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A Policy Gradient for PL Ranking policy

In this section, we will show the derivation of gradients for utility U and disparity (Dgroup and
Dind). Since both U and D are expectations over rankings sampled from π, computing the gradient
brute-force is intractable. We derive the required gradients over expectations as an expectation over
gradients. We then estimate this expectation as an average over a finite sample of rankings from the
policy to get an approximate gradient. Later, we also present a summary of the FAIR-PG-RANK
algorithm.

A.1 Gradient of Utility measures

To overcome taking a gradient over expectations, we use the log-derivative trick pioneered in the
REINFORCE algorithm (Williams, 1992) as follows
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(Log-derivative trick [1])

= Er∼πθ(r|q)[∇θlog πθ(r|q)∆(r, relq)]

The expectation over r ∼ πθ(r|q) can be computed as an average over a finite sample of rankings
from the policy.

A.2 Gradient of Disparity functions

The gradient of the disparity measure for individual fairness can be derived as follows:
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(using the log-derivative trick)

The gradient of the disparity measure for group fairness can be derived as follows:

∇θDgroup(π|G0, G1, q) = ∇θmax
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)
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]
Similarly, the expectation over r ∼ πθ(r|q) can be computed as an average over a finite sample of
rankings from the policy.

B Datasets and Models

B.1 Yahoo! Learning to Rank dataset

We used SET 1 from the Yahoo! Learning to Rank challenge [2], which consists of 19, 944 training
queries and 6, 983 queries in the test set. Each query has a variable sized candidate set of documents
that needs to be ranked. There are a total of 473, 134 and 165, 660 documents in training and test set
respectively. The query-document pairs are represented by a 700-dimensional feature vector. For
supervision, each query-document pair is assigned an integer relevance judgments from 0 (bad) to 4
(perfect).

B.2 German Credit Dataset

The original German Credit dataset [3] consists of 1000 individuals, each described by a feature
vector xi consisting of 20 attributes with both numerical and categorical features, as well as a label
reli classifying it as creditworthy (reli = 1) or not (reli = 0). We adapt this binary classification
task to a learning-to-rank task in the following way: for each query q, we sample a candidate set of
10 individuals each, randomly sampling irrelevant documents (non-creditworthy individuals) and
relevant documents (creditworthy individuals) in the ratio 4:1. Each individual is identified as a
member of group G0 or G1 based on their gender attribute.

B.3 Baselines

We compare our method to two methods:

1. Post-processing method on estimated relevances: First, we train a linear regression model
on all the training set query-document pairs that predicts their relevances. For each query
in the test set, we use the estimated relevances of the documents as an input to the linear
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program from Singh and Joachims [4] with the disparate exposure constraint for group
fairness (section § 2.2). We use the following linear program to find the optimal ranking that
satisfies fairness constraints on estimated relevances:

P∗ = argmaxP uTPv − λξ (where ui = 2r̂eli − 1 and vj = 1
log 1+j as in § 2.1)

s.t. ∀j
∑
j

Pij = 1 (sum of probabilities for each document)

∀i
∑
i

Pij = 1 (sum of probabilities at each position)

∀i, j 0 ≤ Pij ≤ 1 (valid probabilities)
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M(Gk)
−
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PTi v
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)
≥ −ξ

(Disparate exposure fairness constraint)
ξ ≥ 0

Note that the relevances used in the linear program (in u) are estimated relevances. This is
one of the reasons that even when using this linear program to minimize disparity, we cannot
guarantee that disparity on unseen queries can be reduced to zero. In contrast to Singh and
Joachims [4], rather than solving the exact constraint, we use a λ hyperparameter to control
how much unfairness we can allow. For our experiments, we evaluate the performance
for values of λ ∈ [0, 0.2] (at λ = 0.2, for all queries the disparity measure on estimated
relevances was reduced to zero).
The linear program outputs a nq×nq-sized probabilistic matrix P representing the probability
of each document at each position. We compare the NDCG and Dgroup for this probabilistic
matrix to other methods in sections § 4.2 and § 4.3.

2. Zehlike and Castillo [5]: This method uses a cross-entropy loss on the top-1 probability of
each document to maximize utility. The top-1 probabilities of each document is obtained
through a Softmax over scores output by a linear scoring function. The disparity measure is
implemented as the squared loss of the difference between the top-1 exposure of the groups
G0 and G1. Training is done using stochastic gradient descent on the sum of cross entropy
and λ times the disparity measure. For all our experiments with this method, we didn’t use
any regularization, searched for the best learning rate in the range [10−3, 1], and evaluated
the performance for λ ∈ {0, 1, 10, 102, . . . , 106}.

B.4 Model and Training: Yahoo! Learning to Rank challenge dataset

We train two different models for experiments in Section § 4.1: a linear model, and a neural net-
work. The neural network has one hidden layer of size 32 and ReLU activation function. For
training, all the weights were randomly initialized between (−0.001, 0.001) for the linear model and
(−1/

√
32, 1/

√
32) for the neural network. We use an Adam optimizer with a learning rate of 0.001

for the linear model and 5 × 10−5 for the neural network. For both the cases, we set the entropy
regularization constant to γ = 1.0, use a baseline, and use a sample size of S = 10 to estimate the
gradient. Both models are trained for 20 epochs over the training dataset, updating the model one
query at a time.

B.5 Model and Training: German Credit Dataset

To validate whether FAIR-PG-RANK can also optimize for Group fairness, we used the modified
German Credit Dataset from the UCI repository (section § B.2). We train a linear scoring model with
Adam, using a fixed learning rate of 0.001 with no regularization, and a sample size S = 25, for
different values of λ in the range [0, 25]. We compare our method to baselines mentioned in § B.3.
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