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Abstract

We consider the problem of learning the nearest neighbor graph of a dataset of n
items. The metric is unknown, but we can query an oracle to obtain a noisy estimate
of the distance between any pair of items. This framework applies to problem
domains where one wants to learn people’s preferences from responses commonly
modeled as noisy distance judgments. In this paper, we propose an active algorithm
to find the graph with high probability and analyze its query complexity. In contrast
to existing work that forces Euclidean structure, our method is valid for general
metrics, assuming only symmetry and the triangle inequality. Furthermore, we
demonstrate efficiency of our method empirically and theoretically, needing only
O(n log(n)��2) queries in favorable settings, where ��2 accounts for the effect
of noise. Using crowd-sourced data collected for a subset of the UT Zappos50K
dataset, we apply our algorithm to learn which shoes people believe are most
similar and show that it beats both an active baseline and ordinal embedding.

1 Introduction

In modern machine learning applications, we frequently seek to learn proximity/ similarity relation-
ships between a set of items given only noisy access to pairwise distances. For instance, practitioners
wishing to estimate internet topology frequently collect one-way-delay measurements to estimate the
distance between a pair of hosts [9]. Such measurements are affected by physical constraints as well as
server load, and are often noisy. Researchers studying movement in hospitals from WiFi localization
data likewise contend with noisy distance measurements due to both temporal variability and varying
signal strengths inside the building [4]. Additionally, human judgments are commonly modeled as
noisy distances [26, 23]. As an example, Amazon Discover asks customers their preferences about
different products and uses this information to recommend new items it believes are similar based
on this feedback. We are often primarily interested in the closest or most similar item to a given
one– e.g., the closest server, the closest doctor, the most similar product. The particular item of
interest may not be known a priori. Internet traffic can fluctuate, different patients may suddenly need
attention, and customers may be looking for different products. To handle this, we must learn the
closest/ most similar item for each item. This paper introduces the problem of learning the Nearest

Neighbor Graph that connects each item to its nearest neighbor from noisy distance measurements.

Problem Statement: Consider a set of n points X = {x1, · · · , xn} in a metric space. The metric
is unknown, but we can query a stochastic oracle for an estimate of any pairwise distance. In as few
queries as possible, we seek to learn a nearest neighbor graph of X that is correct with probability
1� �, where each xi is a vertex and has a directed edge to its nearest neighbor xi⇤ 2 X \ {xi}.

⇤Authors contributed equally to this paper and are listed alphabetically.
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1.1 Related work

Nearest neighbor problems (from noiseless measurements) are well studied and we direct the reader to
[3] for a survey. [6, 30, 25] all provide theory and algorithms to learn the nearest neighbor graph which
apply in the noiseless regime. Note that the problem in the noiseless setting is very different. If noise
corrupts measurements, the methods from the noiseless setting can suffer persistent errors. There has
been recent interest in introducing noise via subsampling for a variety of distance problems [24, 1, 2],
though the noise here is not actually part of the data but introduced for efficiency. In our algorithm,
we use the triangle inequality to get tighter estimates of noisy distances in a process equivalent to the
classical Floyd–Warshall [11, 7]. This has strong connections to the metric repair literature [5, 13]
where one seeks to alter a set of noisy distance measurements as little as possible to learn a metric
satisfying the standard axioms. [27] similarly uses the triangle inequality to bound unknown distances
in a related but noiseless setting. In the specific case of noisy distances corresponding to human
judgments, a number of algorithms have been proposed to handle related problems, most notably
Euclidean embedding techniques, e.g. [17, 31, 23]. To reduce the load on human subjects, several
attempts at an active method for learning Euclidean embeddings have been made but have only seen
limited success [20]. Among the culprits is the strict and often unrealistic modeling assumption that
the metric be Euclidean and low dimensional. In the particular case that the algorithm may query
triplets (e.g., “is i or j closer to k?”) and receive noisy responses, [22] develop an interesting, passive
technique under general metrics for learning a relative neighborhood graph which is an undirected
relaxation of a nearest neighbor graph.

1.2 Main contributions

In this paper we introduce the problem of identifying the nearest neighbor graph from noisy distance
samples and propose ANNTri, an active algorithm, to solve it for general metrics. We empirically and
theoretically analyze its complexity to show improved performance over a passive and an active base-
line. In favorable settings, such as when the data forms clusters, ANNTri needs only O(n log(n)/�2)
queries, where � accounts for the effect of noise. Furthermore, we show that ANNTri achieves
superior performance compared to methods which require much stronger assumptions. We highlight
two such examples. In Fig. 2c, for an embedding in R2, ANNTri outperforms the common technique
of triangulation that works by estimating each point’s distance to a set of anchors. In Fig. 3b, we
show that ANNTri likewise outperforms Euclidean embedding for predicting which images are most
similar from a set of similarity judgments collected on Amazon Mechanical Turk. The rest of the
paper is organized as follows. In Section 2, we further setup the problem. In Sections 3 and 4 we
present the algorithm and analyze its theoretical properties. In Section 5 we show ANNTri’s empirical
performance on both simulated and real data. In particular, we highlight its efficiency in learning
from human judgments.

