
A Proofs of Propositions in Section 3

A.1 Proofs of Prop. 1

Suppose cycle c /∈ C is induced by cycles c1, . . . , cK ∈ C and intermediate cycles sets c(1), . . . , c(K)

where c(1) = c1 and c(K) = c. F is a map graph that is consistent for basis C. We will show that
c(k), 1 ≤ k ≤ K are all consistent over F inductively.

It is clear c(1) is consistent over F . Consider c(k) = c(k−1) ⊕ ck where c(k−1) is consistent over F
and ck ∈ C. Since c(k) is also a simple cycle c(k−1) ∩ ck must be a simple path p. Without loss of
generality we can assume that c(k−1) = p ∼ s1 and ck = p−1 ∼ s2 where ∼ is path concatenation
operator and p−1 means the reversed orientation of path p. Thus by induction of composition over
paths we have fs1 ◦ fp = Id and fp−1 ◦ fs2 = Id. Since fp−1 = f−1

p we have fs1 ◦ fs2 = Id.
However it is easy to see that c(k) = s1 ∼ s2, which leads to fc(k) , or c(k) is consistent over F . The
proposition follows immediately by noting that c(K) = c.

A.2 Proof of Prop. 2

The cycle-consistent basis is a special case of the binary cycle basis which relaxes the condition that
all intermediate products must be simple cycles. It is known that the minimum size of binary cycle
basis would be |E| − |V|+ 1 [22].

Next we show the cycle basis CT induced from spanning tree T is a cycle-consistent basis. Let puv
be the unique path from u to v in spanning tree T . Given simple cycle c = i1i2 . . . ik, we have

f(ij ,ij+1)∼pij+1,ij
= Id

for all j = 1, . . . , k since (ij , ij+1) ∼ pij+1,ij is in C by definition. Thus

fijij+1
= f−1

pij+1,ij
= fpij ,ij+1

.

The last equality comes from fuv = f−1
uv holds for all (u, v) ∈ E . As such it is clear that

fpik,i1 ◦ fpik−1,ik
◦ · · · ◦ fpi1,i2 = fpi1,i1 = Id

by noticing the uniqueness of paths on spanning tree. Thus we have shown that

fc = fiki1 ◦ fik−1,ik ◦ · · · ◦ fi1,i2 = Id.

So the induced basis CT is cycle-consistent.

A.3 Proof of Prop. 3

We provide the following counter example.

Consider the following 6 cycles from the cube graph below:

C1 :a→ b→ c→ g → h→ e→ a

C2 :b→ c→ d→ h→ e→ f → b

C3 :c→ d→ a→ e→ f → g → c

C4 :d→ a→ b→ f → g → h→ d

C5 :a→ b→ c→ d→ a

C6 :a→ e→ h→ d→ a

C7 :a→ b→ f → e→ a

C8 :e→ f → g → h→ e

C9 :c→ d→ h→ g → c

C10 :b→ c→ g → f → b
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Figure 3: A cube graph

It is easy to check the following equations (all under 2-modulo sense):

C1 ⊕ C2 ⊕ C3 = C4

C5 ⊕ C6 ⊕ C7 ⊕ C8 ⊕ C9 = C10

C1 ⊕ C3 = C5 ⊕ C8

C1 ⊕ C5 = C6 ⊕ C9

C2 ⊕ C5 = C6 ⊕ C7

(12)

If we set B = {C1, C2, C3, C5, C6}, then equation group (12) shows that C5, C6, . . . , C10 can be
composed from B and thus furthermore form a cycle basis of the cube graph. However a function
network that is consistent on C1, C2, C3, C5, C6 is not necessarily consistent on C4, which means B
is not a cycle-consistency basis even though it is indeed a cycle basis.

