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Abstract

We study a basic private estimation problem: each of n users draws a single
i.i.d. sample from an unknown Gaussian distribution N (u,c?), and the goal
is to estimate p while guaranteeing local differential privacy for each user. As
minimizing the number of rounds of interaction is important in the local setting,
we provide adaptive two-round solutions and nonadaptive one-round solutions to
this problem. We match these upper bounds with an information-theoretic lower
bound showing that our accuracy guarantees are tight up to logarithmic factors for
all sequentially interactive locally private protocols.

1 Introduction

Differential privacy is a formal algorithmic guarantee that no single input has a large effect on
the output of a computation. Since its introduction [[11]], a rich line of work has made differential
privacy a compelling privacy guarantee (see Dwork et al. [12] and Vadhan [24] for surveys), and
deployments of differential privacy now exist at many organizations, including Apple [2], Google [}
13]], Microsoft [8], Mozilla [3]], and the US Census Bureau [/1, 20].

Much recent attention, including almost all industrial deployments, has focused on a variant called
local differential privacy [4} |11} [19]. In the local model private data is distributed across many
users, and each user privatizes their data before the data is collected by an analyst. Thus, as any
locally differentially private computation runs on already-privatized data, data contributors need not
worry about compromised data analysts or insecure communication channels. In contrast, (global)
differential privacy assumes that the data analyst has secure, trusted access to the unprivatized data.

However, the stronger privacy guarantees of the local model come at a price. For many problems,
a locally private solution requires far more samples than a globally private solution [[7, (10, [19} 23]].
Here, we study the basic problem of locally private Gaussian estimation: given n users each holding
an i.i.d. draw from an unknown Gaussian distribution N (1, o%), can an analyst accurately estimate
the mean p while guaranteeing local differential privacy for each user?

On the technical front, locally private Gaussian estimation captures two general challenges in locally
private learning. First, since data is drawn from a Gaussian, there is no a priori (worst-case) bound
on the scale of the observations. Naive applications of standard privatization methods like Laplace
and Gaussian mechanisms must add noise proportional to the worst-case scale of the data and are
thus infeasible. Second, protocols requiring many rounds of user-analyst interaction are difficult to
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implement in real-world systems and may incur much longer running times. Network latency as
well as server and user liveness constraints compound this difficulty [22]]. It is therefore desirable to
limit the number of rounds of interaction between users and the data analyst. Finally, besides being a
fundamental learning problem, Gaussian estimation has several real-world applications (e.g. telemetry
data analysis [8]) where one may assume that users’ behavior follows a Guassian distribution.

1.1 Our Contributions

We divide our solution to locally private Gaussian estimation into two cases. In the first case, o
is known to the analyst, and in the second case ¢ is unknown but bounded in known [Gmin, Cmax |-
For each case, we provide an (g,0)-locally private adaptive two-round protocol and nonadaptive
one-round protocol’| Our privacy guarantees are worst-case; however, when z1, ..., z, ~ N(u,0?)
we also get the following accuracy guarantees.

Theorem 1.1 (Informal). When o is known, and n is sufficiently large, there exists two-round protocol
outputting fi such that | — p| = O (9\/ %) with probability 1 — 3, and there exists one-round

€

protocol outputting [i such that |ji — p| = O (‘;\/ % vlcyg(n)) with probability 1 - 3.

Theorem 1.2 (Informal). When o is unknown but bounded in known [0 min, Omax |, and n is suffi-

. . . . N N _ log(1/83) log(n)
ciently large, there exists two-round protocol outputting [i such that |t — p| = O (g\/ f)
with probability 1 — 3, and there exists one-round protocol outputting [i such that | — u| =

0 (z\/ 108 ([P Tin ]+ 1) log<1/ﬁ>log3/2<n>) with probability 1 - 8.

€ n

All of our protocols are sequentially interactive [10]: each user interacts with the protocol at most
once. We match these upper bounds with a lower bound showing that our results are tight for all
sequentially interactive locally private protocols up to logarithmic factors. We obtain this result by
introducing tools from the strong data processing inequality literature [6l 21]]. Using subsequent
work by Joseph et al. [16], we can also extend this lower bound to fully interactive protocols.

Theorem 1.3 (Informal). For a given o, there does not exist an (e, §)-locally private protocol A

such that for any p = O (%\/g) given x1,...,x, ~ N(pu,0%), A outputs estimate ji satisfying

|- pl=o0 (g\/%) with probability > 15/16.

