Supplementary Materials

A Useful Lemmas for Proof of Theorem

For the SARSA algorithm, define for any 6 € RN,

9(0) = By [6(X, A) (r(X, 4) + 16" (Y, B) 0 — ¢ (X, A)0)] (14)
It can be easily verified that g(6*) = 0. We then define A;(0) = (6 — 6, g.(0) — g(6)).
Lemma 2. For any 0 € RY such that ||0]|, < @) <G.

Proof. By the definition of ¢;(6), we obtain
ge(O)lly = ||@(ze, ar) (r(xe, ar) + 70" (Teq1, ar1)0 — @7 (x4, a0)0) |,
< (e, ag) + 707 (@41, ar1)8 — &7 (0, a)6)|
< Tmax + (147 [0
<G, 15)
where the first two inequalities are due to the assumption that ||¢(z, a)|[, < 1. O

The following lemma is useful to deal with the time-varying behavior policy.
Lemma 3. For any 61 and 05 in RV,

1
drv (P, Poa) < 1AIC (Tlog, ™1+ 1) 101 = Gl (16)
and

1
drv (pe, , pe,) < |A|IC (1 + [log, m™"] + 1—p) 161 — 02, - (17

Proof. For 0;,i = 1,2, define the transition kernels respectively as follows:

K;(z,dy) = Z P(dy|x,a)my, (a|x). (18)
acA

Following from Theorem 3.1 in [24]], we obtain

_ 1
drv (Po,, Pg,) < (ﬂogpm 1+ 1_p> [ K1 — Kaf, (19)
where || - || is the operator norm: || A| := sup4/,.,,=1 l¢A[l7v. and || - |7y denotes the total-variation
norm. Then, we have
K~ Kol = sup | [ a(dn) (60 - Koo,
lallrv=11l/x TV
= sup / / q(dz)(Ky — K2)(af,dy)‘
lallzv=1Jx |Jx
< sup / lg(do)||(Ky — Ko) dy)‘
H(IHTV 1

= sup //|q (dz)]
llallrv=1 aeA

sup_ [ [ Jatan)| 3 Pldyia,) o, (alr) = moual)

HQHTV 1 acA
< AIC 01 = 0]l - (20)

P(dylz, a)(mp, (a|z) — 7, (alx))|

By definition, pg, (dx, a) = Py, (dx)my, (a|z), for i = 1, 2. Therefore, the second result follows after
a few steps of simple computations. O

12



Lemma 4. For any 0 € RY such that ||0||, < R,

(0 —6%,5(0) — g(07)) < —ws |0 — 07|]5- Q1)

Proof. Let § = 6 — 6*. Denote by dipg = pg(dz, a)P(dy|z, a)me(b|y). By the definition of g, we
have

(0~ 0,9(0) — 9(0°))
-/ 5= 076t 0 o)) = o (0,0

X
+ / / o(x, ) (46" (5, b) — &7 (x a)) (Odipy — 6" dis-)
T€X (e ATYEX pe g

~ [ " olmayr ) unlds0) - e (d,)
reX acA
+f / o, a) (16" (3, b) — &7 (, a))B(diy — diy-)
TEX e AVYEX e g
67 ( T Odapg- . 22
+L€XGEA/y€X§ (2, a) (767 (4,b) — 67 (, @)l @)

The first term in can be bounded as follows:

|3 5o A (X, A) () = - (4, )
xE A

< ||0]l27max| o — po- v

1] 1
< ||0||§rmax|A|C (1 + ﬂogp 1"| + 1_,0)

< MC|0]3, (23)

where the second inequality follows from Lemma and Ay = rmax|A| (2 + [log, m™"] + ﬁ)

The second term in (22)) can be bounded as follows:

/ / ZHT T,a (’Y(ﬁ (yv ) ¢ ( 7a))9(dw9_dw0*)
TEX jc Ay

€X pea
< 10021+ ) 1101l lvve — vo- v
7] 1
< 18131 + )R |AIC (2+ flog, m™"] + 1_/))
= CIA1. oo

where the second inequality follows from Lemma E, and g = (1 +

VR |A| (2 + [log, m~1] + 1%).

Let Ag- = Eg«[o(X, A)(WST(Y B) — ¢ (X, A))], which is negative definite 28, 36]. The third
term in (22) is equal to 67 Ag-6.