Fundamental
Cycle Basis

Cycle-Consistency Basis

(Binary) Cycle Basis

Figure 4: Venn diagram for subsets of cycle bases

B Proof of Theorem. 4.1

We first make a formal statement for Prop. 4.1. Let us begin with a few assumptions about the
underlying neural networks with respect to the optimal network parameters θ?ij :

• Cycle-consistency is exact. For any cycle c ∈ C,

fΘ?

c = Id (13)

where Θ? collects all network parameters. A consequence of this is that the map fij from
Di to Dj is unique. In the following, we will consider sets of consistent correspondences
across the entire map network, i.e, xi ∈ Di, 1 ≤ i ≤ |V|, and

f
θ?ij
ij (xi) = xj , ∀(i, j) ∈ E .

• Bounded distortion. LetK denote the dimension of the domainsDi. There exists universal
constants 0 < c1 < c2, so that for each set of consistent correspondences xi ∈ Di, 1 ≤ i ≤
|V|,

c1 ≤ σmin(
∂fΘ?

pij

∂x
) ≤ σmin(

∂fΘ?

pij

∂x
) ≤ c2. (14)
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• Bounded network gradients. There exist universal constants c3, c4 > 0, so that

c3 ≤ σmin(E
∂f

θij
ij

∂θij
(θ?ij , x))T

∂f
θij
ij

∂θij
(θ?ij , x))

≤ σmax(E
∂f

θij
ij

∂θij
(θ?ij , x))T

∂f
θij
ij

∂θij
(θ?ij , x)) ≤ c4, ∀x ∈ Di, (i, j) ∈ E ,

• Bounded Hessian matrices of the loss terms. There exist universal constants c5 and c6 so
that the Hessian matrix of each loss term lij(θ

?
ij) satisfies

c5I � H(lij(θ
?
ij)) � c6I.

Let H(Θ?) denote the Hessian matrix of joint map optimization. Due to the exactness of the
cycle-consistency constraint, it is clear that

H(Θ?) :=
∑

(i,j)∈E0

(ve ⊗ I)H(lij(θ
?
ij))(v

T
e ⊗ I) +

∑
c=(i1···iki1)∈C

wcExi1 (
∂fΘ?

c

∂Θ
(xi1)T (

∂fΘ?

c

∂Θ
(xi1)

(15)

where ∂fΘ?

c

∂Θ (xi1) is the Jacobi of each fc with respect to network parameters evaluated at (xi1). Note
that unless other-wise stated, we use I to denote all identity matrices, whose dimension is inferred
from the context.

With this set up, we present a formal statement of Theorem. 4.1:

Theorem B.1 Under the assumptions described above, we have

κ(H(Θ?)) ≤
max(

c24
c21c

2
3
, c22)c22c4

min(
c23
c22c

2
4
, c21)c21c3

κ(H).

B.1 Proof of Theorem. B.1

Since fc involves the composition of neural networks along cycles, we begin with expanding its
Jacobi matrix:

∂fΘ?

c (xi1) =

k∑
l=1

∂fiki1 ◦ fil+1il+2

∂xik+1

(filil+1
◦ fi1i2(xi1))·

∂filil+1

∂θilil+1

((filil+1
◦ fi1i2(x)))dθilil+1

, ∀xi1 ∈ Di1 , c ∈ Csup. (16)

The key idea of our proof is to define n2 pairs of matrices Aij ∈ RK×K , 1 ≤ i, j ≤ |V| so that

Ail+1i1 :=
∂fiki1 ◦ fil+1il+2

∂xik+1

(filil+1
◦ fi1i2(x)),

Intuitively, Aij is the Jacobi matrix of fij at xi. It is easy to check that this definition is proper (due
to the cycle-consistency constraint), and these matrices satisfy the cycle-consistency properties:

Fact 2 For all triplets of shapes 1 ≤ i1, i2, i3 ≤ n, we have
Ai2i3Ai1i2 = Ai1i3 ,∀1 ≤ i1, i2, i3 ≤ |V|

Define Be :=
∂f

θ?ij
ij

∂θij
(xi), ∀e = (i, j) ∈ E . Note that Be is dependent on xi but we omit xi in

the expression for brevity. Similarly, introduce matrix J i1A ∈ RK×(|E|K), where the block that
corresponds to e = (i, j) is given by Aii1 . We can rewrite ∂fΘ?

c (xi1) as

∂fΘ?

c (xi1) =

k∑
l=1

Ail+1i1Bilil+1
dθilil+1

= J i1A (diag(vc)⊗ I)JΘ?dΘ (17)
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where JΘ?(x) := diag(Be) collect the Jacobi matrices in the diagonal block, where diag(vc) ∈
R|E|×|E| is the diagonal matrix whose diagonal elements correspond to vc.