1.2 Related Work

Several works have already studied differentially private versions of various statistical tasks, especially
in the global setting. Karwa and Vadhan [[18]] and Kamath et al. [17] consider similar versions of
Gaussian estimation under global differential privacy, respectively in the one-dimensional and high-
dimensional cases. For both the known and unknown variance cases, Karwa and Vadhan [18]] offer

an O (a\/ log(i/ﬁ) 4+ boly l(;i(l/ﬂ) ) accuracy upper bound for estimating /. Since an {2 (a\ / M)

accuracy lower bound holds even without privacy, our upper and lower bounds show that local privacy
adds a roughly \/n accuracy cost over global privacy.

In concurrent independent work, Gaboardi et al. [[14] also study locally private Gaussian estimation.
We match or better their accuracy results with much lower round complexity. They provide adaptive
protocols for the known- and unknown-o settings, with the latter protocol having round complexity 7'
as large as Q2(n), linear in the number of users. In contrast, we provide both adaptive and nonadaptive
solutions, and our protocols all have round complexity 7" < 2. A full comparison appears in Figure|[I]

Gaboardi et al. [14]] also prove a tight lower bound for nonadaptive protocols that can be extended to
sequentially interactive protocols. We provide a lower bound that is tight for sequentially interactive
protocols up to logarithmic factors, and we depart from previous local privacy lower bounds by
introducing tools from the strong data processing inequality (SDPI) literature [0, 21]]. This approach

As “adaptive” and “nonadaptive” are implicit in “two-round” and “one-round”, we often omit these terms.



Gaboardi et al. [14] This Work
Setting Accuracy «, Round Complexity T' Accuracy «, Round Complexity T’
Known ag, log 1 log 2 log L log L
adaptive a=0 ‘;\/ (5) 7(L5) (5) a=0|¢< #
T=2 T=2
Known &, . 1og(%)m
nonadaptive - a=0|2\| ——FH——
T=1
Unknown o, os( ) 10ef 2 Y 10e( L oz £ ) 10e(n
adaptive a=0 cf\/1 g(ﬁ)lggﬁ)lg(t?) a=0|¢2 lg(ﬁll g(n)
r-o s ;1)
Unknown g, log Tmax | ¢ log 1 log3/2 (n)
nonadaptive - a=0 g\/ (”m‘“ ) — (B)

Figure 1: A comparison of upper bounds in Gaboardi et al. [14] and here. In all cases, Gaboardi et al.
[14] use (&, &)-locally private algorithms and we use (£,0). Here, R denotes an upper bound on both

v and o. In our setting, the upper bound on y is 0(2"52/ log(n/8) ), leading the unknown variance
protocol of Gaboardi et al. [[14] to round complexity potentially as large as Q(ne?/log(1/43)).

uses an SDPI to control how much information a sample gives about its generating distribution,
then uses existing local privacy results to bound the mutual information between a sample and the
privatized output from that sample. Subsequent work by Duchi and Rogers [9] generalizes the SDPI
framework to prove lower bounds for a broader class of problems in local privacy. They also extend
the SDPI framework to prove lower bounds for fully interactive algorithms.

2 Preliminaries

We consider a setting where, for each i € [n], user i’s datum is a single draw from an unknown
Gaussian distribution, x; ~ N (1, 02), and these draws are i.i.d. In our communication protocol, users
may exchange messages over public channels with a single (possibly untrusted) central analystE] The
analyst’s task is to accurately estimate p while guaranteeing local differential privacy for each user.

To minimize interaction with any single user, we restrict our attention to sequentially interactive
protocols. In these protocols, every user sends at most a single message in the entire protocol. We
also study the round complexity of these interactive protocols. Formally, one round of interaction in a
protocol consists of the following two steps: 1) the analyst selects a subset of users .S ¢ [n], along
with a set of randomizers {Q; | i € S}, and 2) each user ¢ in S publishes a message y; = Q; ().

A randomized algorithm is differentially private if arbitrarily changing a single input does not
change the output distribution “too much”. This preserves privacy because the output distribution is
insensitive to any change of a single user’s data. We study a stronger privacy guarantee called local
differential privacy. In the local model, each user ¢ computes their message using a local randomizer.
A local randomizer is a differentially private algorithm taking a single-element database as input.