Hence,
(6 —6%,5(0) — §(6*)) <07 (Ag- + C(0\ + A) )0 < —w, |0 — 6% 3, (25)

where 1 is the identity matrix, and —w is the largest eigenvalue of 1 ((Ag+ + C(Ay + A2)I) + (Ag« +
C()\l —|-/\2)I)T) O

Lemma 5. Forallt >0, A(6;) < 2G>
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Proof. The result follows from Lemmal[2] Specifically,
Ad(0) = (0 07,90(0) — 9(0)) < 10— 071, llge(0) — 5(0)l, < 2R2G < 2G> (26)
O
Lemma 6. |A;(01) — A(02)] < (6 +AC)G [|01 — 62|, .

Proof. 1t is clear that
[A+(61) — As(62)]
= [{61 — 6%, 9:(61) — g(61)) — (62 — 07, 9:(02) — g(62))]|
= [(01 = 07, 9:(01) — g(61) — (9:(02) — g(62))) + (01 — 0" — (02 — 07), 9¢(62) — 9(02))]|
< 2R|[|gi(01) — 9(01) — (9:(02) — 3(02)) 5, + 2G (|61 — 2|, - 27)
The first term in can be further upper bounded as follows,
196(61) = g(01) = (9:(62) — 9(02))ll; < [l9:(61) — ge(62)ll2 + |9(61) — g(02))l,-  (28)
For the first term in (28], it follows that
lge(01) — ge(02)]ly = ||6(e, @) (VBT (ps1, ar1)01 — &7 (we41, arg1)02) — &7 (24, a0) (01 —
< " (@41, ar41) (01 — 02)| + |07 (w1, a0) (01 — 62)]
< (14701~ ], 29)

For the second term in (28)), it can be shown that

19(01) — g(62)ll,
— ’ /ex Z(b (x,a)r(z,a)(pe, (dz,a) — pg,(dz, a))

+/JUEX acA
:’/XZ¢(I,a)r(x,a)(u91(da:,a)—/,Laz(dm,a))
TEX e A
+/IGX acA
) I SCCO L BUCRICEEA )

€X pea

/ S 6w, @) (16 (4, ) — 7 (, @) (Ordibo, — Baddi,)

€X bea

.

[ 6laa) (167 (0) ~ 67 (o, )6, — dba,)

€X pea

(a)
< MO0 = b2]ly + AC |61 = b2l; + (1 + ) (161 — 62|,

< (AC+1+7) 61 — 02|, 0
where (a) can be shown via similar steps to those in and (24), and A\ = G| A|(2 + ﬂogp m-1] +
?1[)). This completes the proof. -

We next prove the major technical lemma for proving Theorem T}
Lemma 7. Consider the case with diminishing step size. For any T > 0, and t > T,

C|A|G? t 6 + \C)G? t
E[A:(6;)] < AIG"T log +4G?mpTt + (6+XC) log 31
w t—T 2w t—
Proof. Step 1. For any i > 0, by the update rule in (1)), it is clear that
1641 — Oill, = ||proja, g (0: + igi(6:)) — projy x(6:)]],
< laigi (6]l
< OziG. (32)
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Therefore, for any 7> 0, [|; — 0; ||, < 02} 1001 — 8ill, < G Y12, ay, which, together

1=t—T1 i=t—T
with the Lipschitz continuous property of A;(¢) in Lemmal6, implies that [A¢(6;) — Ay(6;,—,)| <
6G? Z;;E_T oy, and thus
-1

Ai(0) < Ay(Br—r) + (6 4+ AC)G? > s (33)

i=t—T1

Step 2. For convenience, rewrite A¢(0;— ;) = A¢(0:—r,Oy), where Oy = (Xi, Ay, Xpy1, Art1).
Conditioning on 6;_, and X;_, 1, we construct the following Markov chain:

Xi—r1 = Xirgo = Xirgz = - = Xy = Xpp, (34)
where fork =t —7+2,...,t+1,

P(Xg €101, Xp1) = 7o, (Ap1 = a| X 1)P(Xy € | Ay =0, K1), (39)
acA

where th'rntl = X¢_,+1. In short, conditioning on 6;_, and X;_,, 1, this new auxiliary Markov
chain is generated by repeatedly applying the same behavior policy 7y, .