The following inequality characterizes a relation among J i1A and J1
A, which will be used later:

c21J
1
A
T
J1
A � J

i1
A

T
J i1A = J1

A
T
ATi11Ai11J

1
A � c22J1

A
T
J1
A, ∀1 ≤ i1 ≤ n. (18)

We will also use another formulation of ∂fΘ?

c (xi1). Let Diag(Ai1) = diag(J i1A ) collect the blocks
of J i1A in the diagonal block. We also have

∂fΘ?

c (xi1) = (vTc ⊗ I) ·Diag(Ai1)JΘ?dΘ (19)

We proceed to lower bound HΘ? , and obtaining an upper bound can be done in a similar fashion:

H(Θ?) =
∑

e=(i,j)∈E0

(
(ve ⊗ I)H(lij(θ

?
ij))(ve ⊗ Im)

+
∑

c=(i1···iki1)∈C

wcEJΘ?
T (diag(vc)⊗ Im)J i1A

T
J i1A (diag(vc)⊗ Im)JΘ? .

Using H(lij(θ
?
ij)) � c5I , we have

H(Θ?) �c5
∑

e=(i,j)∈E0

(vev
T
e )⊗ I (20)

+
∑

c=(i1···iki1)∈C

wcEJΘ?
T (diag(vc)⊗ Im)J i1A

T
J i1A (diag(vc)⊗ Im)JΘ? (21)

Combing (21) and (18), we have

H(Θ?) � c25
∑

e=(i,j)∈E0

(vev
T
e )⊗ I

+ c21
∑

c=(i1···iki1)∈C

wcEJΘ?
T (diag(vc)⊗ I)J1

A
T
J1
A(diag(vc)⊗ I)JΘ?

= c25
∑

e=(i,j)∈E0

(vev
T
e )⊗ I

+ c21EJΘ?
TDiag(A1)T

(
(

∑
c=(i1···iki1)∈C

wcvcv
T
c )⊗ I

)
Diag(A1)JΘ?

Note that H =
∑

e=(i,j)∈E0
(vev

T
e ) +

∑
c=(i1···iki1)∈C

wcvcv
T
c ). It follows that

H(Θ?) � c25
∑

e=(i,j)∈E0

(vev
T
e )⊗ I

+ min(
c25
c22c

2
4

, c21)EJΘ?
TDiag(Ai1)T

(
(H −

∑
e=(i,j)∈E0

(vev
T
e ))⊗ I

)
Diag(Ai1)JΘ?

� c25
∑

e=(i,j)∈E0

(vev
T
e )⊗ I + min(

c25
c22c

2
4

, c21)EJΘ?
TDiag(A1)T

(
H ⊗ I

)
Diag(A1)JΘ?

−min(
c25
c22c

2
4

, c21)EJΘ?
TDiag(A1)T

( ∑
e=(i,j)∈E0

(vev
T
e ))⊗ I

)
Diag(A1)JΘ?

� c25
∑

e=(i,j)∈E0

(vev
T
e )⊗ I + min(

c25
c22c

2
4

, c21)λmin(H)EJΘ?
TDiag(A1)TDiag(A1)JΘ?

−min(
c25
c22c

2
4

, c21)EJΘ?
TDiag(A1)T (

∑
e=(i,j)∈E0

vev
T
e )⊗ IDiag(A1)JΘ?
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� c25
∑

e=(i,j)∈E0

(vev
T
e )⊗ I + min(

c25
c22c

2
4

, c21)λmin(H)c21EJΘ?
TJΘ?

−min(
c25
c22c

2
4

, c21)c22EJΘ?
T (

∑
e=(i,j)∈E0

vev
T
e )⊗ IJΘ?