Definition 2.1 (Local Randomizer). A randomized function Q;: X — Y is an (e, §)-local randomizer
if, for every pair of observations x;,x} € X and any S € Y, Pr[Q;(x;) € S] < e® Pr[Q;(z}) € S]+0.

3The notion of a central coordinating analyst is only a useful simplification. As the analyst has no special
powers or privileges, any user, or the protocol itself, can be viewed as playing the same role.



A protocol is locally private if every user computes their message using a local randomizer. In a
sequentially interactive protocol, the local randomizer for user ¢ may be chosen adaptively based on
previous messages 21, . . ., 2;—1. However, the choice of randomizer cannot be based on user ¢’s data.

Definition 2.2. A sequentially interactive protocol A is (g, §)-locally private for private user data
{z1,...,2,} if, for every user i € [n], the message Y; is computed using an (e, 8)-local randomizer
Q. When § > 0, we say A is approximately locally private. If § = 0, A is purely locally private.

3 Estimating 1 with Known o

We begin with the case where o2 is known (shorthanded “KV”). In Section we provide a protocol
KVGAUSSTIMATE that requires two rounds of analyst-user interaction. In Section[3.2] we provide a
protocol 1IROUNDKVGAUSSTIMATE achieving a weaker accuracy guarantee in a single round. All
omitted pseudocode and proofs appear in the full version of this paper [[15].

3.1 Two-round Protocol KVGAUSSTIMATE

In KVGAUSSTIMATE the users are split into halves U; and Us. In round one, the analyst queries
users in U to obtain an O (o )-accurate estimate [i1 of u. In round two, the analyst passes /i to users
in Us, who respond based on /i1 and their own data. The analyst then aggregates this second set of
responses into a better final estimate of p.

Theorem 3.1. Two-round protocol KVGAUSSTIMATE satisfies (&,0)-local differential privacy for

Ty, .. Ty and, if T1,. .. 2y ~iq N(p, 0?) where o is known and —2— = Q(log(“)lzg(l/ﬁ) ), with

log(n) €
probability 1 — 8 outputs [i such that |i — u| = O (%\/ M)

Algorithm 1 KVGAUSSTIMATE
Imput: ¢, k,L,n,0,U;,Us

1: for j e L do

2:  foruseriec U do

3 User i outputs §; < RR1(¢,4,7)

4 end for
5: end for . > End of round 1
6: Analyst computes H; < KVAGG1 (¢, k, L,Uy)
7
8
9
0
1

. Analyst computes /i; < ESTMEAN(S, &, Hy, k, L)

: for user i € Uy do

. User i outputs g; « KVRR2(¢, 4, fi1,0)

: end for . > End of round 2
: Analyst computes Hy < KVAGG2(e,n/2,Us)

12: Analyst computes T« /2 erf! (w)

13: Analyst outputs fig < ol + 1
Qutput: Analyst estimate jio of i

3.1.1 First round of KVGAUSSTIMATE

For neatness, let L = |n/(2k) |, Lmin = [108(0) |, Lmax = Lmin — 1 + L, and £ = { Lynin, Lmin +
1,..., Lymax - Uj is then split into L subgroups indexed by £, and each subgroup has size k =

Q (log(a%) KVGAUSSTIMATE begins by iterating through each subgroup j € £. Each user i € U'lj
releases a privatized version of |z;/ 27 | mod 4 via randomized response (RR1): with probability
e®/(e® +3), user i outputs |x;/2” | mod 4, and otherwise outputs one of the remaining elements of

{0,1,2, 3} uniformly at random. Responses from group U; will be used to estimate the §t" least
significant bit of x4 (rounded to an integer). The analyst then uses KVAGG1 (“Known Variance
Aggregation”) to aggregate and debias responses to account for this randomness.



Algorithm 2 KVAGG1
Input: ¢, k,L,U
1: for je L do

2:  forac{0,1} do 4

3 C(a) < {gi|ieU 5 = aj
4 Bi(a) < 22 (C(a) - =)
5:  end for

6: end for

7: Output H

Output: Aggregated histogram H of private user responses

The result is a collection of histograms H,. The analyst uses H, in ESTMEAN to binary search for p.
Intuitively, for each subgroup U: f if all multiples of 27 are far from y then Gaussian concentration
implies that almost all users 7 € U'lj compute the same value of |z/2’ | mod 4. This produces a
histogram H f where most elements fall concentrate in a single bin. The analyst in turn narrows their
search range for p. For example, if H 1L =max concentrates in 0, then the range narrows to y € [0, 25max);
if fIle“_l concentrates in 1, then the range narrows to p € [2Lma"’1, 2Lmax ), and so on.

