A Details of Multi-Head Attention Unit

The MultiHeadAttn(-) function takes k + 1 vectors (eg, e1, - - - , ) as input and output k + 1 vectors. It
contains L attention units and each of them independently aggregates the input vectors and obtain

n
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h, = E a;, Wyej,
j=0

where agn is the attention weights from the j-th element to the n-th element given by the [-th attention head and

o = exp((Wkej) 'Woen)
Yo exp((Wrei)TWoen)’

where Wy € RPXP, Wy € RP*P and Wq € RP*P are three transformation matrices for value, key
and query, respectively. Then the final representation h,, could be given by combining the outputs of each
single-head attention function,

h'rTL :Wo[(h;)T7 7(h£)—r}7n: 0717"' 7k7

where W € RS*L is a matrix and S = D - L. Here, the n-th output representation only takes the first n + 1
vectors as input and masks other input vectors, which could guarantee the causality property in our setting.

B Proofs in Section 2

B.1 Proof for Theorem 2

The proof is by construction. We know that each random walk would realize a path from the source event marker
to the sampled marker. Consider a probability space (2, F, P) where € denotes a sample space including all
possible outcomes, F is an event space and P represents probability assignment of all events. In the random
walk experiment, 2 = Uy, ep, Py = {P}.|Pf. € PF,m; € Dy} contains all possible paths from the source

event marker to any marker that is likely to be sampled. Then each outcome P}fc induces a probability

N
p(PrelGe) = [T p(mu, € N,y Imu, € Nu,,_y).

n=1
We further consider a random event that m; is sampled by the random walk approach. Obviously, such an event
entails a series of experiment outcomes specified by all possible paths in PJ’-“. According to addition principle,
we arrive at p(m;) = 3. p(PF.|Gr).
Since the random walk process would stop if and only if it reaches a marker m; € Dy, we have
> m,ep,, P(m;) = 1. Hence we can construct another probability space (Q,F', P'), where Q' = {m;|m; €

Dy} and p(m;) = Y, p(PF.|Gx), which exactly characterizes the experiment where we draw a marker from
D). with multinomial distribution.

B.2 Well-Definedness of Alg. 1

To guarantee the well-definedness, we need to verify the fact that in the k-th step, the sum of probabilities for all
possible sampled markers equal to one, under the settings of Alg. 1. We rely on mathematical induction to finish
the proof. In the O-th step, only the causal descendants of the source event marker could be possibly sampled, so
the argument is obviously true with

> po(my) = D p(my € Niglm; € Niy) =1,
mjEN; m; ENG,
where the last equality is obvious based on the softmax function in (G).

Assume that in the (k — 1)-th step (k = 1,2, - - ), we have

Z pr—1(m;) = 1.

m;E€Dy_1

Then in the k-th step, assume m;, to be the new sampled event and the true causal descendent of m,, (i.e.,
ms, € Ny), then we have
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S opelmy) = D proi(my) = pr-1(my) - plmi,, € No|ms € N.)

m;j €Dy m;j €Dy

+ > (pr(ma) —pra(ma))+ > prl(ma)
m7€N7k m7€N7k
m;&Dy_1 m; €Dy _1

> pre1(my) — pr—1(ma) - p(ma, € Nolmi € N,)

m;j €Dy

+ Z bi - p(mi € Ny lmi € NG,.) + Z bi - p(mi € Ny |mi € Niy)
'r77.7€./\/-”C m7€N7k
m;&Dy_1 m; €Dy _1

> pre1(my) = pr-1(ma) - p(ma, € Nolmi € N,)

m; €Dy
+ Z by - p(m; EN,k\m, eN,,)
miENik

> proa(my) — pro1(ma) - p(ma, € Nylmi € N) + by,

m; €Dy,

Yo peea(my).

m; €Dy,

Thus we have >  pi(m;) = 1 and conclude the proof.
m;EDy

B.3 Equivalence of Alg. 1 to Random Walk Sampling

According to Theorem 2, we only need to prove that through Alg. 1, for any m; € Dy, pr(m;) =

3. p(PF.|Gk), which is true for k = 0,1,---,7. We rely on strong mathematical induction to conduct
the proof. For k = 0, the argument is obvious true according to Alg. 1. Assume that for k' = 0,--- ,k — 1

(k =1,---,T), we have the following property: for any m; € Dy, pr(mi) = >, p(P, f;\gk/) Then we need
to prove the argument is true for k-th step.