� c25
∑

e=(i,j)∈E0

(vev
T
e )⊗ I + min(

c25
c22c

2
4

, c21)λmin(H)c21c3

−min(
c25
c22c

2
4

, c21)c22c4(
∑

e=(i,j)∈E0

vev
T
e )⊗ I

� min(
c23
c22c

2
4

, c21)c21c3λmin(H)I.

Like-wise, we can show that the Hessian matrix is upper bounded by

H(Θ) � max(
c24
c21c

2
3

, c22)c22c4λmax(H)I.

This means the condition number of H(Θ?)

κ(H(Θ?)) ≤
max(

c24
c21c

2
3
, c22)c22c4

min(
c23
c22c

2
4
, c21)c21c3

κ(H),

which ends the proof.

C Proof of Theorem 4.2

We first present a formal statement of Theorem 4.2.

Definition 7 Given a finite point set P ⊆ Sm where Sm := {x ∈ Rm : |x| = 1} is the unit sphere
in Rm, the spherical Voronoi partition of P is defined as a partition {Pv : v ∈ P} such that

Pv = {u ∈ Sm : d(u,v) ≤ d(u,v′) ∀v′ ∈ P}
in which d is the Euclidean distance in Rm. Intuitively, Pv is consisting of the neighborhood of v on
Sm. Also, Pv is known to be connected, so we can define S(v) as the generalized area of Pv on Sm.

Theorem C.1 Let s?1 and s?2 be the optimal solution to (6). Denote |E| by m.

1) For all feasible s1 and s2 we have

s1 ≤
|E0|+ λ

m
≤ s2

2) Denote P as {vc/|vc|} ∪ {ve}. Let {Pv} be the Voronoi partition of point set P = P ∪ −P
where −P := {−v : v ∈ P}. Define εv := supu∈Pv

‖vvT − uuT ‖ for v ∈ P .

Setting wc = λ
Sm|vc|2 (S(vc) + S(−vc)) and we = λ

Sm
(S(ve) + S(−ve)), we have

s?2 − s?1 ≤
λ

Sm

∑
v∈P

S(v)εv +
∥∥ ∑
e∈E0

(1− we)vevTe
∥∥+ δ

∥∥∥∥ ∑
c∈Csup
wc<δ

vcv
T
c

∥∥∥∥, (22)

in which Sm = mπm/2

Γ(m/2+1) is the area of unit sphere in Rm.

Observe that whenever P is densely distributed over Sm and δ is relatively small, the dominating
terms in (22) would be ∥∥ ∑

e∈S0

(1− we)vevTe
∥∥.

16



Proof 1 The first part of the proposition is obtained directly by taking trace on (C1). Now focus on
the second part.

Define

M =
∑
e∈E0

wevev
T
e +

∑
c∈Csup

wcvcv
T
c (23)

L =
∑
e∈E0

vev
T
e +

∑
c∈Csup

wcvcv
T
c (24)

s?1 = λmin(L) and s?2 = λmax(L′) together with {wc} would be a feasible solution to (6) except
constraint (C3) where λmin(L) and λmax(L) are smallest and largest eigenvalues of L respectively.
We postpone (C3) constraint to later discussion.

Consider the following generalized surface integral on Sm

J =
λ

Sm

∫
v∈Sm

vvT dS.

By symmetry of Sm we have uTJu is a constant for all unit vector u. Thus J = KI for some
constant K. Since

Tr[J ] =
λ

Sm

∫
v∈Sm

Tr[vvT ]dS = λm,

we have J = λI .

Note that ∥∥M − J∥∥
=
∥∥ λ

Sm

∑
v∈P

S(v)vvT − J
∥∥

=
λ

Sm

∥∥∑
v∈P

∫
u∈Pv

(vvT − uuT )dS
∥∥

≤ λ

Sm

∑
v∈P

∫
u∈Pv

‖vvT − uuT ‖dS

=
λ

Sm

∑
v∈P

S(v)εv.

and
‖M − L‖ ≤

∥∥ ∑
e∈E0

(1− we)vevTe
∥∥.

