entire space to
two smoothness constants.

The first two of these issues are partially addressed by the work of [CD14], who analyze the finite
sample risk of k-NN classification without any assumptions on P . Their bounds involve terms that
measure the probability mass of the input space in a carefully defined region around the decision
boundary: that is, bounds that are tailored to the specific distribution P , rather than reflecting worst-
case behavior over some large class to which P belongs. However, the expressions for the risk are
somewhat hard to parse, in large part because of the interaction between n and k.

In the present paper, we obtain finite-sample rates of convergence that are fine-tuned not just to the
specific distribution P but also to the specific query point. This is achieved by defining a margin,
or advantage, at every point in the input space, and giving bounds (Theorem 1) entirely in terms of
this quantity. For parametric classification, it has become common to define a notion of margin that
controls generalization. In the nonparametric setting, it makes sense that the margin would in fact
be a function X → R, and would yield different generalization error bounds in different regions of
space. Our adaptive nearest neighbor classifier allows us to realize this vision in a fairly elementary
manner.

The advantages of setting k locally have been pointed out and quantified in recent work on non-
parametric regression [DGKL94, CS18], notably that of [Kpo11]. Although it is common to reduce
classification to regression in nonparametric analysis, the right choice of k may be fundamentally
different in the two settings. This is reflected in the difference between our setting for k and that
of [Kpo11]; for instance, the physical value of the radius containing k points matters in that work
while playing no role in ours. Moreover, the benefit of local adaptivity may be more pronounced for
classification than for regression. Our analysis shows, for instance, that there is a radius rx around
each point x such that prediction based on training points in B(x, rx) will with high probability be
perfect, provided there are enough such points. This is not true of regression, where the target y is a
real value and thus the radius needs to keep shrinking.

Organization. Most proofs are relegated to the appendices.

In Section 2, we introduce the formal model of learning and define some basic geometric notions, as a
prelude to presenting the adaptive k-NN algorithm in Section 3. In Sections 4 and 5 and Appendix A,
we state and prove consistency and generalization bounds for this classifier, and compare them with
prior work in the k-NN literature. Our bounds exploit a general VC-based uniform convergence
statement which is presented in Section 6 and proved in a self-contained manner in Appendix B.

2 Setup

Take the instance space to be a separable metric space (X , d) and the label space to be Y = {±1}.
All data are assumed to be drawn i.i.d. from a fixed unknown distribution P over X × Y .

Let µ denote the marginal distribution on X : if (X,Y ) is a random draw from P , then
µ(S) = Pr(X ∈ S)

for any measurable set S ⊆ X . For any x ∈ X , the conditional expectation, or bias, of Y given x, is
η(x) = E(Y |X = x) ∈ [−1, 1].
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Similarly, for any measurable set S with µ(S) > 0, the conditional expectation of Y given X ∈ S is

η(S) = E(Y |X ∈ S) =
1

µ(S)

∫
S

η(x) dµ(x).

The risk of a classifier g : X → {−1,+1, ?} is the probability that it is incorrect on pairs (X,Y ) ∼ P ,

R(g) = P ({(x, y) : g(x) 6= y}). (2)
The Bayes-optimal classifier g∗, as given in (1), depends only on η, but its risk R∗ depends on µ. For
a classifier gn based on n training points from P , we will be interested in whether R(gn) converges
to R∗, and the rate at which this convergence occurs.

The algorithm and analysis in this paper depend heavily on the probability masses and biases of balls
in X . For x ∈ X and r ≥ 0, let B(x, r) denote the closed ball of radius r centered at x,

B(x, r) = {z ∈ X : d(x, z) ≤ r}.
For 0 ≤ p ≤ 1, let rp(x) be the smallest radius r such that B(x, r) has probability mass at least p,
that is,

rp(x) = inf{r ≥ 0 : µ(B(x, r)) ≥ p}. (3)
It follows that µ(B(x, rp(x))) ≥ p.

The support of the marginal distribution µ plays an important role in convergence proofs and is
formally defined as

supp(µ) = {x ∈ X : µ(B(x, r)) > 0 for all r > 0}.
It is a well-known consequence of the separability of X that µ(supp(µ)) = 1 [CH67].

3 The adaptive k-nearest neighbor algorithm

The algorithm is given a labeled training set (x1, y1), . . . , (xn, yn) ∈ X × Y . Based on these points,
it is able to compute empirical estimates of the probabilities and biases of different balls.

For any set S ⊆ X , we define its empirical count and probability mass as

#n(S) = |{i : xi ∈ S}|

µn(S) =
#n(S)

n
. (4)

If this is non-zero, we take the empirical bias to be

ηn(S) =

∑
i:xi∈S yi

#n(S)
. (5)

The adaptive k-NN algorithm (AKNN) is shown in Figure 2. It makes a prediction at x by growing a
ball around x until the ball has significant bias, and then choosing the corresponding label. In some
cases, a ball of sufficient bias may never be obtained, in which event “?” is returned. In what follows,
let gn : X → {−1,+1, ?} denote the AKNN classifier.

Later, we will also discuss a variant of this algorithm in which a modified confidence interval,

∆(n, k, δ) = c1

√
d0 log n+ log(1/δ)

k
(7)

is used, where d0 is the VC dimension of the family of balls in (X , d).

