
We thank the reviewers for their thorough and insightful reviews. We first respond to a common question from Reviewers1

3 and 5 regarding the information stored in the memory / memory access patterns, then address each review in turn:2

Memory access (Reviewer 3, Reviewer 5). We tried to investigate how the memory is used, and whether we can3

find interesting memory access patterns. For a given memory value index, we looked at the n-grams that were the most4

responsible for accessing this memory index. We found that for some memory indices, the associated n-grams were5

nicely related to a very specific topic. However, for other memory indices (in particular, the most frequently accessed6

ones), the pattern of the associated n-grams was not as clear. We need to investigate more to understand how exactly the7

model uses the memory.8

Reviewer 29

• For the uniformity of queries, we experimented with the Kozachenko Leonenoko estimator as a loss term to10

favor high-entropy distribution, but we observed that it made little difference in practice. We hypothesize that11

a uniform distribution is a difficult target for a distribution that approximately follows a Zipf law. We thank12

the reviewer for suggesting Rae et al., we will incorporate it into our related work section. They propose to13

reallocate rarely used memory slots, to improve memory coverage. In contrast, our product key set enables to14

have a very good coverage of the memory and avoid this issue.15

• Chen et al. compare the theoretical aspects of the Transformer and the RNN. In RNNs they argue that16

the memory is the hidden state, that is context-dependent. In our work, the memory consists of a set of17

(context-independent) parameters. The memory is of course accessed in an input specific way, but it is static18

unlike in RNNs.19

• The keys are determined by the product set, and the values are an embedding table. Parameters of both are20

learned jointly with the rest of the network. The queries are computed as in a regular transformer; we will21

update the paper to make it clearer.22

• Our multi-head mechanism is akin to the multi-head used in the attention layer, but it is used in the memory23

layer. We will fix the terminology to clarify this point.24

Reviewer 325

• Our experiments are by design very large-scale and all take a large amount of time and computational power26

to converge (several days on 32 GPUs). Running each of them several times would be extremely expensive.27

However, our observation is that these experiments are overall very stable. For some particular model28

configurations, we actually ran several experiments with different random initializations and found that the29

variance was overall extremely small across runs (with differences typically smaller than 0.1 perplexity).30

• We performed similar experiments (with / without memory) with the training objective presented in BERT31

(masked language modeling). Our findings were very similar to the ones presented in the paper (with regular32

language modeling): a model with 12 layers and a memory outperforms a model with 24 layers without33

memory, both for models of dimensionality 1024 and 1600.34

• We opted for one task in order to retain the extensive empirical analysis and rigorous methodology. In our35

upcoming work, we are now exploring this layer for computer vision applications.36

Reviewer 537

• The described layer is indeed not fully differentiable because there is a discontinuity when there is a switch38

between the k-th and (k+1)-th nearest neighbor, and “Ensuring that the k-th attention weight is zero” as39

suggested is a way to address this issue. This is something we actually tried, we had a hyper-parameter to40

remove the k-th weight to all weights (so that each weight remains positive, and the k-th one is zero) and added41

an extra L1-normalization step on the updated weights (to ensure they still sum to 1). However, in practice we42

found that the k-th weight was always very small anyway (the smallest value of a softmax over typically 3243

k-NN scores), and we did not observe any difference of results by fixing this score to exactly zero.44

• Our comment regarding the priority list was indeed unclear, we will clarify it in the paper.45

• In Figure 1, we plot the log-probability for different different groups of words clustered by frequency. We46

observe that adding the memory improves the performance on all words, particularly on rare words, which is47

what could be expected: the memory is useful to store rare facts or rare named entities that are usually difficult48

for the model to retrieve. These observations are similar to what we observed by adding more layers, but no49

memory. We thank the reviewer for suggesting this.50

Figure 1 (zoom in for details): Cumulative log-probability (higher
is better) for words with different frequency, for two models
with/without memory, but otherwise identical configuration. Im-
provements in log-probability when adding a memory layer are
higher for rare words (left) than for frequent words (right).

51