We have
‖L− J‖ ≤ λ

Sm

∑
v∈P

S(v)εv +
∥∥ ∑
e∈E0

(1− we)vevTe
∥∥.

To make all wc ≥ δ, we upscale wc to max{wc, δ}, which make L increase by

δ
∑
c∈Csup
wc<δ

vcv
T
c .

This operation may violate the (C2) constraint, so we rescale wc to fit (C2). Notice that this rescaling
whose amplification is less than 1 will reduce the gap between largest and smallest eigenvalues.
Collecting all results above, we have

s∗2 − s∗1 ≤
λ

Sm

∑
v∈P

S(v)εv +
∥∥ ∑
e∈E0

(1− we)vevTe
∥∥+ δ

∥∥∥∥ ∑
c∈Csup
wc<δ

vcv
T
c

∥∥∥∥
with a constructive solution of wc. Here we used the fact that the eigen-gap of J is zero.
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D Solving (6) Using ADMM

In this section, we show how to solve (6) using alternating direction method of multiplers (or ADMM).
To this end, we first reformulate the semi-definite program as follows:

argmin
w,s1,s2

αs2 − s1

subject to X1 =
∑
e∈E0

vev
T
e +

∑
c∈Csup

wcvcv
T
c − s1I : Y1

X2 = s2I −
∑
e∈E0

vev
T
e −

∑
c∈C

wcvcv
T
c : Y2

X1 � 0 : S1 � 0

X2 � 0 : S2 � 0

wmin ≥ δ : ymin ≥ 0

wactive ≥ 0 : yactive ≥ 0 (25)

where wmin and wactive collect weights of the cycles in Cmin and Cactive, respectively, and Y1, Y2, S1,
S2, ymin and yactive denote the dual variables. The Lagrangian of (25) is given by

L : = αs2 − s1

− 〈
∑
e∈E0

vev
T
e +

∑
c∈Csup

wcvcv
T
c − s1I −X1, Y1〉

− 〈
∑
e∈E0

vev
T
e +

∑
c∈Csup

wcvcv
T
c − s2I +X2, Y2〉

− 〈X1, S1〉 − 〈X2, S2〉 − 〈wmin − δ1,ymin〉 − 〈wactive,yactive〉

= δ
∑

c∈Cmin

yc − 〈
∑
e∈E0

vev
T
e , Y1 + Y2〉 − s1

(
1− 〈I, Y1〉

)
− s2

(
− α− 〈I, Y2〉

)
− 〈X1, S1 − Y1〉 − 〈X2, S2 + Y2〉 −

∑
c∈Csup

wc
(
〈vcvTc , Y1 + Y2〉+ yc

)
(26)

The dual problem is given by

minimize
S1�0,S2�0,y≥0

− δ
∑

c∈Cmin

yc + 〈
∑
e∈E0

vev
T
e , Y1 + Y2〉

subject to 1− 〈I, Y1〉 = 0

− α− 〈I, Y2〉 = 0

S1 − Y1 = 0

S2 + Y2 = 0

〈vcvTc , Y1 + Y2〉+ yc = 0 (27)

The augmented Lagrangian is given by

L := −δ
∑

c∈Cmin

yc + 〈
∑
e∈E0

vev
T
e , Y1 + Y2〉+ s1

(
1− 〈I, Y1〉

)
+ s2

(
− α− 〈I, Y2〉

)
+ 〈X1, S1 − Y1〉+ 〈X2, S2 + Y2〉+

∑
c∈Csup

wc
(
〈vcvTc , Y1 + Y2〉+ yc

)
+

1

2µ

(
‖S1 − Y1‖2F + ‖S2 + Y2‖2F

+
∑
c∈Csup

(〈vcvTc , Y1 + Y2〉+ yc)
2 + (1− 〈I, Y1〉)2 + (α+ 〈I, Y2〉)2

)
. (28)

Starting from initial values of the primal variables:

w(0)
c = 0,∀c ∈ Csup, s

(0)
1 = s

(0)
2 = 0, X

(0)
1 = X

(0)
2 = 0. (29)
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At each iteration of the ADMM, we first fix the primal variables to optimize the dual variables in a
sequential manner.