In comparing the algorithm of Figure 2 to standard k-nearest neighbor classification, it might at first
glance seem that we have merely replaced one parameter (k) with another (δ). This is not accurate.
Our δ is the customary confidence parameter of statistics and learning theory: it provides an upper
bound on the failure probability of the algorithm. It can be set to 0.05, for instance. The algorithm
makes infinitely many parameter choices—it sets k for each query point—and asks for just a single
failure probability that lets it know how aggressively to set its confidence intervals.
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Given:
• training set (x1, y1), . . . , (xn, yn) ∈ X × {±1}
• confidence parameter 0 < δ < 1

To predict at x ∈ X :
• For any integer k, let Bk(x) denote the smallest ball centered at x that contains

exactly k training points. a

• Find the smallest 0 < k ≤ n for which the Bk(x) has a significant bias: that
is, |ηn(Bk(x))| > ∆(n, k, δ), where

∆(n, k, δ) = c1

√
log n+ log(1/δ)

k
. (6)

• If there exists such a ball, return label sign(ηn(Bk(x))).
• If no such ball exists: return “?”

aWhen several points have the same distance to x, there might be some values of k for which
Bk(x) is undefined. Our algorithm skips such values of k.

Figure 2: The adaptive k-NN (AKNN) classifier. The absolute constant c1 is from Lemma 7.

4 Pointwise advantage and rates of convergence

We now provide finite-sample rates of convergence for the adaptive nearest neighbor rule. For
simplicity, we give convergence rates that are specific to any query point x and that depend on a
suitable notion of the “margin” of distribution P around x.

Pick any p, γ > 0. Recalling definition (3), we say a point x ∈ X is (p, γ)-salient if the following
holds for either s = +1 or s = −1:

• sη(x) > 0, and sη(B(x, r)) > 0 for all r ∈ [0, rp(x)), and sη(B(x, rp(x))) ≥ γ.

In words, this means that g∗(x) = s (recall that g∗ is the Bayes classifier), that the biases of all balls
of radius ≤ rp(x) around x have the same sign as s, and that the bias of the ball of radius rp(x)
has absolute value at least γ. A point x can satisfy this definition for a variety of pairs (p, γ). The
advantage of x is taken to be the largest value of pγ2 over all such pairs:

adv(x) =

{
sup{pγ2 : x is (p, γ)-salient} if η(x) 6= 0
0 if η(x) = 0

(8)

We will see (Lemma 3) that under a mild condition on the underlying metric measure space, almost
all x with η(x) 6= 0 have a positive advantage.

4.1 Advantage-based finite-sample bounds

We now state two generalization bounds for the adaptive nearest neighbor classifier. The first holds
pointwise—it bounds the probability of error at a specific point x—while the second is the type of
uniform convergence bound that is more standard in learning theory.

The following theorem shows that for every point x, if the sample size n satisfies n ' 1/adv(x), then
the label of x is likely to be g∗(x), where g∗ is the Bayes optimal classifier. This provides pointwise
convergence of g(x) to g∗(x) at a rate that is sensitive to the local geometry of x.
Theorem 1 (Pointwise convergence rate). There is an absolute constant C > 0 for which the
following holds. Let 0 < δ < 1 denote the confidence parameter in the AKNN algorithm (Figure 2),
and suppose the algorithm is used to define a classifier gn based on n training points chosen i.i.d.
from P . Then, for every point x ∈ supp(µ), if

n ≥ C

adv(x)
max

(
log

1

adv(x)
, log

1

δ

)
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then with probability at least 1− δ we have that gn(x) = g∗(x).

If we further assume that the family of all balls in the space has finite VC dimension d0 then we can
strengthen the guarantee to hold with high probability simultaneously for all x ∈ supp(µ). This is
achieved by a modified version of the algorithm that uses confidence interval (7) instead of (6).

Theorem 2 (Uniform convergence rate). Suppose that the set of balls in (X , d) has finite VC
dimension d0, and that the algorithm of Figure 2 uses confidence interval (7) instead of (6). Then,
with probability at least 1− δ, the resulting classifier gn satisfies the following: for every point x ∈
supp(µ), if

n ≥ C

adv(x)
max

(
log

1

adv(x)
, log

1

δ

)
then gn(x) = g∗(x).

A key step towards proving Theorems 1 and 2 is to identify the subset of X that is likely to be
correctly classified for a given number of training points n. This follows the rough outline of [CD14],
which gave rates of convergence for k-nearest neighbor, but there are two notable differences. First,
we will see that the likely-correct sets obtained in that earlier work (for k-NN) are, roughly, subsets
of those we obtain for the new adaptive nearest neighbor procedure. Second, the proof for our setting
is considerably more streamlined; for instance, there is no need to devise tie-breaking strategies for
deciding the identities of the k nearest neighbors.

4.2 A comparison with k-nearest neighbor

For a ≥ 0, let Xa denote all points with advantage greater than a:

Xa = {x ∈ supp(µ) : adv(x) > a}. (9)

In particular, X0 consists of all points with positive advantage.

By Theorem 1, points in Xa are likely to be correctly classified when the number of training points
is Ω̃(1/a), where the Ω̃(·) notation ignores logarithmic terms. In contrast, the work of [CD14]
showed that with n training points, the k-NN classifier is likely to correctly classify the following set
of points:

X ′n,k = {x ∈ supp(µ) : η(x) > 0, η(B(x, r)) ≥ k−1/2 for all 0 ≤ r ≤ rk/n(x)}
∪ {x ∈ supp(µ) : η(x) < 0, η(B(x, r)) ≤ −k−1/2 for all 0 ≤ r ≤ rk/n(x)}.

Such points are (k/n, k−1/2)-salient and thus have advantage at least 1/n. In fact,⋃
1≤k≤n

X ′n,k ⊆ X1/n.