2 Problem setup and summary of our approach

We denote distances as di,j where d : X ⇥ X ! R�0 is a distance function satisfying the standard
axioms and define xi⇤ := argminx2X\{xi} d(xi, x). Though the distances are unknown, we are able
to draw independent samples of its true value according to a stochastic distance oracle, i.e. querying

Q(i, j) yields a realization of di,j + ⌘, (1)

where ⌘ is a zero-mean subGaussian random variable assumed to have scale parameter � = 1. We let
d̂i,j(t) denote the empirical mean of the values returned by Q(i, j) queries made until time t. The
number of Q(i, j) queries made until time t is denoted as Ti,j(t). A possible approach to obtain the
nearest neighbor graph is to repeatedly query all

�n
2

�
pairs and report xi⇤(t) = argminj 6=i d̂i,j(t) for

all i 2 [n]. But since we only wish to learn xi⇤8i, if di,k � di,i⇤ , we do not need to query Q(i, k)
as many times as Q(i, i⇤). To improve our query efficiency, we could instead adaptively sample to
focus queries on distances that we estimate are smaller. A simple adaptive method to find the nearest
neighbor graph would be to iterate over x1, x2, . . . , xn and use a best-arm identification algorithm
to find xi⇤ in the ith round.1 However, this procedure treats each round independently, ignoring
properties of metric spaces that allow information to be shared between rounds.

1We could also proceed in a non-iterative manner, by adaptively choosing which among
�
n
2

�
pairs to query

next. However this has worse empirical performance and same theoretical guarantees as the in-order approach.
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• Due to symmetry, for any i < j the queries Q(i, j) and Q(j, i) follow the same law, and we
can reuse values of Q(i, j) collected in the ith round while finding xj⇤ in the jth round.

• Using concentration bounds on di,j and di,k from samples from Q(i, j) and Q(i, k) collected
in the ith round, we can bound dj,k via the triangle inequality. As a result, we may be able
to state xk 6= xj⇤ without even querying Q(j, k).

Our proposed algorithm ANNTri uses all the above ideas to find the nearest neighbor graph of X . For
general X , the sample complexity of ANNTri contains a problem-dependent term that involves the
order in which the nearest neighbors are found. For an X consisting of sufficiently well separated
clusters, this order-dependence for the sample complexity does not exist.

3 Algorithm

Our proposed algorithm (Algorithm 1) ANNTri finds the nearest neighbor graph of X with probability
1� �. It iterates over xj 2 X in order of their subscript index and finds xj⇤ in the jth ‘round’. All
bounds, counts of samples, and empirical means are stored in n ⇥ n symmetric matrices in order
to share information between different rounds. We use Python array/Matlab notation to indicate
individual entries in the matrices, for e.g., d̂[i, j] = d̂i,j(t). The number of Q(i, j) queries made is
queried is stored in the (i, j)th entry of T . Matrices U and L record upper and lower confidence
bounds on di,j . U4 and L4 record the associated triangle inequality bounds. Symmetry is ensured
by updating the (j, i)th entry at the same time as the (i, j)th entry for each of the above matrices. In
the jth round, ANNTri finds the correct xj⇤ with probability 1� �/n by calling SETri (Algorithm 2),
a modification of the successive elimination algorithm for best-arm identification. In contrast to
standard successive elimination, at each time step SETri only samples those points in the active set
that have the fewest number of samples.

Algorithm 1 ANNTri

Require: n, procedure SETri (Alg. 2), confidence �
1: Initialize d̂, T as n⇥n matrices of zeros, U,U4 as n⇥n matrices where each entry is1, L,L4

as n⇥ n matrices where each entry is �1, NN as a length n array
2: for j = 1 to n do

3: for i = 1 to n do {find tightest triangle bounds}
4: for all k 6= i do

5: Set U4[i, k], U4[k, i], min` U
4`

i,k , see (7)
6: Set L4[i, k], L4[k, i] max` L

4`

i,k , see (8)
7: NN[j] = SETri(j, d̂, U, U4, L, L4, T, ⇠ = �/n)
8: return The nearest neighbor graph adjacency list NN

Algorithm 2 SETri

Require: index j, callable oracle Q(·, ·) (Eq. (1)), six n ⇥ n matrices: d̂, U , U4, L, L4, T ,
confidence ⇠