From the construction of the Markov chain in (34), and the assumption that for any 6, the Markov
chain induced by repeated applying the same policy 7y is uniformly ergodic, and satisfies Assumption
it follows that conditioning on (6; ., X;_ 1), forany k >t — 7 + 1,

IP(Xk € 107, Xe—rs1) = Po,_, v < mp" =774, (36)
It can be shown that
E[A¢(0i—r,00)101—r, Xi—r11] — B[A¢(O1—r, O))|0r—r, Xi—r41]
<2G%mp™ t +mpT) < 4GPmpT L. (37)
Since for any fixed 6, E[A:(6)] = 0, thus E[A:(0;—r, O))|0;i—7, X¢t—r11] = 0, where O} are
independently generated by Py, _ and the policy 7y, _. It then follows that
E[A; (07, 00)] < 2G*(mp™ L +mp™) < 4G?*mp™ L. (38)

Step 3. Conditioning on #;_, and X;_, 1, we have

E[At (etfra Ot)|9t7‘ru Xt77'+1] - E[At (0t777 ét)|9t77‘7 Xt*‘l’+1:|
<2GPP(Oy € 1017, Xy —ry1) —P(Or € |01+, Xy 7 11) | 2w (39)

In the following, we will develop an upper bound on the total-variation norm above, i.e., bounding
the difference between the Markov chain induced by the original SARSA algorithm and the newly
designed auxiliary Markov chain. We first show that

|IP(O; € 0p—7, Xi—ry1) — P(Ot € |0—r, Xi—ri1)|lTv

<NP(X¢ € |0i—r, Xt—ri1) — P(Xs € 04—, Xo—ri1)[|l7v
t—1 t—2
+CIAIG > ai +ClAIG Y ai (40)

i=t—T i=t—T1

The proof of (40) can be found in Section
To bound the first term in {@0), it first can be shown that

P(X; € |0i—r, Xi—ri1) = / P(X;—1 =dx, X; € |07, X¢—741)
X

= / P(Xi—1 =de|0;—7, X¢—r1)P(Xy € 00—+, Xo 7 y1, X4 1 = ),
X
(41)
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where
P(X: €10t —r, Xt ry1, X¢1 = @)
= Z ]P(Xt € ',At,1 = a|0t,T7Xt,T+17Xt,1 = 217)

acA

Z P(Xt € ‘|£L’,G,)]P)(At,1 = a|0t,T7Xt,7-+1,Xt,1 = ZL’)

acA
Z P(X: € -Jx,a)Eq, ,[P(Ai—1 =al0; 2,0t 7, Xt ry1, Xe 1 = 2)|01 7, X ry1, Xy 1 = 7]
acA

=Y P(X; €|z, a)Eq,_,[mo,_, (al2)|0r—r, Xt ri1, Xio1 = 2], (42)
acA

Similarly, it can be obtained that

where

P(Xt €07, Xt—711)

:/ P(Xt—l =dx, X, € NOi—r, Xi—r41)
x

- / P(X1o1 = dalfy—r, Xpr ) )P(X, € N0, Xy, Ky = ), 3)
X

P(Xt S '|9t—T,Xt—T+1,Xt—1 =1x)

= 7, (A1 = a|X;_y = 2)P(X, € |z,0). (44)
acA

We then bound ||P(X; € -|0;—7, X4 ry1) — IP’(X} € |0;—r, Xi—r41)||l7v recursively as follows:

<

<

[P(X¢ € -|0r—7y Xe—rt1) — ]P’(Xt €0, Xi—ri1) TV

P(Xt = dx,|9t7'raXt7'r+1) - P(Xt = dx,|9t7'raXt7‘r+1)

/ S
2 r'eX
1 /

2 r'eX

- / P(Xi—1 = do|0i—r, Xi—ri1)P(Xy = d2’|0p— 7, Xo— i1, X1 = 2)
zeX

Lol
2 z'eX JreX

- P(Xt—l = dz|9t—77 Xt—T+1)P(Xt = dx,|9t—7'? X711, Xt—l = I)

/ IP>(th71 = dm|9t7‘r7 th‘r+1)]P)(Xt = dw/‘9t777Xt7‘r+17Xt71 = CU)
zeX

]P)(Xt—l = d$|9t—r,Xt—r+1)P(Xt = dﬂ?/|9t—r,Xt—r+17Xt—1 = I)

1

5/ / (’P(Xt—l =delbp_r, Xy r1)P(Xy = da’ |07, Xy 71, X1 = )
reX JxeX

- P(Xt—l = dz|0t—7'7 Xt—T-',-l)]P)(Xt = d$,|9t—m Xt—T+17 Xi1= x)

+ ‘P(Xt—l =de|0i—r, X7y 1)P(Xy = d2' |07, Xy p1, Xeo1 = )

- P(thl = d‘r|9t7’r7thT+1)P(Xt = dx/|6t7‘rth7‘r+1a thl = 95) )