In this sense, the adaptive nearest neighbor procedure is able to perform roughly as well as all choices
of k simultaneously. This is not a precise statement because of logarithmic factors (the sample
complexity in Theorem 1 is (1/a) log(1/a) rather than 1/a), and the resulting gap can be seen in our
experiments.

5 Universal consistency

In this section we study the convergence of R(gn) to the Bayes risk R∗ as the number of points n
grows. An estimator is described as universally consistent in a metric measure space (X , d, µ) if it
has this desired limiting behavior for all conditional expectation functions η.

Earlier work [CD14] established the universal consistency of k-nearest neighbor (for k/n→ 0 and
k/(log n)→∞) in any metric measure space that satisfies the Lebesgue differentiation condition:
that is, for any bounded measurable f : X → R and for almost all (µ-a.e.) x ∈ X ,

lim
r↓0

1

µ(B(x, r))

∫
B(x,r)

f dµ = f(x). (10)
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This is known to hold, for instance, in any finite-dimensional normed space or any doubling metric
space [Hei01, Chapter 1].

We will now see that this same condition implies the universal consistency of the adaptive nearest
neighbor rule. To begin with, it implies that almost every point has a positive advantage.
Lemma 3. Suppose metric measure space (X , d, µ) satisfies condition (10). Then, for any conditional
expectation η, the set of points

{x ∈ X : η(x) 6= 0, adv(x) = 0}
has zero µ-measure.

Proof. Let X ′ ⊆ X consist of all points x ∈ supp(µ) for which condition (10) holds true with f = η,
that is, limr↓0 η(B(x, r)) = η(x). Since µ(supp(µ)) = 1, it follows that µ(X ′) = 1.

Pick any x ∈ X ′ with η(x) 6= 0; without loss of generality, η(x) > 0. By (10), there exists ro > 0
such that

η(B(x, r)) ≥ η(x)/2 for all 0 ≤ r ≤ ro.
Thus x is (p, γ)-salient for p = µ(B(x, ro)) > 0 and γ = η(x)/2, and has positive advantage.

Universal consistency follows as a consequence; the proof details are deferred to Appendix A.
Theorem 4 (Universal consistency). Suppose the metric measure space (X , d, µ) satisfies condi-
tion (10). Let (δn) be a sequence in [0, 1] with (1)

∑
n δn <∞ and (2) limn→∞(log(1/δn))/n = 0.

Let the classifier gn,δn : X → {−1,+1, ?} be the result of applying the AKNN procedure (Figure 2)
with n points chosen i.i.d. from P and with confidence parameter δn. Letting Rn = R(gn,δn) denote
the risk of gn,δn , we have Rn → R∗ almost surely.

6 Uniform convergence of empirical conditional measures

A key piece of our analysis is a uniform convergence bound for empirical estimates of conditional
probabilities. We now discuss this bound in an abstract setting; further details are in Appendix B.

Let P be a distribution over some space X , and let A,B be two collections of events. Let x1, . . . , xn
be independent samples from P . We would like to use these to estimate P (A|B) simultaneously for
all A ∈ A, B ∈ B. It is natural to consider the empirical estimates:

Pn(A|B) =

∑
i 1[xi∈A∩B]∑
i 1[xi∈B]

.

We study the approximation error of these estimates. Note that the case where B = {X} (i.e., in
which one estimates P (A) using Pn(A) simultaneously for all A ∈ A) is handled by the classical
VC theory. Let us assume that both A,B have VC dimension upper-bounded by some d0.

To demonstrate the kinds of statements we would like, consider the case where each of A,B contains
only one event: A = {A}, and B = {B}, and set #n(B) =

∑
i 1[xi∈B]. A Chernoff bound implies

that conditioned on the event that #n(B) > 0, the following holds with probability at least 1− δ:

|P (A|B)− Pn(A|B)| ≤
√

2 log(1/δ)

#n(B)
. (11)

This bound depends on #n(B) and is thus data-dependent. To derive it, use that conditioned on
xi ∈ B, event xi ∈ A has probability P (A|B), so random variable “#n(B) · pn(A|B)” has a
binomial distribution with parameters #n(B) and P (A|B).

We would want to prove a uniform version of (11), of the form: with probability at least 1− δ,

(∀A ∈ A) (∀B ∈ B) : |P (A|B)− Pn(A|B)| ≤ O
(√

d0 log(1/δ)

#n(B)

)
.

But as we explain in the appendix, this is unfortunately false. Instead, we prove the following (slightly
weaker) variant:
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Theorem 5 (UCECM). Let P be a probability distribution over X , and let A,B be two families
of measurable subsets of X such that VC(A),VC(B) ≤ d0. Let n ∈ N, and let x1 . . . xn be n i.i.d
samples from P . Then the following event occurs with probability at least 1− δ:

(∀A ∈ A) (∀B ∈ B) : |P (A|B)− Pn(A|B)| ≤
√

ko
#n(B)

,

where ko = 1000 (d0 log(8n) + log(4/δ)), and #n(B) =
∑n
i=1 1[xi ∈ B].

7 Experiments

Figure 3: Effect of label noise on k-NN and AKNN. Performance on MNIST for different levels of
random label noise p and for different values of k. Each line in the figure on the left (a) represents the
performance of k-NN as a function of k for a given level of noise. The optimal choice of k increases
with the noise level, and that the performance degrades severely for too-small k. The table (b) shows
that AKNN, with a fixed value of A, performs almost as well as k-NN with the optimal choice of k.

We performed a few experiments using real-world data sets from computer vision and genomics (see
Section C). These were conducted with some practical alterations to the algorithm of Fig. 2.