If instead some multiple of 27 is near i, the elements of H { will spread over multiple (adjacent) bins.
This is also useful: a point from the “middle” of this block of bins is O(c)-close to u. The analyst
thus takes such a point as fi; and ends their search. Our analysis will also rely on having a noticeably
low-count bin that is non-adjacent to the bin containing p. This motivates using 4 as a modulus.

In this way, the analyst examines H 1L max {““‘a"_l, ... in sequence, estimating y from most to least
significant bit. Crucially, the modulus structure of user responses enables the analyst to carry out this
binary search with one round of interaction. Thus at the end of the first round the analyst obtains an
O(o)-accurate estimate fi; of p.

Algorithm 3 ESTMEAN
Input: 5, ¢, f[l, k, L
Iy < (;45).\/71@111(&/5)

J < Lmax

I; < [0,25max]

while j > L,;, and max,eqo.1.2.3y Hi (a) > 0.52k + 1 do
Analyst computes integer ¢ such that ¢27 € I; and ¢ = M;(j) mod 4
Analyst computes [;_1 < [¢27, (c+1)27]
Jej-1

end while

j < max(j, Limin)

Analyst computes M (j) < arg maxqe(o,1,2,3} FI{ (a)

R AN O

—_
—_ o

: Analyst computes M (j) < argmaxac(o,1,2,3}-{n; (j)} Hi (@)

12: Analyst computes ¢* < maximum integer such that ¢*27 € I; and ¢* = M (j) or M2 () mod 4
13: Analyst outputs [i; < ¢*27

Output: Initial estimate /i1 of p

3.1.2 Second round of KVGAUSSTIMATE

In the second round, the analyst passes fi; to users in Us. Users respond through KVRR2 (“Known
Variance Randomized Response™), a privatized version of an algorithm from the distributed statistical
estimation literature [6]. In KVRR?2, each user centers their point with /i, standardizes it using
o, and randomized responds on sgn((x; — fi1)/o). This crucially relies on the first estimate /iy, as
properly centering requires an initial O(c)-accurate estimate of ji. The analyst can then aggregate
these responses by a debiasing process KVAGG2 akin to KVAGG]1.



Algorithm 4 KVRR2

Input & Z» Mlv
1: User ¢ computes x; < (x; — fi1)/0

User i computes y; < sgn(z})
User i computes ¢~y [0,1]
if ¢ < _=7 then

User i publishes y; < y;
else

User ¢ publishes y; < —y;
. end if
Output Private centered user estimate ;

OPE‘Q\H‘:‘? w»

Algorithm 5 KVAGG2
Input: ¢, k, U
1: forae{-1 1}d0
C(a) < I{yz i€ U,5; = a}
H(a) < - (C(a) - )
end for A
Analyst outputs H

Output: Aggregated histogram H of private user responses

From this aggregation Ho, the analyst obtains a good estimate of the bias of the initial estimate ji;. If
[11 < u, responses will skew toward 1, and if i; > p responses will skew toward —1. By comparing
this skew to the true standard CDF using the error function erf, the analyst recovers a better final
estimate fi5 of p (Lines 12-13 of KVGAUSSTIMATE). Privacy of KVGAUSSTIMATE follows from
the privacy of the randomized response mechanisms RR1 and KVRR2.

3.2 One-round Protocol IROUNDKVGAUSSTIMATE

Recall that in KVGAUSSTIMATE the analyst 1) employs user pool U; to compute rough estimate /i3
and 2) adaptively refines this estimate using responses from the second user pool Us. 1ROUNDK V-
GAUSSTIMATE executes these two rounds of KVGAUSSTIMATE simultaneously by parallelization.

Theorem 3.2. One-round protocol 1IROUNDKVGAUSSTIMATE satisfies (&,0)-local dlﬁ‘eren-
tial privacy for x1,...,x, and, if x1,...,7, ~iq N(u,0%) where o is known and

Q(log(u)gg(l/ﬁ))

log(n) -
, with probability 1 — 3 outputs [i such that

il = ( log(l/ﬁ)\/log(n))_

mn

1ROUNDK VGAUSSTIMATE splits Us into ©(1/log(n)) subgroups that run the second-round protocol
from KVGAUSSTIMATE with different values of [i;. Intuitively, it suffices that at least one subgroup
centers using a fi; near y: the analyst can then use the data from that subgroup and discard the rest.