<|P(Xioy € |0r—ry Xiri1) —P(Xio1 € |01—r, Xiri1) 7w

+ sup [P(X; € |0s—ry Xi—ri1, X1 = @) — P(Xy € |0i—r, Xt—ri1, Xim1 = )| v
rzeX
(45)
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The second term in can be bounded using (42) and as follows. For any « € X, it follows
that

IP(X: € |0i—r, Xi—ri1, Xoo1 = ) — P(Xt S '|0t—‘raXt—‘r+1aXt—1 =) v

_1/
2 z'eX

; /
< > P(d'|z,a)
2 T'EX fep

t—3

<CMIG Y a; (46)

i=t—T

Z P(dx'|x,a)Ey,_,[me,_,(al®)|0t—r, Xi—ri1, Xi—1 = x] — P(d2'|z, a)my,__ (a|)
acA

E9t72[7T9172(a|x) — T, (a‘z)|0t—T7Xt—T+laXt—l = l‘]

where the last inequality is due to the fact that

t—3 t—1
1612 = 6i+lly < > i1 =0, <G D (47)

i=t—T i=t—T
and 7y is Lipschitz condition in 6 as in (2).

Thus, |[P(X; € “|0i—r, Xi—r41) — P(Xy € |04—r, X¢—rt1)||7v can be bounded recursively as
follows:
IP(X¢ € |0i—7, Xp—rp1) — ]P)(Xt € |0i—7, Xe—ri1) |7V
t—3

< P(Xi—1 € |0i—7, Xp—rp1) — ]P)(thl €0, Xi—r11)ll7v + ClAIG Z a;. (48)

i=t—T

Doing this recursively implies that

IP(Or € -|0¢—7, Xt—741) — ]P(Ot €07, Xe—ri1) v
t—1 J
<P(Xp—rq2 € [0r—7, Xi—rq1) —P( X442 € -|0s—7, X4 11) || 7v + C|A|G Z Z ;
j=t—T1i=t—7

t—1 J
=ClAIG > D o

j=t—Ti=t—7

< C|A|GT log t

. 49
2w t—T “9)
Combining Steps 1, 2 and 3 completes the proof. O
B Proof of Equation
The total variation in (39) can be written as follows:
IP(O; € 07, Xi—741) — P(Ot € 10—, Xi—ri1)llrv
1
= 5 A ZL Z ]P)(Xt = dI,At = CL,XtJ,_l = d$/,At+1 = a/|9t_7—,Xt_7—+1)
A A
—P(X; =dz, Ay = a, X1 = da’, Ay = a'0r—r, Xy—r i) (50)
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Here, the first term in can be written as
]P(Xt =dv, Ay =a, X1 = dmla Ay = a/letf‘r»Xt7’r+1)
- ﬁf—1€RN P(X; =dax, Ay = a, Xyp1 = da’, Ay = a0 = dze—1,0; = dze|0—7, Xi—711)
2. €RN
= / / ]P(Xt = d$|9t7th7¢+1)P(9t71 = d2t71|9t777Xt—r+17Xt = CU)
RN JRN

X 7o,y (al2)P(Oy = dzy|0p—r, Xy vy, Xt = 2, Ay = a,0,_1 = 2,_1)P(d2’ |2, a)7,, (a'|2").
(51)

By the definition of the newly designed auxiliary Markov chain, the second term in (50) can be
written as

P(X; = dx, Ay = a, Xpp1 = da’, Ap1 = /|07, Xo—ri1)
=P(X, = dz|0i_r, Xi—r41)7m0,__(a|lz)P(da'|x, a)ms, (a'|2")

= _LAERN P(X, = dz|fi—r, Xi—741)m9, _(a|lz)P(dz' |z, a)mg, _(a'|2))
ztGRN
X P(Oi—1 = dzp—1|0i—7, Xi—7 41, Xt = 2)P(0; = d2e|0s 7, Xo 741, Xs =0, Ay = 0,01 = 2_1)
(52)

Thus, by plugging and into (50), can be further bounded as follows:

[P(O; € |0;—r, Xi—ri1) — PO € |0s—r, Xt—ri1) |7V

/ > / > / / <P(Xtdxwt_ﬂXt_m)P(et_ldzt_lwt_T,Xt_m,th)
X X RN

X ﬂ—zt—l(a’|x) (9t =dz|0; 7, Xo 71, Xi = 2, Ay = 0,0, 1 = 2z1)P(d2' |z, @), (a[2])
—P(X, = dz|0_+, Xt 741)m0, . (a|lz)P(dz|z,a)ms, _(d'|z")