Multiclass extension: Suppose the set of possible labels is Y . We replace the binary rule “find
the smallest k such that |ηn(Bk(x))| > ∆(n, k, δ)" with the rule: “find the smallest k such that

ηyn(Bk(x))− 1
|Y| > ∆(n, k, δ) for some y ∈ Y , where ηyn(S)

.
= #n{xi∈S and yi=y}

#n(S)
."

At left: performance of AKNN on notMNIST
for different settings of the confidence param-
eter (A = 1, 3, 9), as a function of the neigh-
borhood size. For each confidence level we
show two graphs: an accuracy graph (solid
line) and a coverage line (dashed line). For
each value of k we plot the accuracy and the
coverage of AKNN which is restricted to us-
ing a neighborhood size of at most k. In-
creasing A generally causes an increase in the
accuracy and a decrease in coverage. Larger
values of A cause AKNN to have coverage
zero for values of k that are too small. For
comparison, we plot the performance of k-
NN as a function of k. The highest accuracy
(≈ 0.88) is achieved for k = 10 (dotted hori-
zontal line), and is surpassed by AKNN with
high coverage (100% for A = 1).

Figure 4: Performance of AKNN on notMNIST. See also Figure 5.
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Figure 5: A visualization of the performance of AKNN on notMNIST. (a) The correct labels, with
prediction errors of AKNN (A = 4) highlighted. (b) The value of k chosen by the algorithm when
predicting each datapoint.

Parametrization: We replace Equation (6) with ∆ = A√
k

, where A is a confidence parameter
corresponding to the theory’s δ (given n).
Resolving multilabel predictions: Our algorithm can output answers that are not a single label. The
output can be “?”, which indicates that no label has sufficient evidence. It can also be a subset of Y
that contains more than one element, indicating that more than one label has significant evidence. In
some situations, using subsets of the labels is more informative. However, when we want to compare
head-to-head with k-NN, we need to output a single label. We use a heuristic to predict with a single
label y ∈ Y on any x: the label for which maxk η

y
n(Bk(x))/

√
k is largest.

We briefly discuss our main conclusions from the experiments, with more details in Appendix C.

AKNN is comparable to the best k-NN rule. In Section 4.2 we prove that AKNN compares
favorably to k-NN with any fixed k. We demonstrate this in practice in different situations. With
simulated independent label noise on the MNIST dataset (Fig. 3), a small value of k is optimal for
noiseless data, but performs very poorly when the noise level is high. On the other hand, AKNN
adapts to the local noise level automatically, as demonstrated without adding noise on the more
challenging notMNIST and single-cell genomics data (Fig. 4, 5, 6).

Varying the confidence parameter A controls abstaining. The parameter A controls how con-
servative the algorithm is in deciding to abstain, instead of incurring error by predicting. A → 0
represents the most aggressive setting, in which the algorithm never abstains, essentially predicting
according to a 1-NN rule. Higher settings of A cause the algorithm to abstain on some of these
predicted points, for which there is no sufficiently small neighborhood with a sufficiently significant
label bias (Fig. 7).

Adaptively chosen neighborhood sizes reflect local confidence. The number of neighbors chosen
by AKNN is a local quantity that gives a practical pointwise measure of the confidence associated with
label predictions. Small neighborhoods are chosen when one label is measured as significant nearly
as soon as statistically possible; by definition of the AKNN stopping rule, this is not true where large
neighborhoods are necessary. In our experiments, performance on points with significantly higher
neighborhood sizes dropped monotonically, with the majority of the data set having performance
significantly exceeding the best k-NN rule over a range of settings of A (Fig. 4, 6; Appendix C).

9



References
[AT07] J.-Y. Audibert and A.B. Tsybakov. Fast learning rates for plug-in classifiers. Annals of

Statistics, 35(2):608–633, 2007.
[BBL05] S. Boucheron, O. Bousquet, and G. Lugosi. Theory of classification: A survey of some

recent advances. ESAIM: probability and statistics, 9:323–375, 2005.
[C+18] Tabula Muris Consortium et al. Single-cell transcriptomics of 20 mouse organs creates a

tabula muris. Nature, 562(7727):367, 2018.
[CD10] K. Chaudhuri and S. Dasgupta. Rates of convergence for the cluster tree. In Advances in

Neural Information Processing Systems, pages 343–351, 2010.
[CD14] K. Chaudhuri and S. Dasgupta. Rates of convergence for nearest neighbor classification.

In Advances in Neural Information Processing Systems, pages 3437–3445. 2014.
[CG06] F. Cerou and A. Guyader. Nearest neighbor classification in infinite dimension. ESAIM:

Probability and Statistics, 10:340–355, 2006.
[CH67] T. Cover and P.E. Hart. Nearest neighbor pattern classification. IEEE Transactions on

Information Theory, 13:21–27, 1967.
[CS18] G.H. Chen and D. Shah. Explaining the Success of Nearest Neighbor Methods in

Prediction. Foundations and Trends in Machine Learning. NOW Publishers, 2018.
[DCL11] W. Dong, M. Charikar, and K. Li. Efficient k-nearest neighbor graph construction for

generic similarity measures. In Proceedings of the 20th international conference on
World wide web, pages 577–586. ACM, 2011.

[DGKL94] L. Devroye, L. Györfi, A. Krzyzak, and G. Lugosi. On the strong universal consistency
of nearest neighbor regression function estimates. Annals of Statistics, 22:1371–1385,
1994.

[DGL96] L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition.
Springer, 1996.

[Dud79] R.M. Dudley. Balls in Rk do not cut all subsets of k+2 points. Advances in Mathematics,
31(3):306–308, 1979.

