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Figure 1: Loss and gradients trend for CE and
RCE loss. Results are reported with VGG16 net-
work on 100 random images for MIFGSM attack.

We thank the reviewers for the positive feedback: new state-of-the-art results1

(R1,2&3), first to explore cross-domain transferability (R1), high significance2

to the community (R3), very well written and clear presentation (R1,2&3).3

Code: Code will be made public. Fig.( 1, 2, 3) best viewed in zoom.4

R1,2&3: Significance of Relativistic Cross-Entropy (RCE): Adversarial per-5

turbations are crafted via loss function gradients. An effective loss helps in6

adversary generation by back-propagating stronger gradients. Below, we show7

thatRCE ensures this requisite and thus leads to better performance than CE .8

Notation: classifier F , clean sample x, adversarial example x′, output scores a = F(x), a′ = F(x′).9

Gradient Perspective: Let CE(a′, y)=− log
(
ea

′
y/
∑

k e
a′
k

)
be the CE loss for input x′. For clarity, we define10

p′y = ea
′
y/
∑

k e
a′
k . The derivative of p′y w.r.t a′i is ∂p′y/∂a

′
i = p′y([[i=y]]−p′i). From chain rule, ∂CE/∂a′i = p′i− [[i=y]]11

(Eq. 1). For relativistic loss,RCE(a′, a, y)= − log
(
ea

′
y−ay/

∑
k e

a′
k−ak

)
, we define ry =

(
ea

′
y−ay/

∑
k e

a′
k−ak

)
. The12

derivative of ry w.r.t a′i is ∂ry/∂a′i = ri([[i=y]]− ry). From chain rule, ∂RCE/∂a′i = ri − [[i=y]] (Eq. 2).13

In light of above relations,RCE has three important properties: (a) Comparing (Eq. 2) with (Eq. 1) shows thatRCE gra-14

dient is a function of ‘difference’ (a′y−ay) as opposed to only scores a′y in CE loss. Thus it measures the relative change15

in prediction as an explicit objective during optimization. (b)RCE loss back-propagates larger gradients compared to16

CE , resulting in efficient training and stronger adversaries (see Fig. 1 for empirical evidence). Sketch Proof: We can17

factorize the denominator in (Eq. 2) as follows: ∂RCE/∂a′i =
(
ea

′
y−ay/(ea

′
y−ay +

∑
k 6=y e

a′
k−ak)

)
− [[i=y]]. Consider18

the fact that maximization ofRCE is only possible when e(a
′
y−ay) decreases and

∑
k 6=y e

(a′
k−ak) increases. Generally,19

ay � ak 6=y for the score generated by a pre-trained model and a′y � a′k 6=y. Thus, ∂RCE/∂a′i > ∂CE/∂a′i since20

e(a
′
y−ay) < e(a

′
y) and

∑
k 6=y e

(a′
k−ak) >

∑
k 6=y e

(a′
k). In simple words, the gradient strength ofRCE is higher than CE .21

(c) In case x is misclassified by F(·), the gradient strength ofRCE is still higher than CE (here noise update with the22

CE loss will be weaker since adversary’s goal is already achieved i.e., x is misclassified). We will add it in final version.23

Evaluation: We further validate (see Fig. 2) the significance of RCE compared to CE in terms of three criterion24

(accuracy, logits difference and transfer to unseen classes). For the test on unseen classes, we divide ImageNet into two25

mutually exclusive sets (500 classes each), named IN1 and IN2. VGG16 is trained on IN1 & IN2 from scratch.26
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Figure 2: (a) shows Top-5 accuracy of adversaries (lower is better),
(b) shows normalized l2 difference b/w logits of adversarial and benign
examples (higher is better) while (c) shows transferability to unseen classes.
In each case RCE perform significantly better than CE .

R1: 1) RCE Justification: See R1,2&3 above. 2)27

Relation with Style-Transfer: We visualize the28

intermediate feature space of cross-domain per-29

turbed images and compare it with original and30

stylized images (Fig. 3). We note that the feature31

space of perturbed images is fairly shifted from32

the original and stylized images. This shows that33

although some of the generated patterns resemble34

"style" of a specific domain (e.g., in Fig. 3 main35

paper), the overall behaviour of our proposed ap-36

proach is distinct from style transfer. This is potentially due to the existence of "non-robust features" defined as ‘features37

that are highly predictive but brittle and incomprehensible to humans’ [A1]. Since, our generated perturbations are38

bounded (as opposed to unbounded style transfer), the attacker is likely to focus on the non-robust features. We will add39

further qualitative examples on other domains in final version (Fig. 6 in supp. material). 3) Notations: Will update in40

the final draft. 4) On Adversarial Training Defenses: Our main draft already includes evaluations with adversarial41

training (Tab.5&6 in paper). 5) On the Existence of Universal Adversarial Function (UAF): Earlier works [A2,A3]42

show that universal adversarial perturbations exist due to overlap in decision space of different classification models.43

Our work empirically shows that the same holds true even across different domains. This possibly happens due to the44

overlap between latent low-dimensional manifolds across different domains.45
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Figure 3: t-SNE visualization for features of 100 im-
ages and their corresponding stylized and perturbed ver-
sions. VGG16 is used to extract features.

R2: Theoretical Result: See R1,2&3 earlier. Typo: We thank R2 & fix it.46

R3: 1) Use of Instance-Agnostic: We used this term to differentiate the47

one-time training feature of our attack as opposed to instance-specific48

attacks. However, we acknowledge R3’s point and will replace this term49

with domain-agnostic for clarity. 2) Comparison with [1,19]: [1] trains50

conditional generators to learn original data manifold and searches the latent51

space conditioned on the human recognizable target class that is mis-classified by a target classifier. Different to [1],52

our approach learns to add adversarial noise to the original samples. [19] produces adversarial images by employing a53

separate discriminator alongside classifier. Different to [19], we train a generator to first produce unbounded adversaries54

and then project them to nearby original images. We thank R3 and will add further discussion in final version.55

[A1] Ilyas, Andrew, et al. "Adversarial examples are not bugs, they are features." arXiv (2019). [A2] Tramèr, Florian, et al. "The space of transferable adversarial
examples." arXiv (2017). [A3] Dezfooli, Seyed, et al. "Analysis of universal adversarial perturbations." arXiv (2017).