X IED(915—1 = dZt—l\at—n Xirg1, Xt = x)P(at = dzt|9t—‘rvXt—~r+1vXt =z, Ay =a,0,_1= Zt—l)) ‘

<[22

X 1, (al2)P(O; = dzy|0p 7, Xy ry1, X¢ = 2, Ay = a,0,_1 = 2,_1)P(d2’ |2, a)7, (a'|2")
—P(X, = dz|0_r, Xt rs1)me, . (a|lz)P(de |z, a)ms, _(d'|z")

<P(Xt =da)|0i—7, Xy 7 1)P(Or—1 = dzg 1101+, X471, Xy = T)

X P(0;—1 = dzp—110t—r, Xp—ry1, Xt = 2)P(0; = d2y|0p—r, Xi— 71, Xt = 2, Ay = 0,01 = zt_l)) ‘
(53)
With a slight abuse of notations, let
M, =P(Xy = da|0—7, Xy 741)P(Or—1 = dzg—1|01— 7, X741, Xy = )
X 1., (al2)P(O; = dzy|0p—r, Xy vy, X¢ = 2, Ay = @, 0,1 = 2,_1)P(d2 |2, a)7, (a']|2"),
My =P(X; = dz|0i—r, Xe—r41)P(Or—1 = dze—1|01—r, Xt—ri1, Xy = 2)

X POy = dzy|0p v, Xy ry1, Xt = 2, Ay = 0,0, 1 = 2¢_1)mg,__(a|z)P(d2’|z,a)me, . (a'|2").
(54

Thus, (53] can be written as

IP(Os € 1047, X —741) (Ot € \0i—r, Xi—ri1) |7V

_Q/XZ/XZ/RN/RN\M M), (55)
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This can be further bounded as follows
IP(O: € “|0¢—r, Xt—ry1) — P O € 107, Xe—ri1) v

) —B(
;A%:A%:ANAN\Ml—M3+M3—sz
;L%A%ANAN\Ml—M3|+\M3—M2,
where

M; = P(Xt = dx|9t—TaXt—T+1)IP(6t = dzt|9t—'raXt—'r+17 Xi=x, Ay =a,0, 1= Zt—l)
X P01 =dze_1|0i—+, X¢—r11, Xy = x)0,__(alx)P(d2’ |2, a)7, (a'|2"). (57)
We first consider the second term in (56):

FeubNES
RN

x P01 = dztfl‘atfra Xt—ri1, Xt = -T)IP(at =da|0p—r, Xt ry1, Xt =2, A4 = 0,0, 1 = thl)
~P(X; = dalfr—r, Xo—r1)mo,_ (al2)P(da’|z, a)mg, _(a/2)

IN

IN

(56)

P(X, = dz|0,_r, Xy ry1)m,__ (a|z)P(dz' |z, a)m, (a'|2)

X ]P}(etfl = dztfl‘etfra Xiry1, Xp = m)IP’(Gt = dzt|9t77'7Xt77'+17Xt =z, Ay =a,0, 1= thl)

1 -
. P(X; = da|fi_r, Xi—r P(da'|z,
2 /XZA:/X%:/]RN /RN (X w|6: t—r+1)7, _, (a|z)P(dz’|z, a)
X P(Or—1 = dzg—1]01—7, Xp—ry1, X = 2)P(0 = d24|0p—7, Xo—r 1, Xo = 2, Ap = 0,01 = 2-1)

X

2, (a'la) = m, _ (a']2")

:/Z// / P(X; = dx|0y—r, Xs—r11)70,_ (a|2)P(da’ |z, a)
x T Jx Jrn Jry

XP(Qt 1 =dz— 1‘915 . O T+17Xt:x) (9t2d2t|9t e Xi— T+1,Xt=$7At:a,9t71 :thl)

X e, () = 7o, (-|2") |7y

LZ/@Achw”mﬂmhwmmmw

X P(Oi—1 =dzp 1|0, Xi—ry1, Xo = 2)P(0r = d2t|0p 7, Xp—rp1, Xp = 2, Ay = a, 01 = 241)

x sup |7z, (-|2') — 7o, (") | 7v (58)
z'eX
Recalling that
t—1 t—1
16: = O—rlly < D 01 —Oill, <G Y« (59)