[FH51] E. Fix and J. Hodges. Discriminatory analysis, nonparametric discrimination. USAF
School of Aviation Medicine, Randolph Field, Texas, Project 21-49-004, Report 4, Con-
tract AD41(128)-31, 1951.

[Gyö81] L. Györfi. The rate of convergence of kn-nn regression estimates and classification rules.
IEEE Transactions on Information Theory, 27(3):362–364, 1981.

[Hei01] J. Heinonen. Lectures on Analysis on Metric Spaces. Springer, 2001.
[KP95] S. Kulkarni and S. Posner. Rates of convergence of nearest neighbor estimation under

arbitrary sampling. IEEE Transactions on Information Theory, 41(4):1028–1039, 1995.
[Kpo11] S. Kpotufe. k-nn regression adapts to local intrinsic dimension. In Neural Information

Processing Systems, 2011.
[MNI96] MNIST dataset. http://yann.lecun.com/exdb/mnist/, 1996.
[Mou18] Mouse cell atlas dataset. ftp://ngs.sanger.ac.uk/production/teichmann/

BBKNN/MouseAtlas.zip, 2018. Accessed: 2019-05-02.
[MT99] E. Mammen and A.B. Tsybakov. Smooth discrimination analysis. The Annals of

Statistics, 27(6):1808–1829, 1999.
[not11] notMNIST dataset. http://yaroslavb.com/upload/notMNIST/, 2011. Accessed:

2019-05-02.
[RS98] M. Raab and A. Steger. Balls into bins - a simple and tight analysis. In Randomization

and Approximation Techniques in Computer Science, Second International Workshop,
RANDOM’98, Barcelona, Spain, October 8-10, 1998, Proceedings, pages 159–170,
1998.

[Sto77] C. Stone. Consistent nonparametric regression. Annals of Statistics, 5:595–645, 1977.
[VC71] V.N. Vapnik and A.Y. Chervonenkis. On the uniform convergence of relative frequencies

of events to their probabilities. Theory of Probability & Its Applications, 16(2):264–280,
1971.

10

ftp://ngs.sanger.ac.uk/production/teichmann/BBKNN/MouseAtlas.zip
ftp://ngs.sanger.ac.uk/production/teichmann/BBKNN/MouseAtlas.zip
http://yaroslavb.com/upload/notMNIST/


A Analysis and proofs

The first step in establishing advantage-dependent rates of convergence is to bound the accuracy
of empirical estimates of probability mass and bias. This is achieved by a careful choice of large
deviation bounds.

A.1 Large deviation bounds

Suppose we draw n points (x1, y1), . . . , (xn, yn) from P . If n is reasonably large, we would expect
the empirical mass µn(S) of any set S ⊂ X , as defined in (4), to be close to its probability mass
under µ. The following lemma, from [CD10], quantifies one particular aspect of this.
Lemma 6 ([CD10], Lemma 7). There is a universal constant c0 such that the following holds. Let B
be any class of measurable subsets of X of VC dimension d0. Pick any 0 < δ < 1. Then with
probability at least 1 − δ2/2 over the choice of (x1, y1), . . . , (xn, yn), for all B ∈ B and for any
integer k, we have

µ(B) ≥ k

n
+
c0
n

max
(
k, d0 log

n

δ

)
=⇒ µn(B) ≥ k

n
.

Likewise, we would expect the empirical bias ηn(S) of a set S ⊂ X , as defined in (5), to be close to
its true bias η(S). The latter is defined whenever µ(S) > 0.
Lemma 7. There is a universal constant c1 for which the following holds. Let C be a class of subsets
of X with VC dimension d0. Pick any 0 < δ < 1. Then with probability at least 1− δ2/2 over the
choice of (x1, y1), . . . , (xn, yn), for all C ∈ C,

|ηn(C)− η(C)| ≤ ∆(n,#n(C), δ)

where #n(C) = |{i : xi ∈ B}| is the number of points in C and

∆(n, k, δ) = c1

√
d0 log n+ log(1/δ)

k
. (12)

Lemma 7 is a special case1 of a uniform convergence bound for conditional probabilities (Theorem 5)
that we prove in Section 6.

A.2 Proof of Theorem 1

Theorem 1 is an immediate consequence of the following lemma, in which the choice of constants is
made explicit.
Lemma 8. Define c2 = max(c1, 1/2)

√
1 + c0, where c0 and c1 are the constants from Lemmas 6

and 7, and take c3 = 16c22. Pick any x ∈ supp(µ) with adv(x) > 0. Fix any 0 < δ < 1. If the
number of training points satisfies

n >
c3

adv(x)
max

(
log

c3
adv(x)

, log
1

δ

)
,

then with probability at least 1− δ2 over the choice of training data, the adaptive nearest neighbor
rule will have gn(x) = g∗(x).

Proof. Pick any x ∈ supp(µ). Suppose η(x) > 0; the negative case is symmetric. The set B of all
balls centered at x is easily seen to have VC dimension d0 = 1. By Lemmas 6 and 7, we have that
with probability at least 1− δ2, the following two properties hold for all B ∈ B:

1. For any integer k, we have #n(B) ≥ k whenever nµ(B) ≥ k + c0 max(k, log(n/δ)).

2. |ηn(B)− η(B)| ≤ ∆(n,#n(B), δ).

1Indeed, Lemma 7 follows from Theorem 5 by plugging in A = {X × {+1}},B = {C × {±1} : C ∈ C}.
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Assume henceforth that these hold.

By the definition of advantage, point x is (p, γ)-salient for some p, γ > 0 with pγ2 = adv(x)− ε,
where we can make ε > 0 arbitrarily small. The lower bound on n in the theorem statement then
implies that

γ ≥ 2c2

√
log n+ log(1/δ)

np
, (13)

or equivalently that npγ2 ≥ 4c22(log n+ log(1/δ)).

