
Proof of Invariants (Reviewer 2 Question 1): We mildly modify the 1-feasibility condition (3) and enforce it only1

on any edge (a, b) with a flow σ(a, b) < min{sb, da}, i.e., only on forward edges in the residual network. While2

this change does not impact the algorithm or its correctness, it significantly simplifies the proof of invariants. In the3

submitted version, only Lemma 2.1 uses (3) in (L193). We adapt this proof for the new definition of (3). Initially4

transform σ and σ′ as follows. For any edge (a, b) that does not satisfy (3), its flow σ(a, b) is min{sb, da}. We reduce5

da and sb by σ′(a, b), reduce the flow on the edge (a, b) in σ′ to 0, and reduce σ(a, b) to min{sb, da} − σ′(a, b). Both6

σ and σ′ continue to be maximum transport plans and this transformation does not change the difference in their costs.7

Additionally, every edge with a positive flow in σ′ now satisfies (3) and (L193) continues to hold.8

Proof of (I1): We show that after the dual updates of a Hungarian search, every forward edge satisfies (3) and every9

backward edge satisfies (4). From the shortest path property, we have (E1): `u + s(u, v) ≥ `v. There are four10

possibilities: (i) `u < `t and `v < `t, (ii) `u ≥ `t and `v < `t, (iii) `u < `t and `v ≥ `t or (iv) `u ≥ `t and11

`v ≥ `t. We present the proof for case (i); the other three cases are similar. For case (i), if (u, v) is a forward (resp.12

backward) edge then u ∈ B, v ∈ A (resp. u ∈ A, v ∈ B). The updated dual weights ỹ(u) = y(u) + `t − `u13

(resp. ỹ(u) = y(u) − `t + `u) and ỹ(v) = y(v) − `t + `v (resp. ỹ(v) = y(v) + `t − `v), and the updated dual14

weight sum is ỹ(u) + ỹ(v) = y(u) + y(v) + `v − `u (resp. ỹ(u) + ỹ(v) = y(u) + y(v) − `v + `u). From (E1),15

ỹ(u)+ ỹ(v) ≤ y(u)+y(v)+s(u, v) = b2c(u, v)/δ′c+1 (resp. ỹ(u)+ ỹ(v) ≥ y(u)+y(v)−s(u, v) = b2c(u, v)/δ′c).16

The last equality follows from the definition of slack for a forward (resp. backward) edge. Note that the augment17

procedure may introduce new edges into the residual network. Any such new forward (resp. backward) edge will have a18

slack of 1 because the corresponding backward (resp. forward) edge is admissible implying they satisfy (3) (resp. (4)).19

Proof of (I2): We show that, after the dual updates are conducted by Hungarian search, the shortest path P from s to t20

(ignoring vertices s and t) is an admissible augmenting path between free vertices b and a. For any edge (u, v) on P , by21

construction `u ≤ `t and `v ≤ `t. Repeating the calculations of case (i) of the proof of (I1), the updated dual weight22

sum is ỹ(u) + ỹ(v) = y(u) + y(v) + `v − `u (resp. ỹ(u) + ỹ(v) = y(u) + y(v)− `v + `u). Note that for edges on23

the shortest path P , (E1) holds with equality and so, ỹ(u) + ỹ(v) = y(u) + y(v) + s(u, v) = b2c(u, v)/δ′c+ 1 (resp.24

ỹ(u) + ỹ(v) = y(v) + y(v) + s(u, v) = b2c(u, v)/δ′c), i.e., the path P is an admissible augmenting path. The partial25

DFS step conducts a search from every free supply vertex including b. This will lead to the discovery of at least one26

augmenting path in the admissible graph. We show that at the end of partial DFS step, there is no augmenting path in the27

admissible graph. Note that any vertex v removed from A is a vertex from which the DFS search backtracked. Due to28

the fact that Hungarian search does not create a cycle in the admissible graph [Lemma 2.3, Gabow Tarjan SICOMP’89],29

we can conclude that there is no admissible path from v to any free demand node. So the deleted vertex and edge could30

not have participated in an augmenting path of admissible edges. At the end of partial DFS step, every free supply31

vertex is deleted from A, so there are no admissible augmenting paths from any free supply vertex.32

Scalability and Parallel Implementations (R2 Q2 & Q3c): As shown in [Sharathkumar, Agarwal SODA 201233

Section 3.1, 3.2], Hungarian search and partial DFS can be implemented in O(nΦ(n)) time, where Φ(n) is the34

query/update time of a dynamic weighted nearest-neighbor (DNN) data structure. Many distances including squared35

Euclidean distance admits DNN with poly-logarithmic time search/update operations. We achieve Õ(n) execution36

time for these distances. See also [Agarwal Sharathkumar STOC 14, Section 4 (i)–(iii)] for a relative ε-approximation37

algorithm using the approximate nearest neighbor (ANN) data structure. Design of ANN-based near-linear time additive38

approximations and their practical implementation will be stated as potential open questions for the future.39

An alternate implementation of Gabow-Tarjan’s algorithm [Lahn, Raghvendra SODA 2019, Section 2.1] may be easier40

to parallelize. This implementation does not require Hungarian Search but only an iterative execution of partial DFS41

from each free vertex in the admissible graph. Paths in an admissible graph are of lengthO(C/δ) (similar to Lemma 2.442

proof) which may aid in the execution of DFS from each free vertex in parallel. We will pose parallel implementation43

of our algorithm as an important open question. In our paper and experiments, we focused on sequential execution only.44

Experiments (R2 Q3a, Q3b): Note that the value of C for all Sinkhorn comparisons (Figure 2) in our paper was45

fixed at 7.112 (squared Euclidean costs scaled by the median cost), so δ/C was in the range of [0.0035, 0.028]46

(includes moderate values). When comparing with other algorithms, we understand that the actual execution time47

may vary based on the choice of programming language, implementation details48

and the available resources. Therefore, we give a comparison (right) of the49

number of iterations taken by our algorithm with those in Table 1 for moderate50

values of δ/C (with a setup similar to Figure 2). For Sinkhorn, APDAGD, and51

our algorithm, each iteration takes Θ(n2) time. For the Greenkhorn algorithm,52

the number of iterations is given by the total row/column updates divided by n.53

In the cases we tested, our algorithm performs fewer iterations on average. We54

saw similar results for n ∈ [500, 2500], δ/C = 0.05 on synthetic data. Note that55

the time taken for augmentations in our algorithm was negligible for our tests.56