By Gaussian concentration, most user samples cluster within O (o+/log(n)) of i, so each subgroup
Uj receives a set of points S(j) interspersed ©(c+/log(n)) apart on the real line, and each user

i € U] centers using the point in S(5) closest to ;. This leads us to use ©(+/log(n)) groups with
each point in S(j + 1) shifted ©(o) from the corresponding point in S(j). By doing so, we ensure
that some subgroup has most of its users center using a point within O(o) of p.

In summary, IROUNDKVGAUSSTIMATE works as follows: after collecting the single round of
responses from U; and Us, the analyst computes /i; using responses from U;. By comparing fi; and

S(j) for each j, the analyst then selects the subgroup Ug " where most users centered using a value in
S(j*) closest to fi1. This mimics the effect of adaptively passing /i; to the users in Ug *, so the analyst
simply processes the responses from Ug " asit processed responses from Uz in KVGAUSSTIMATE.
Because Ug* contains @(n/\/M) users, the cost is a log'/*(n) factor in accuracy.



4 Unknown Variance

In this section, we consider the more general problem with unknown variance o (shorthanded “UV”™)
that lies in known interval [oyin, Omax]- We again provide a two-round protocol UVGAUSSTI-
MATE and a slightly less accurate one-round protocol 1ROUNDUVGAUSSTIMATE.

4.1 Two-round Protocol

UVGAUSSTIMATE is structurally similar to KVGAUSSTIMATE. In round one, the analyst uses the
responses of half of the users to roughly estimate y, and in round two the analyst passes this estimate
to the second half of users for improvement. However, two key differences now arise. First, since
o is unknown, the analyst must now also estimate ¢ in round one. Second, since the analyst does
not have a very accurate estimate of o, the refinement process of the second round employs Laplace
noise rather than the CDF comparison used in KVGAUSSTIMATE.

Theorem 4.1. Two-round protocol UVGAUSSTIMATE satisfies (&,0)-local differential privacy for
T1yeeoy Xy and, if Ty, ..., Ty ~iqa N(p, 02) where o is unknown but bounded in known [0 min, Omax |

log( Zmax 11 )+]o log( &
and log?n) =Q ( L ); 5] 10s( 5) ), with probability at least 1 — § outputs [i such that
- 4l :O(z, /M)
g n

Algorithm 6 UVGAUSSTIMATE
Input: ¢, k1,L1,n,0,U1,Us
1: for j € £; do

2:  foruserie U] do

3 User i outputs §; < RR1(g,4,7)

4:  end for

5: end for . > End of round 1
6: Analyst computes Hy < AGG1(e, £L1,U7)

7: Analyst computes & < ESTVAR(S, ¢, Hy, k1,L1)

8: Analyst computes Hy < KVAGG1 (e, k1, £1,U7)

9: Analyst computes i1 < ESTMEAN(f3, ¢, Hy, ky, L)
10: Analyst computes I < [[i1 + 6(2 +/In(4n))]
11: for user ¢ € Us do
12:  User ¢ outputs §; < UVRR2(e,4, 1)
13: end for > End of round 2
14: Analyst outputs fig < % Liet, Yi
Output: Analyst estimate fi5 of p

4.1.1 First round of UVGAUSSTIMATE

Similarly to KVGAUSSTIMATE, we split Uy into Ly = |n/(2k1) | subgroups of size k1 = (bgi%)

and define Ly = [1og(0min) |, Imax = L1 + Liin — 1 > [log(omax) ], and £1 = {Lin, Lmin +
1,..., Limax }, indexing Uy by L.

Also as in KVGAUSSTIMATE, each user ¢ in each subgroup Uf publishes a privatized version
of |x;/27) mod 4. The analyst aggregates them (KVAGG1) into H, and roughly estimates p
(ESTMEAN) as in KVGAUSSTIMATE. However, the analyst also employs a (similar) aggrega-
tion (AGG1) into H; for estimating o (ESTVAR). At a high level, because samples from N (1, 0?)
probably fall within 3¢ of i, when 27 > o there exist a,a + 1 mod 4 € {0, 1,2, 3} such that almost
all users 7 have |z;/2’ | mod 4 € {a,a + 1}. The analyst’s debiased aggregated histogram H f thus
concentrates in at most two adjacent bins when 2/ > ¢ and spreads over more bins when 2/ « o.
By a process like ESTMEAN, examining this transition from concentrated to unconcentrated in

Himex, H Lmax=l " yields a rough estimate of when 27 > o versus when 2/ < o. As a result, at
the end of round one the analyst obtains O (o )-accurate estimates 6 of o and [i; of p.