Given the current dual variables at iteration k: Y (k)
1 , Y (k)

2 , S(k)
1 , S(k)

2 , yc,∀c ∈ Csup, we first fix S1,
S2 and yc,∀c ∈ Csup to optimize Y1 and Y2. In this case, optimizing L leads to two sub-optimization
problems with decoupled optimizations of Y1 and Y2:

min
Y1,Y2

〈
∑
e∈E0

vev
T
e , Y1 + Y2〉 − s(k)

1 〈I, Y1〉 − s(k)
2 〈I, Y2〉

− 〈X(k)
1 , Y1〉+ 〈X(k)

2 , Y2〉+ 〈
∑
c∈Csup

wcvcv
T
c , Y1 + Y2〉

+
1

2µ

(
‖S1 − Y1‖2F + ‖S2 + Y2‖2F

+
∑
c∈Csup

(〈vcvTc , Y1 + Y2〉+ yc)
2 + (1− 〈I, Y1〉)2 + (α+ 〈I, Y2〉)2

)
(30)

We employ conjugate gradient descent for optimzing (30), utilizing the fact that we usually have
warm-start for Y1 and Y2 from the previous iteration. Note that thanks to the term ‖S1 − Y1‖2F and
‖S2 + Y2‖2F . This linear system is usually well-conditioned, resulting fast convergence of the cg
solver.

When Y1, Y2 and yc, c ∈ Csup are fixed, S1 and S2 may be optimized in isolation as follows:

min
S1�0
〈X1, S1 − Y (k+1)

1 〉+
1

2µ
‖S1 − Y (k+1)

1 ‖2F

min
S2�0
〈X1, S2 + Y

(k+1)
2 〉+

1

2µ
‖S2 + Y

(k+1)
2 ‖2F

Using the fact that the optimal solution to min
X�0
‖S−X‖2F is given by the positive definite component

of S+ST

2 , we conclude that the optimal value of S1 and S2 are given by

S
(k+1)
1 := U1 max(Λ1, 0)U1

T , Y
(k+1)
1 + µX

(k)
1 = U1 max(Λ1, 0)U1

T

S
(k+1)
2 := U2 max(Λ2, 0)U2

T , − (Y
(k+1)
2 + µX

(k)
2 ) = U2Λ2U2

T

Finally when Y1, Y2, S1 and S2 are fixed, we can optimize each yc in isolation as

min
yc≥0

1

2µ

(
yc + vTc (Y

(k)
1 + Y

(k)
2 )vc

)2
+ wcyc − δ · Id[c ∈ Cmin] · yc

which leads to

yc = max
(
0, µ(δ · Id[c ∈ Cmin)− wc]− vTc (Y

(k)
1 + Y

(k)
2 )vc

)
, ∀c ∈ Csup. (31)

Once we have optimized the dual variables, we proceed to update the primal variables as follows:

w(k+1)
c = w(k)

c +
y

(k+1)
c + vTc (Y1 + Y2)vc

µ
, ∀c ∈ Csup

s
(k+1)
1 = s

(k)
1 +

1− Trace(Y
(k)
1 )

µ

s
(k+1)
2 = s

(k)
2 − α+ Trace(Y

(k)
2 )

µ

X
(k+1)
1 = X

(k)
1 +

S1 − Y (k)
1

µ

X
(k+1)
2 = X

(k)
2 +

S2 + Y
(k)
2

µ
(32)

Regarding the hyper-parameters, we set µ = 10−2. At each iteration, we update µ = ρµ, where
ρ = 1.01 in all of our experiments. We run ADMM for 1000 iterations.
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E Proofs of Theorems in Section 4

E.1 Concentration Bound for Rank-1 Matrices

Proposition 4 Given n independent random variable x1, . . . , xn and n fixed rank-1 matrices
B1, . . . , Bn of the same shape with E[xi] = 0 and Pr[|xi|‖Bi‖ ≤ M ] = 1 for i = 1, . . . , n,
Sn, the standard deviation of sum

Sn = x1B1 + · · ·+ xnBn

is defined as

σ =
√
Tr[E[STn Sn]] =

√√√√ n∑
i=1

‖Bi‖2 Ex2
i .

