
A Details of Multi-Head Attention Unit

The MultiHeadAttn(·) function takes k + 1 vectors (e0, e1, · · · , ek) as input and output k + 1 vectors. It
contains L attention units and each of them independently aggregates the input vectors and obtain

hl
n =

n∑
j=0

αl
jnWV ej ,

where αl
jn is the attention weights from the j-th element to the n-th element given by the l-th attention head and

αl
jn =

exp((WKej)
>WQen)∑n

i=0 exp((WKei)>WQen)
,

where WV ∈ RD×D , WK ∈ RD×D and WQ ∈ RD×D are three transformation matrices for value, key
and query, respectively. Then the final representation hn could be given by combining the outputs of each
single-head attention function,

h>n = WO[(h1
n)>, · · · , (hL

n)>], n = 0, 1, · · · , k,

where WO ∈ RS×L is a matrix and S = D · L. Here, the n-th output representation only takes the first n+ 1
vectors as input and masks other input vectors, which could guarantee the causality property in our setting.

B Proofs in Section 2

B.1 Proof for Theorem 2

The proof is by construction. We know that each random walk would realize a path from the source event marker
to the sampled marker. Consider a probability space (Ω,F , P ) where Ω denotes a sample space including all
possible outcomes, F is an event space and P represents probability assignment of all events. In the random
walk experiment, Ω = ∪mj∈DkP

k
j = {P k

j,c|P k
j,c ∈ Pk

j ,mj ∈ Dk} contains all possible paths from the source
event marker to any marker that is likely to be sampled. Then each outcome P k

j,c induces a probability

p(P k
j,c|Gk) =

N∏
n=1

p(mun ∈ N un−1 |mun ∈ Nun−1).

We further consider a random event that mj is sampled by the random walk approach. Obviously, such an event
entails a series of experiment outcomes specified by all possible paths in Pk

j . According to addition principle,
we arrive at p(mj) =

∑
c p(P

k
j,c|Gk).

Since the random walk process would stop if and only if it reaches a marker mj ∈ Dk, we have∑
mj∈Dk

p(mj) = 1. Hence we can construct another probability space (Ω′,F ′, P ′), where Ω′ = {mj |mj ∈
Dk} and p(mj) =

∑
c p(P

k
j,c|Gk), which exactly characterizes the experiment where we draw a marker from

Dk with multinomial distribution.

B.2 Well-Definedness of Alg. 1

To guarantee the well-definedness, we need to verify the fact that in the k-th step, the sum of probabilities for all
possible sampled markers equal to one, under the settings of Alg. 1. We rely on mathematical induction to finish
the proof. In the 0-th step, only the causal descendants of the source event marker could be possibly sampled, so
the argument is obviously true with∑

mj∈Ni0

ρ0(mj) =
∑

mj∈Ni0

p(mj ∈ N i0 |mj ∈ Ni0) = 1,

where the last equality is obvious based on the softmax function in (3).

Assume that in the (k − 1)-th step (k = 1, 2, · · · ), we have∑
mj∈Dk−1

ρk−1(mj) = 1.

Then in the k-th step, assume mik to be the new sampled event and the true causal descendent of mv (i.e.,
mik ∈ Nv), then we have

11



∑
mj∈Dk

ρk(mj) =
∑

mj∈Dk

ρk−1(mj)− ρk−1(mv) · p(mik ∈ N v|mi ∈ Nv)

+
∑

mi∈Nik
mi /∈Dk−1

(ρk(mi)− ρk−1(mi)) +
∑

mi∈Nik
mi∈Dk−1

ρk(mi)

=
∑

mj∈Dk

ρk−1(mj)− ρk−1(mv) · p(mik ∈ N v|mi ∈ Nv)

+
∑

mi∈Nik
mi /∈Dk−1

bk · p(mi ∈ N ik |mi ∈ Nik ) +
∑

mi∈Nik
mi∈Dk−1

bk · p(mi ∈ N ik |mi ∈ Nik )

=
∑

mj∈Dk

ρk−1(mj)− ρk−1(mv) · p(mik ∈ N v|mi ∈ Nv)

+
∑

mi∈Nik

bk · p(mi ∈ N ik |mi ∈ Nik )

=
∑

mj∈Dk

ρk−1(mj)− ρk−1(mv) · p(mik ∈ N v|mi ∈ Nv) + bk

=
∑

mj∈Dk

ρk−1(mj).

Thus we have
∑

mj∈Dk
ρk(mj) = 1 and conclude the proof.