For mi ¢ N, we have pi(mi) = pr—1(ms) = 3. p(P, ' Gr—1) = 3, p(PE:|Gr).
Form; € ./\fik, consider two cases. If m; € Di_1, then
pr(m;) = pr—1(mi) + by - p(m; € Ny |mi € Ny,)
= Zp THGh—1) 4 pr—1(my) - p(mi, € Nolmi € Ny) - p(mi € Ny |mi € Ni)

pr |gk1+zp Gk) - plmi, € Nolmi € Ny) - p(mi € Ny [mi € Ny,

= Zp Pi,c|gk )

where the last equality is true due to the fact PF = Pk Lupkl itm, ¢ Di—1, then we have
pr(ms) = pe—1(mo) - p(mi, € Ny|lmi € Noy) - p(mi € Ny |mi € Niy)
=" (P GR) - p(miy, € Nolmi € Ny) - p(mi € Ny |mi € NG,)

= 2 p(PIG)

where the last equality is based on the fact PF = P*~1. We conclude the proof.

C Implementation Details

C.1 Details of LANTERN-RNN
In LANTERN-RNN, we replace the multi-head attention unit by RNN structure to model the intensity function.

Specifically,
hn = Qb(Aen + Bhn—l + b),
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where A, B € RP*P b ¢ RP*! and ¢ is an activation function.

C.2 Details of LANTERN-PR

In LANTERN-PR, we directly use a pre-defined reward function for generated event sequence as training
signal of the generator. Assume the generated and ground-truth event sequences as S = {(tx,m;, )} and
S* = {(ty, m],)}, respectively, and we define the reward as

2
i =C — [[tx — t&|” + 0(may, = mi,),
where §(s) is an indicator function which returns 1 if s is true and 0 otherwise, and C' is a constant which

guarantees positive reward value.

C.3 Hyper-Parameter Settings

The settings for hyper-parameters are as follows: embedding dimension D = 10 for Syn-Small, D = 16 for
Syn-Large, D = 8 for MemeTracker, D = 16 for Weibo; causal descendant sample size K = 3 for Syn-Small
and Syn-Large, K = 5 for MemeTracker, K = 20 for Weibo; number of attention heads L. = 4; regularization
coefficient A = 0.001; time embedding weight 1 = 0.3; discount factor -y = 0.99; Adam parameters o = 10~ ",
B1 = 0.9, B2 = 0.99 for generator, and o = 107>, 51 = 0.9, B2 = 0.99 for discriminator.

D Model Training Algorithm

Algorithm 2: Training Algorithm for LANTERN

INPUT: {S*}, ground-truth event sequences. M, marker set. Initialized discriminator parameter
w", generator parameter #°. Adam hyper-parameter a, 31, 3.
fork =1, - ,ngcp do
Sample B observed event sequences {S; }£_; from {S*};
Generate event sequence S given by the source event in S; by Alg. 1;
Update generator parameter from 6% to 6%+ using (6));
B T T
ALp + £ Y Y Vi logdi(Sp;w) + Y. Vi log(1 — di (S5 w));
1 k=1

b=1 k=
wh !+ Adam(ALp,w*, a, B1, B2);

B T T
ALg + % 1;1 P VPV log m(ag|sk) log di,(Sy; w)) — A kzl Ve log m(ak|sk)Qiog(a, s);

L 0k+1 — Adam(ALGv gk’ «, ﬁla 52);
OUTPUT: discriminator parameter w, generator parameter 6.
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