If M ≤ σ, Sn would be subject to the following concentration inequality:

Pr[‖Sn‖ ≥ cσ] ≤ Ae−Bc
2

where A,B are universal constants.

Proof 2 We consider controlling the m-th moment of Sn where m is an positive even number. Since

Tr[ESmn ] =

d∑
i=1

λmd (Sn) ≥ ‖Sn‖m,

by Markov’s inequality we have

Pr[‖Sn‖ ≥ cσ] ≤ c−mTr[ES
m
n ]

σm
. (33)

The terms in the expansion of Smn have the form
xi1Bi1xi2Bi2 . . . ximBim

where ij ∈ {1, . . . , n} for j ∈ {1, . . . ,m}. The expectation of such term does not vanish only if no
subscript appears exactly one time, otherwise E[xi] = 0 and the independence of xi makes the term
vanish.

Next we divide the non-vanishing terms into a collection of sets based on the equality relations of
subscripts. To illustrate this idea, consider a special case of m = 4. There are four different types of
terms:

x4
i1
B4
i1

i1 = i2 = i3 = i4

x2
i1
x2
i2
Bi1Bi2Bi1Bi2 i1 = i3, i2 = i4, i1 6= i2

x2
i1
x2
i2
Bi1B

2
i2
Bi1 i1 = i4, i2 = i4, i1 6= i2

x2
i1
x2
i3
B2
i1
B2
i3

i1 = i2, i3 = i4, i1 6= i3

The sum of all terms of the first type would be bounded by

Tr[E[

n∑
i1=1

x4
i1B

4
i1 ]] ≤M2

n∑
i1=1

Tr[E[x2
i1B

2
i1 ]] ≤M2σ2.

For the second type we have

Tr[E[

n∑
i1=1

∑
i2 6=i1

x2
i1x

2
i2Bi1Bi2Bi1Bi2 ]]

≤
n∑

i1=1

n∑
i2=1

E[x2
i1x

2
i2 ]|Tr[Bi1Bi2Bi1Bi2 ]|

≤
n∑

i1=1

n∑
i2=1

E[x2
i1x

2
i2 ]‖Bi1‖2‖Bi2‖2

≤
n∑

i1=1

‖Bi1‖2 E[x2
i1 ]

n∑
i2=1

‖Bi2‖2 E[x2
i2 ] = σ4.
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The second inequality comes from the fact that Bi1Bi2Bi1Bi2 is a rank-matrix whose trace is equal
to the operator norm. Similar argument works for the last two types of terms. Summing them up we
have

Tr[ES4
n] ≤M2σ2 + 3σ4.

Now we consider general even m. Given some type that has k free subscripts, the sum of terms of
such type could be bounded by

σ2kMm−2k.

Moreover, we count the number of types having k free subscripts as follows. In fact, each variable
xij , j ∈ {1, . . . ,m} can bind to one of k free subscripts, which means there are at most km types
having k free subscripts. Hence we obtain

Tr[ESmn ] ≤
m/2∑
k=1

kmσ2kMm−2k.

Whenever M ≤ σ the formula reduces to

Tr[ESmn ] ≤ (m/2)m/2+1σm < mm/2σm

where the last inequality is from 2m/2+1 > m for m ∈ N+. In this way, inequality (33) turns to be

Pr[‖Sn‖ ≥ cσ] <

(√
m

c

)m
.

Setting m = b c
2

e2 c the desired bound follows immediately.

E.2 Proof of Lemma. 4.3

Since rank-1 matrices include scalars as a special case, we just apply Prop. 4 to
∑
c xc and∑

c xcwcvcv
T
c respectively, and then lemma follows immediately by setting c = Θ(log n) in Prop. 4.
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