B.3 Equivalence of Alg. 1 to Random Walk Sampling

According to Theorem 2, we only need to prove that through Alg. 1, for any mi ∈ Dk, ρk(mi) =∑
c p(P

k
i,c|Gk), which is true for k = 0, 1, · · · , T . We rely on strong mathematical induction to conduct

the proof. For k = 0, the argument is obvious true according to Alg. 1. Assume that for k′ = 0, · · · , k − 1

(k = 1, · · · , T ), we have the following property: for any mj ∈ Dk′ , ρk(mi) =
∑

c p(P
k′
i,c|Gk′). Then we need

to prove the argument is true for k-th step.

For mi /∈ Nik , we have ρk(mi) = ρk−1(mi) =
∑

c p(P
k−1
i,c |Gk−1) =

∑
c p(P

k
i,c|Gk).

For mi ∈ Nik , consider two cases. If mi ∈ Dk−1, then

ρk(mi) = ρk−1(mi) + bk · p(mi ∈ N ik |mi ∈ Nik )

=
∑
c

p(P k−1
i,c |Gk−1) + ρk−1(mv) · p(mik ∈ N v|mi ∈ Nv) · p(mi ∈ N ik |mi ∈ Nik )

=
∑
c

p(P k−1
i,c |Gk−1) +

∑
c

p(P k−1
v,c |Gk) · p(mik ∈ N v|mi ∈ Nv) · p(mi ∈ N ik |mi ∈ Nik )

=
∑
c

p(P k
i,c|Gk),

where the last equality is true due to the fact Pk
i = Pk−1

i ∪ Pk−1
v . If mi /∈ Dk−1, then we have

ρk(mi) = ρk−1(mv) · p(mik ∈ N v|mi ∈ Nv) · p(mi ∈ N ik |mi ∈ Nik )

=
∑
c

p(P k−1
v,c |Gk) · p(mik ∈ N v|mi ∈ Nv) · p(mi ∈ N ik |mi ∈ Nik )

=
∑
c

p(P k
i,c|Gk),

where the last equality is based on the fact Pk
i = Pk−1

v . We conclude the proof.

C Implementation Details

C.1 Details of LANTERN-RNN

In LANTERN-RNN, we replace the multi-head attention unit by RNN structure to model the intensity function.
Specifically,

hn = φ(Aen + Bhn−1 + b),
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where A, B ∈ RD×D , b ∈ RD×1 and φ is an activation function.

C.2 Details of LANTERN-PR

In LANTERN-PR, we directly use a pre-defined reward function for generated event sequence as training
signal of the generator. Assume the generated and ground-truth event sequences as S = {(tk,mik )} and
S∗ = {(t∗k,m∗ik )}, respectively, and we define the reward as

rk = C − ‖tk − t∗k‖2 + δ(mik = m∗ik ),

where δ(s) is an indicator function which returns 1 if s is true and 0 otherwise, and C is a constant which
guarantees positive reward value.

C.3 Hyper-Parameter Settings

The settings for hyper-parameters are as follows: embedding dimension D = 10 for Syn-Small, D = 16 for
Syn-Large, D = 8 for MemeTracker, D = 16 for Weibo; causal descendant sample size K = 3 for Syn-Small
and Syn-Large, K = 5 for MemeTracker, K = 20 for Weibo; number of attention heads L = 4; regularization
coefficient λ = 0.001; time embedding weight η = 0.3; discount factor γ = 0.99; Adam parameters α = 10−7,
β1 = 0.9, β2 = 0.99 for generator, and α = 10−5, β1 = 0.9, β2 = 0.99 for discriminator.

D Model Training Algorithm

Algorithm 2: Training Algorithm for LANTERN
1 INPUT: {S∗}, ground-truth event sequences.M, marker set. Initialized discriminator parameter

w0, generator parameter θ0. Adam hyper-parameter α, β1, β2.
2 for k = 1, · · · , nstep do
3 Sample B observed event sequences {S∗b }Bb=1 from {S∗};
4 Generate event sequence Sb given by the source event in S∗b by Alg. 1;
5 Update generator parameter from θk to θk+1 using (6);

6 ∆LD ← 1
B

B∑
b=1

T∑
k=1

∇w log dk(Sb;w) +
T∑
k=1

∇w log(1− dk(S∗b ;w));

7 wk+1 ← Adam(∆LD, w
k, α, β1, β2);

8 ∆LG ← 1
B

B∑
b=1

T∑
k=1

γk∇θ log π(ak|sk) log dk(Sb;w))− λ
T∑
k=1

∇θ log π(ak|sk)Qlog(a, s);

9 θk+1 ← Adam(∆LG, θ
k, α, β1, β2);

10 OUTPUT: discriminator parameter w, generator parameter θ.
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