Set k = np/(1 + c0). By (13) we have np ≥ 4c22 log(n/δ) and thus k ≥ log(n/δ). As a result,
np ≥ k + c0 max(k, log(n/δ)), and by property 1, the ball B = B(x, rp(x)) has #n(B) ≥ k. This
means, in turn, that by property 2,

ηn(B) ≥ η(B)−∆(n, k, δ) = γ − c1
√

log(n/δ)

k

≥ 2c2

√
log(n/δ)

np
− c1

√
log(n/δ)

k
≥ 2c1

√
log(n/δ)

k
− c1

√
log(n/δ)

k

= c1

√
log(n/δ)

k
≥ ∆(n,#n(B), δ).

Thus ball B would trigger a prediction of +1.

At the same time, for any ball B′ = B(x, r) with r < rp(x),

ηn(B′) ≥ η(B′)−∆(n,#n(B′), δ) > −∆(n,#n(B′), δ)

and thus no such ball will trigger a prediction of −1. Therefore, the prediction at x must be +1.

A.3 Proof of Theorem 2

This proof follows much the same outline as that of Theorem 1. A crucial difference is that uniform
large deviation bounds (Lemmas 6 and 7) are applied to the class of all balls in X , which is assumed2

to have finite VC dimension d0. In contrast, the proof of Theorem 1 only applies these bounds to the
class of balls centered at a specific point, which has VC dimension at most 1 in any metric space.

A.4 Proof of Theorem 4

Recall from (9) that Xa denotes the set of points with advantage > a.
Lemma 9. Let c3 be the constant from Lemma 8. Pick any 0 < δ < 1 as a confidence parameter for
the AKNN estimator of Figure 2. Fix any a > 0. If the number of training points n satisfies

n ≥ c3
a

max

(
log

c3
a
, log

1

δ

)
,

then with probability at least 1− δ, the resulting classifier gn has risk

R(gn)−R∗ ≤ δ + µ(X0 \ Xa).

Proof. From Lemma 8, we have that for any x ∈ Xa,

Prn(gn(x) 6= g∗(x)) ≤ δ2,
where Prn denotes probability over the choice of training points. Thus, for X ∼ µ,

EnEX1(gn(X) 6= g∗(X)|X ∈ Xa) ≤ δ2,
and by Markov’s inequality,

Prn[PrX(gn(X) 6= g∗(X)|X ∈ Xa) ≥ δ] ≤ δ.
2This is motivated by finite-dimensional Euclidean space RD , where it holds with d0 = D + 1 ([Dud79]).
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Thus, with probability at least 1− δ over the training set,

PrX(gn(X) 6= g∗(X)|X ∈ Xa) ≤ δ.
On points with η(x) = 0, both gn and the Bayes-optimal g∗ incur the same risk. Thus

R(gn)−R∗ ≤ PrX(gn(X) 6= g∗(X)|X ∈ Xa) + PrX(X 6∈ Xa, η(X) 6= 0)

≤ δ + PrX(X ∈ X0 \ Xa) + PrX(adv(X) = 0, η(X) 6= 0)

≤ δ + µ(X0 \ Xa),

where we invoke Lemma 3 for the last step.

We now complete the proof of Theorem 4. Given the sequence of confidence parameters (δn), define
a sequence of advantage values (an) by

an =
c3
n

max

(
2 log n, log

1

δn

)
.

The conditions on (δn) imply an → 0.

Pick any ε > 0. By the conditions on (δn), we can pick N so that
∑
n≥N δn ≤ ε. Let ω denote a

realization of an infinite training sequence (X1, Y1), (X2, Y2), . . . from P . By Lemma 9, for any
positive integer N ,

Pr (ω : ∃n ≥ N s.t. R(gn(ω))−R∗ > δn + µ(X0 \ Xan)) ≤
∑
n≥N

δn ≤ ε.

Thus, with probability at least 1− ε over the training sequence ω, we have that for all n ≥ N ,

R(gn(ω))−R∗ ≤ δn + µ(X0 \ Xan),

whereupon R(gn(ω)) → R∗ (since δn, an → 0 and lima↓0 µ(X0 \ Xa) = 0). Since this holds for
any ε > 0, the theorem follows.

B Uniform Convergence of Empirical Conditional Measures

B.1 Formal Statement

Let P be a distribution over X , and let A,B be two collections of events. Consider n independent
samples from P , denoted by x1, . . . , xn. We would like to estimate P (A|B) simultaneously for
all A ∈ A, B ∈ B. It is natural to consider the empirical estimates:

Pn(A|B) =

∑
i 1[xi∈A∩B]∑
i 1[xi∈B]

.

We study when (and to what extent) these estimates provide a good approximation. Note that the
case where B = {X} (i.e., in which one estimates P (A) using Pn(A) simultaneously for all A ∈ A)
is handled by the classical VC theory. Throughout this section we assume that both A,B have finite
VC dimension, and we let d0 denote an upper bound on both VC(A) and VC(B).

To demonstrate the kinds of statements we would like to derive, consider the case where each of A,B
contains only one event: A = {A}, and B = {B}, and set #n(B) =

∑
i 1[xi∈B]. A Chernoff

bound implies that conditioned on the event that #n(B) > 0, the following holds with probability at
least 1− δ:

|P (A|B)− Pn(A|B)| ≤
√

2 log(1/δ)

#n(B)
. (14)

To derive it, use that conditioned on xi ∈ B, the event xi ∈ A has probability P (A|B), and therefore
the random variable “#n(B) · pn(A|B)” has a binomial distribution with parameters #n(B) and
P (A|B).