1=t—T1 i=t—1
and by the Lipschitz condition in (2)), it follows that for any 2’ € X,
t—1
7, (-|2') = mo, . (a")lrv < CLAIG > au. (60)
1=t—T
Thus, for any z; such that z;dz; has non-zero measure, i.e., §; 1 = z;_; satisfies (59), it can be
shown that
t—1

sup ||, (a') = mo,_, (le)|lrv < CIAIG Y i, (61)

zex i=t—T
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which further implies that can be further bounded by C|A|G 12! ;.
We then consider the first term in (56):

o [ 323 o L e

gIRM RN S

X 7y, (alx)P(0y = dzy|Op—ry Xy ry1, Xt = 2, Ay = a,0;,—1 = 2,_1)P(d2’ |2, a)7, (a']|2")
- P(Xt = dx|9t7‘r7 th‘r+1)]P)(9t71 = d2t71|9t7n Xirq1, Xt = x)

P(X: = do|0;—7, Xi—711)P(0s 1 = dze 1[0t 7, X711, Xt = )

X m,_.(a|lz)P(dz'|z,a)m,, (a' |2 )P(0y = d2t|0t—7y Xt—ri1, Xo = 2, At = 0,011 = 24-1)

1
= 2~/X§~/X§~/]RN /RN 7, (@' |2 )P(d2' |z, a)P(0;—1 = dzy—1104—7, X7 i1, X¢ = T)

X PO = dzy|0p—7, Xy rp1, Xy =2, Ay = 0,01 = 24_1)

P(X, = dz|0,_7, Xy ry1)ms, ,(alz) — P(X, = dz|0,_7, Xy r11)m, _(a]z)

1
=3 P01 = dzt-1101—r, Xt—7 41, Xt =
Q/XZA:/]RN(tl Ztllt t—rt1, Xt = )

— P(Xt = dl’|9t_7—, Xt_-,—_;,_l)ﬂ'@t_r (a|9:)

X

P(Xt = dmletf‘rv thT+1)7th71 (a\x)

(62)

To further bound (62)), we play a similar trick as the one in (56). It follows that

1

5/ Z/ P(etfl = dzt71‘9t777Xt77+17Xt = 90)
x T JRN

—P(X; = dz|0;—+, X;—r41)70, . (a]2)

]P(Xt = dx|9t77'7 Xt77+1)77zt,1 (a|x)

1
<5 [ 3 PO = sl X, X x><’P(Xt = dalOhr, Xy ri1)me (al2)
X A RN

—P(X; = da|0—r, Xi—ri1)72,_, (a]@)

)

+ ‘]P)(Xt = dl‘wt_-,-,Xt_7—+1)71'zt71(0¢|.1‘) — ]P)(Xt = dﬂ]‘|0t_7-,Xt_-,-+1)7T9t77_ (a|x)

1 -
= ) ]P(Xt = d$|9t—r7Xt—r+1) - P(Xt = dx|9t—'raXt—‘r+1)
X
1 -
+ 5/ Z/ P01 =dz—1|0i—r, Xi— g1, Xt = )P(Xy = d|0i—r, Xi—r41)
x 7 Jrw
X |7z, (a|x) — mo,_, (alz)

]P(Xt = d$|9tfrth7'r+1) - P(Xt = d$|9tfn thr+1)

.,
< =
=32/,

+/ /N P(et—l = dzt—1|9t—‘raXt—'r+1aXt = JT)P(Xt = d$\9t—r, Xt—7’+1)
x JR

x sup [z, (fa) = ma, . (|2)llTv (63)
TEX
The first term in is
[P(X: € 1617, Xi—ry1) = P(Xy € 10y r, Xirp1) |7y (64)
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The second term can be bounded similar to (58). More specifically, recalling that

t—1 t—1
160 =07l < D 001 —bill, <G D (65)

1=t—T1 i=t—T
and by the Lipschitz condition in (2), it follows that for any = € X" and any z;_; such that z;_;dz;_1
has non-zero measure, then

t—2
720y () = 7o, (|2)llrv < CLA[ 261 = -], < CLAIG Y @i (66)
1=t—T1
Thus, is upper bounded by
t—2
IP(X; € 10—, Xi—ri1) = P(Xy €01, Xo—rp1)llrv + CIAIG ) o (67)
i=t—T

C Proof of Theorem 1|

We decompose the error as follows,
E[[|6s41 — 67[3]
= E[Hproj2,R(0t +ayg¢(6:)) — PTOJQ,R(Q*)HE]
< E[[|0: + cg:(0:) — 9*”;]
=E[[10: — 0°[15 + o lge(00) |5 + 20 (0, — 0%, g1 (61))]