4.1.2 Second round of UVGAUSSTIMATE

The analyst now refines their initial estimate of y. First, the analyst constructs an interval I of size
O(6+/log(n)) around fi;. Users in U; then truncate their values to I, add Laplace noise scaled to
|7] (the sensitivity of releasing a truncated point), and send the result to the analyst using UVRR2.
The analyst then simply takes the mean of these responses as the final estimate of . Its accuracy
guarantee follows from concentration of user samples around p and Laplace noise around 0. Privacy
follows from our use of randomized response and Laplace noise.

We briefly explain our use of Laplace noise rather than CDF comparison. Roughly, when using an
estimate & in the centering process, error in ¢ propagates to error in the final estimate fi5. This leads
us to Laplace noise, which better handles the error in & that estimation of ¢ introduces. The cost is the
\/1og(n) factor that arises from adding Laplace noise scaled to |I|. Our choice of |I| — constructed
to contain not only y but the points of €2(n) users — thus strikes a deliberate balance. [ is both large
enough to cover most users (who would otherwise truncate too much and skew the responses) and
small enough to not introduce much noise from privacy (as noise is scaled to Lap (|]/¢)).

4.2 One-round Protocol

We now provide a one-round version of UVGAUSSTIMATE, lROUNDUV GAUSSTIMATE.
Theorem 4.2. One-round protocol IROUNDUVGAUSSTIMATE satisfies (e,0)-local differential

privacy for x1,...,x, and, if x1,. .., 2y ~5a N (1, 02) where o is unknown but bounded in known
log( Zmax 41)+] log( 1

[Omins Omax] and logyén) =0 ( Lo Zamin " );og(u)] ¢(3) ), with probability at least 1 — 3 outputs |i

with

Iog(L'fax+1) log(1/8) log®?(n)

n

Like 1ROUNDKVGAUSSTIMATE, 1ROUNDUVGAUSSTIMATE simulates the second round of
UVGAUSSTIMATE simultaneously with its first round. IROUNDUVGAUSSTIMATE splits Us into
subgroups, where each subgroup responds using a different interval I;. At the end of the single
round the analyst obtains estimates fi; and & from users in U7, constructs an interval I from these
estimates, and finds a subgroup of U, where most users employed a similar interval I;. This similarity
guarantees that the subgroup’s responses yield the same accuracy as the two-round case up to an
O(# subgroups) factor. As in IROUNDKVGAUSSTIMATE, we rely on Gaussian concentration and
the modulus trick to minimize the number of subgroups. However, this time we parallelize not only
over possible values of ji; but possible values of & as well. As this parallelization is somewhat
involved, we defer its presentation to the full version of this paper [15]].

In summary, at the end of the round the analyst computes ji; and &, computes the resulting interval I*,
and identifies a subgroup of U, that responded using an interval I; similar to I*. This mimics the effect

of passing an interval of size O(o+/log(n)) around /i; to this subgroup and using the truncate-then-
Laplace noise method of UVGAUSSTIMATE. The cost, due to the g = O ([log (M) + 1] \ /log(n))

Omin

subgroups required, is the 1/, /g reduction in accuracy shown in Theorem 4.2

5 Lower Bound

We now show that all of our upper bounds are tight up to logarithmic factors. Our argument has three
steps: we first reduce our estimation problem to a testing problem, then reduce this testing problem
to a purely locally private testing problem, and finally prove a lower bound for this purely locally
private testing problem. Taken together, these results show that estimation is hard for sequentially
interactive (e, d)-locally private protocols. An extension to fully interactive protocols using recent
subsequent work by Joseph et al. [[L6] appears in the full version of this paper [15].

Theorem 5.1. Let § < min ( o 1n6(§n 757) Ton 1n(i, TByeTe ) and € > 0. There exists absolute constant
¢ such that if A is an (g,0)-locally private («, 3)-estimator for Estimate (n, M, o) where M =

o/[4(ef —1)V/2nc] and B < 1/16, then a > M2 = (z\/I)

n
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