Note that the bound on the error in Equation (14) depends on #n(B) and therefore is data-dependent.
We stress that this is the type of statement we want: the more samples belong to B, the more certain
we are with the empirical estimate. Thus, we would want to prove a statement as follows:
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With probability at least 1− δ,

(∀A ∈ A) (∀B ∈ B) : |P (A|B)− Pn(A|B)| ≤ O
(√

d0 log(1/δ)

#n(B)

)
,

where #n(B) =
∑n
i=1 1[xi ∈ B].

The above statement is, unfortunately, false. As an example, consider the probability space defined
by drawing x ∼ [n] uniformly, and then coloring x by cx ∈ {±1} uniformly. For each i let Bi
denote the event that i was drawn, and let A denote the event that the drawn color was +1. (formally,
Bi = {i}×{±1}, andA = [n]×{+1}). One can verify that the VC dimension of B = {Bi : i ≤ n}
and of A = {A} is at most 1. The above statement fails in this setting: indeed, one can verify that if
we draw n samples from this space then with a constant probability there will be some j such that:

(i) j always gets the same color (say +1), and

(ii) j is sampled at least Ω(log n/ log log n) times3.

Therefore, with constant probability we get that

Pn(A|Bi) = 1, P (A|Bi) = 1/2,

and so the difference between the error is clearly 1−(1/2) = 1/2, which is clearly not upper bounded
by O(

√
log log n/ log n).

We prove the following (slightly weaker) variant:

Theorem (Theorem 5 restatement). Let P be a probability distribution over X , and let A,B be two
families of measurable subsets of X such that VC(A),VC(B) ≤ d0. Let n ∈ N, and let x1 . . . xn be
n i.i.d samples from P . Then the following event occurs with probability at least 1− δ:

(∀A ∈ A) (∀B ∈ B) : |P (A|B)− Pn(A|B)| ≤
√

ko
#n(B)

,

where ko = 1000 (d0 log(8n) + log(4/δ)), and4 #n(B) =
∑n
i=1 1[xi ∈ B].

Discussion. Theorem 5 can be combined with Lemma 6 to yield a bound on the minimal n for
which Pn(A|B) is a non-trivial approximation of P (A|B). Indeed, Lemma 6 implies that if n is large
enough so that P (B) = Ω

(
d0 logn
n

)
, then the empirical estimate Pn(A|B) is a decent approximation.

In the context of the adaptive nearest neighbor classifier, this means that the empirical biases provide
meaningful estimates of the true biases for balls whose measure is Ω̃

(
d0
n

)
. This resembles the

learning rate in realizable settings.

We remark that a weaker statement than Theorem 5 can be derived as a corollary of the classical
uniform convergence result [VC71]. Indeed, since the VC dimension of {B ∩A : i ∈ I} is at most
d0, it follows that

Pn(A|B) ≈ P (A ∩B)±
√
d0/n

P (B)±
√
d0/n

.

However, this bound guarantees non-trivial estimates only once P (B) is roughly
√
d0/n. This is

similar to the learning rate in agnostic (i.e., non-realizable) settings.

Another major advantage of the uniform convergence bound in Theorem 5 is that it is data-dependent:
if many points from the sample belong to B ∈ B (i.e. #n(B) is large), then we get better guarantees
on the approximation of P (A|B) by Pn(A|B) for all A ∈ A.

3This follows from analyzing the maximal bin in a uniform assignment of Θ(n) balls into n bins [RS98]
4Note that the above inequality makes sense also when k(B) = 0, by identifying ·

0
as∞, and using the

convention that∞−∞ =∞ and that∞ ≤∞.
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B.2 Proof of Theorem 5

As noted above, the standard uniform convergence bound for VC classes can not yield the bound
in Theorem 5. Instead, we use a variant of it due to [BBL05] which concerns relative deviations
(see [BBL05]: Theorem 5.1 and the discussion before Corollary 5.2). In order to state the theorem,
we need the following notation: Let C be a family of subsets of X . We denote by SC : N→ N the
growth function of C, which is defined by:

SC(n) = max{|C|R| : R ⊆ X, |R| = n},
where C|R = {C ∩R : C ∈ C} is the projection of C to R.
Theorem 10 ([BBL05]). Let C be a family of subsets of X and let P be a distribution over X . Then,
the following holds with probability 1− δ:

(∀C ∈ C) : |P (C)− Pn(C)| ≤ 2

√
Pn(C)

log SC(2n) + log(4/δ)

n
+ 4

log SC(2n) + log(4/δ)

n
.

Set C = B ∪ {A ∩B : A ∈ A, B ∈ B}. We prove Theorem 5 by applying Theorem 10 on C; to this
end we first upper bound SC(n). Let D = {A ∩B : A ∈ A, B ∈ B}, so that C = B ∪ D. Then:

SC(n) ≤ SB(n) + SD(n) ≤ SB(n) + SA(n)SB(n) ≤ 2SA(n)SB(n) ≤ 2

(
n

≤ d0

)2

≤ 2(2n)2d0 ,

where the second inequality follows since SD(n) ≤ SA(n)SB(n), the second to last inequality
follows from the Sauer-Shelah-Perles Lemma, and the last inequality follows since

(
a
≤b
)
≤ (2a)b.