= E[0: — 07|15 + oF [l9:(00) 15 + 200, — 0%,9(6:) — 5(07)) + 20, A4(0,)],  (68)

where the inequality is due to the fact that orthogonal projections onto a convex set are non-expansive,
and the last step is due to the fact that g(0*) = 0. Applying Lemmas [2|and E|implies that

E[[[0r1 — 07113] < E[(1 — 205w,) [10: — 075 + 0 G + 200 A (61)), (69)
which further implies that
. ) 1
w(t + DE[[|6r1 — 0*]|2] < Eftw |6, — 6*||% + 5 G? + Ay(01)]. (70)
Applying recursively and Lemmal[7] (with 7 = 79) yields that
wTE[|0r - 07][3)

< Z( 0 G? +]EAt(0t)]>

log T + 1) =
< (gi ZE [A:(6)] + D E[A(6))]
t=1o+1
logT +1 378 210/2)(logT +1)  2G?
< (logT + 1)G? oG (r+ 1)+ (C|A|G?*15 + (6 + A\C)G*15/2)(log T + )_’_i
4w w pw
G2(4C|A|GTE + (124 2XC) 79 + 1) (log T + 1) N 2G?(tow +w + p~ L) 1)
4w w ’

which completes the proof.

D Proof of Lemma 1]

Consider Ag = Eg[p(X, A)(voT (Y, B)0 — ¢T (X, A)0)], and by = Eg[p(X, A)r(X, A)] as defined
in Section with respect to 6. It has been shown that for any § € RY, Ay is negative definite
[28.136]. Denote by w; the largest eigenvalue of %(Ag* + AZ.). Recall that the limit point 6* satisfies

the following relationship —Ag-0* = by« (Theorem 2 [23]]). It then follows that —(0*)7 Ag-0* =
(6*)Tbg-, which implies — w; [|6*[|5 < [|6*]|, Fmax-
proof.

< —%, which completes the
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E Proof of Theorem 2]
The proof for Theorem 2] with constant step size is similar to the proof of Theorem([T] In the following,
we mainly outline the difference between them.
First, we obtain the following results from Lemmaby letting 7 =t if t < 19, and 7 = 79 if t > 79:
E[A:(6:)] < (6 + AC)G* o0 + 4G/ p + 2G° C| Al 5 v, (72)
where 79 = inf{t > 0: mp’ < ag}.
We then decompose the error following similar steps to those in (68), and we obtain that
)2
E[[16s41 — 07[15]
< E[[10: — 0°[15 + a3 l9:(00) 15 + 20, — 07, §(6:) — 5(67)) + 200 A4 (61)]
< E[||6; — 67])5 + af G* — 20wy |, — 67||3 + 200 A4 (6,)]
= E[(1 — 2a0ws) || — 0*[|3 + a2G? + 2a0 A4 (6;)] (73)

where the last inequality follows from Lemma[4. Applying recursively with (72)), we obtain
Theorem 2

F Proof of Theorem 3

Before we start the proof of Theorem 3] we first present the following lemma.

Lemma 8. Consider a non-increasing step-size sequence oy > «... > arp. For any fixed T, and
tB<i<(t+1)B—1,iftB <, then we have that

E[(0:p — 0", 9:(0:) — 5(0:15))] < 2G%; (74)
and if tB > T, then

E[(0:p — 0%, gi(0:) — 3(0:B))]
< (6+AXO)G?*(T + B)aup_r +4G*mp™ ' + ClA|G3 T asp_ . (75)

Proof. For any fixed 7, if t B < 7, then we use the following upper bound:
E[(6:5 — 0%, 9i(6:) — §(6:5))] < 4RG < 2G?, (76)
and if tB > 7, then for any tB < i < (¢t + 1)B — 1, it follows that
E[{0:p — 07, 9:(0:) — 9(6:5))]
=E[(0tp—r — 0", 9i(015—7) — (6:5—-))]
+E[(0i5 — 0%, 9:(6:) — g(0:8))] — E[(0tp—r — 07, 9i(OrB—7) — G(0:B—~))]. (77
The difference between the second and third terms in can be bounded as follows:
E[(0:5 — 0%, 9:(0:) — g(0:B))] — E[(Osi—r — 0", 9i(0iB—+) — G(0:B—7))]
=E[{0ip — 0, 9i(0:) — 9(6:5))] — E[(0:5 — 0%, 9:(6tp—~) — §(0ip—7))]
+E[0is — 0%, 9i(015—7) — §(O15—1))] — E[(0tp—r — 0%, 9i(01B—7) — §(015—7))]
=E[(0i — 0", 9:(0:) — g:(0iB—~))] — E[{0:p — 07, 9(0:B) — §(0:B—+))]
+E[(0ip —0iB—7,9:(0:B—~) — §(O1B—7))]