Therefore, applying Theorem 10 on C yields that with probability 1− δ the following event holds:

(∀C ∈ C) : |P (C)− Pn(C)| ≤ 4

√
Pn(C)

d0 log 8n+ log(4/δ)

n
+ 8

d0 log 8n+ log(4/δ)

n
. (15)

For the remainder of the proof we assume that the event in Equation (15) holds and argue that it
implies the conclusion in Theorem 5. Let A ∈ A, B ∈ B, and let k = n · Pn(B) = #n(B) denote
the number of data points in B. We want to show that

|P (A|B)− Pn(A|B)| ≤
√
ko
k
, (16)

where ko = 1000 (d0 log(8n) + log(4/δ)). Let j = k · Pn(A|B) = #n(A ∩B) denote the number
of data points in A ∩B. We establish Equation (16) by showing that

P (A|B) ≤ Pn(A|B) +

√
ko
k

and P (A|B) ≥ Pn(A|B)−
√
ko
k
.

In the following calculation it will be convenient to denote D := d0 log(8n) + log(4/δ). By
Equation (15) we get:

P (A|B) =
P (A ∩B)

P (B)

≤
Pn(A ∩B) + 4

√
Pn(A ∩B)Dn + 8Dn

Pn(B)− 4
√
Pn(B)Dn − 8Dn

=

Pn(A∩B)
Pn(B) + 4

√
Pn(A∩B)
Pn(B)

D
nPn(B) + 8 D

nPn(B)

1− 4
√

D
nPn(B) − 8 D

nPn(B)

s = Pn(A|B)
1 + 4

√
D
j + 8Dj

1− 4
√

D
k − 8Dk

,

where the first inequality follows from Equation (15) and the following equalities are trivial. Thus,

P (A|B) ≤ j

k

(
1 + 4

√
D
j + 8Dj

1− 4
√

D
k − 8Dk

)
. (17)
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Next, note that we may assume that k ≥ ko = 1000D, as otherwise Equation (16) trivially holds.
Therefore,

1

1− 4
√

D
k − 8Dk

≤ 1 + 8

√
D

k
+ 16

D

k
. ((∀x < 1

2 ) : 1
1−x ≤ 1 + 2x)

Plugging this in Equation (17), and using first that j ≤ k and then that 1000D ≤ k, yields:

P (A|B) ≤ j

k

(
1 + 4

√
D

j
+ 8

D

j

)(
1 + 8

√
D

k
+ 16

D

k

)
=
j

k
+ 8

j

k

√
D

k

(
1 + 2

√
D

k

)
+
(4
√
jD + 8D

k

)(
1 + 4

√
D

k

)2
≤ j

k
+ 8

√
D

k

(
1 + 2

√
D

k

)
+
(

4

√
D

k
+

8D

k

)(
1 + 4

√
D

k

)2
≤ j

k
+ 30

√
D

k
= Pn(A|B) +

√
ko
k
,

and so

P (A|B) ≤ Pn(A|B) +

√
ko
k
.

A symmetric argument yields similarly to Equation (17) that:

P (A|B) ≥ j

k

(
1− 4

√
D
j − 8Dj

1 + 4
√

D
k + 8Dk

)
.

Then, a similar calculation (using the relation (∀x > 0) : 1
1+x ≥ 1− 2x) implies that

P (A|B) ≥ Pn(A|B)−
√
ko
k
,

which finishes the proof.

C Experimental Results

C.1 Datasets

We test AKNN on several datasets. The first was the MNIST dataset of 70000 examples ([MNI96]).

We also evaluate AKNN on the more challenging notMNIST dataset ([not11]), consisting of extracted
glyphs of the letters A-J from publicly available fonts. We use the 18724 labeled examples from this
set, preprocessed feature-wise to be in [− 1

2 ,
1
2 ] using x 7→ x

255 − 1
2 .

We further use AKNN on a challenging binary classification task of continuing interest, involving
gene expression data on a population of single cells from different mouse organs collected by the
Tabula Muris consortium ([C+18], as processed in [Mou18]). This constitutes 45291 cells (training
examples). Each cell has its data collected using one of two approaches. The task is to classify
between them. More details follow.

The data are collected using representative protocols of two currently dominant approaches to isolate
and measure single cells: a plate-based approach sorting cells into microwells, and a droplet-based
approach manipulating cells using microfluidic technologies. Each approach has its own set of
technical biases, about which much remains to be understood. Identifying and characterizing these
biases to discriminate between such approaches is currently of great interest.

Both approaches measure effectively the same cells for our purposes, so there is a large decision
boundary in the binary classification problem.
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C.2 A note on efficient implementation

In this paper, we computed the nearest neighbors of data exactly when running AKNN, to faithfully
demonstrate its behavior. In practice, this would be done using approximate nearest-neighbor search
to build a k-NN graph using a small fixed k (say 10), and then using pairwise distances on this graph
to compute neighborhoods as needed by AKNN. We tried this (using the nearest-neighbor method
of [DCL11]) on notMNIST without substantive differences in the results.

C.3 Supplemental Figures

Figure 6: As Fig. 4, on single-cell mouse data. AKNN is notably accurate on small-neighborhood
points at moderate coverage, and performance drops off at higher k, with A controlling this frontier.

Figure 7: AKNN predictions on notMNIST, for different settings of A.
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Figure 8: AKNN neighborhood sizes on notMNIST, in increasing order of A, plotted on a log scale.
Top left figure (A = 0) represents a 1-NN classifier. Bottom right figure (A = 15) shows that many
of the points’ neighborhoods are maximally large, which can be compared to the right panel of Fig. 7.
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Figure 9: As Fig. 8, on single-cell mouse data, with the AKNN k-values replaced by their quantiles
over the data. The relative ordering of the data by AKNN neighborhood size is fairly robust to A.
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