(a)
< 2R(1+9) 10: — Or—r|ly + 2R(1 + 7 + AC) 015 — Oun_r|ly + 2G 10,5 — O15—r |,

i—1 tB—1
<2G° ) 0+ (A+A0)G Y o
j=tB—1 j=tB—T
(®) )
< (6+AC)G2(T + B)awp_r. (78)
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Here the step (a) in the above equation follows similarly to those in and (30), and (b) is due to
the fact that the sequence «;’s is non-increasing.

Next, we consider the first term in (77)), which can be bounded using similar steps as in the proof
of Lemmal[7. In particular, let 7 = n, B, for some posmve integer ny. We then design an auxiliary
Markov chain following a fixed policy given by I'(¢7'0;5_,). It can be shown that

E[(015—7 — 0%, 9i(0ip—+) — §(0:B—7))]
tB—1 7
<AGPmp '+ 201AIGE YT Y

j=tB—T1i=tB—1
<AG*mp™ 1t + ClA|IGP T s (79)

This completes the proof. O

Now we are ready to prove Theorem 3, Following similar steps to those in the proof of Theorem|[T,
the error at time B(¢ + 1) can be decomposed as follows:

E{ |15 — 6"

(t+1)B—1 2
S E GtB + Z zgz z 0"
i=tB
i 2
I (t+1)B—1 (t+1)B—1 2
=E |05 —0"15+2 > ilbis—0%,0:0))+|| > aigi(@)| |- (80
i=tB 1=tB
2

The third term in can be upper bounded as follows:

(t+1)B—1 2 (t+1)B—1 2
S wg@)| < Y aG| <B*G*as 81
i=tB i=tB

2

We then consider the second term in (80). It can be shown that
E[(0:5 — 0%, 9i(6:))]

=E[{0iz —07,5(013) — 5(0%))] + E[(0:5 — 0", 9:(6:) — 5(0:5))], (82)
which is due to the fact that §(0*) = 0. The first term in the above equation can be upper bounded
using Lemmafd] i.e.,

E[(:5 —67,9(0:5) — 9(0)] < ~w.E|fes — 6715 (83)
The second term in (82)) can be bounded using Lemma g]
It then follows that
HG(HDB -0 H < E (1 — 2wsBa(t+1)B) ||9tB - G*H ] + B2G2atB

(t+1)B—1
123 Bl - 0%, g:(6) — 5(08))- (84)
i=tB

For the case with diminishing step size, i.e., a; = it follows that

2t’

(t+ DE[||651)5 — 0 H | < tE[|0:5 — 67])2] + B2G*a?5(t + 1)
(t+1)B—1
+20t+1) > wE[(fs —0%,0:(0:) — 3(0:))]. (89
i=tB
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Applying the above inequality recursively, we obtain that for any 7 = ny B > 0 where n; is some
positive integer,

TE[||075 — 0%||3]

T—1 (t+1)B-1
< B’G*ajp(t+1)+2(t+1) > aE[(fis — 0%, 9:(0:) — 5(0:5))]

t=0 i=tB

G? 4G*(t+ B) (6 + ACO)G?*(1 + B) + C|A|G372
< =
< 557 (logT +2) + B + Bu? (logT +1)

2 T—1
n 8G*mp T, (86)
w

where we let g = ﬁ. If we further let 7 = 79 = inf{nB : mp"® < arp}, then it follows that

E[|675 — 03]
< (402(70 + B)w + (log T + 1)((6 + AC)G27) + (6.5 + A\C)G2B

+ C|A|G32) +4G2/p—|—0.SBG2)/(wQBT). 87)

1
2wgs B’

For the case with constant step size, i.e., oy = ag <
E[(0:5 — 0%, 9:(0:) — (0:B))]
< (6 4+ A\C)G?(10 + B)ag + 4G*mp™ ! + C|A|G3 8 g, (88)

by letting 7 = tB if tB < 79, and 7 = 7¢ if tB > 79 in Lemma|[8. Then, applying recursively,
we obtain that

E[|6z5 — 67]3]

we first show that

BG? +2(6 + A\C)G?*(10 + B) + 8G?/p + 2| A|G373)
2wg

S e—2wsBOon ||00 _ e*Hg + aO( . (89)
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