1: Initialize active set Aj  {a 6= j : max{L[a, j], L4[a, j]} < mink min{U [j, k], U4[j, k]}}
2: while |Aj | > 1 do

3: for all i 2 Aj such that T [i, j] = mink2Aj T [i, k] do {only query points with fewest samples}
4: Update d̂[i, j], d̂[j, i] (d̂[i, j] · T [i, j] + Q(i, j))/(T [i, j] + 1)
5: Update T [i, j], T [j, i] T [i, j] + 1
6: Update U [i, j], U [j, i] d̂[i, j] + C⇠(T [i, j])

7: Update L[i, j], L[j, i] d̂[i, j]� C⇠(T [i, j])
8: Update Aj  {a 6= j : max{L[a, j], L4[a, j]} < mink min{U [j, k], U4[j, k]}}
9: return The index i for which xi 2 Aj

3



3.1 Confidence bounds on the distances

Using the subGaussian assumption on the noise random process, we can use Hoeffding’s inequality
and a union bound over time to get the following confidence intervals on the distance dj,k:

|d̂j,k(t)� dj,k| 

s

2
log(4n2(Tj,k(t))2/�)

Tj,k(t)
=: C�/n(Tj,k(t)), (2)

which hold for all points xk 2 X \ {xj} at all times t with probability 1� �/n, i.e.

P(8t 2 N, 8i 6= j, di,j 2 [Li,j(t), Ui,j(t)]) � 1� �/n, (3)

where Li,j(t) := d̂i,j(t)� C�/n(Ti,j(t)) and Ui,j(t) := d̂i,j(t) + C�/n(Ti,j(t)). [10] use the above
procedure to derive the following upper bound for the number of oracle queries used to find xj⇤ :

O

0

@
X

k 6=j

log(n2/(��j,k))

�2
j,k

1

A , (4)

where for any xk /2 {xj , xj⇤} the suboptimality gap �j,k := dj,k � dj,j⇤ characterizes how hard it
is to rule out xk from being the nearest neighbor. We also set �j,j⇤ := mink/2{j,j⇤} �j,k. Note that
one can use tighter confidence bounds as detailed in [12] and [18] to obtain sharper bounds on the
sample complexity of this subroutine.

3.2 Computing the triangle bounds and active set Aj(t)

Since Aj(·) is only computed within SETri, we abuse notation and use its argument t to indicate
the time counter private to SETri. Thus, the initial active set computed by SETri when called in
the jth round is denoted Aj(0). During the jth round, the active set Aj(t) contains all points that
have not been eliminated from being the nearest neighbor of xj at time t. In what follows, we add a
superscript4 to denote a bound obtained via the triangle inequality, whose precise definitions are
given in Lemma 3.1. We define xj’s active set at time t as

Aj(t) := {a 6= j : max{La,j(t), L
4
a,j(t)} < min

k
min{Uj,k(t), U

4
j,k(t)}}. (5)

Assuming L4
a,j(t) and U4

j,k(t) are valid lower and upper bounds on da,j , dj,k respectively, (5) states
that point xa is active if its lower bound is less than the minimum upper bound for dj,k over all
choices of xk 6= xj . Next, for any (j, k) we construct triangle bounds L4, U4 on the distance dj,k.
Intuitively, for some reals g, g0, h, h0, if di,j 2 [g, g0] and di,k 2 [h, h0] then dj,k  g0 + h0, and

dj,k � |di,j � di,k| = max{di,j , di,k}�min{di,j , di,k} � (max{g, h}�min{g0, h0})+ (6)

where (s)+:=max{s, 0}. The lower bound can be seen as true by Fig. 7 in the Appendix. Lemma 3.1
uses these ideas to form upper and lower bounds on distances by the triangle inequality. Note that
this definition is inherently recursive as it may rely on past triangle inequality bounds to achieve the
tightest possible result. We denote a triangle inequality upper and lower bounds on dj,k due to a point
i at time t as U4i

j,k and L4i

j,k respectively.

Lemma 3.1. For all k 6= 1, U41

1,k (t) = U4
1,k(t) = U1,k(t). For any i < j define

U4i

j,k (t) := min
max{i1,i2}<i

(min{Ui,j(t), U
4i1
i,j (t)}+min{Ui,k(t), U

4i2
i,k (t)}). (7)

For all k 6= 1, L41

1,k(t) = L4
1,k(t) = L1,k(t). For any i < j define

L4i

j,k(t) := max
max{i1,i2,i3,i4}<i

⇣
max{Li,j(t), L

4i1
i,j (t), Li,k(t), L

4i2
i,k (t)}

�min{Ui,j(t), U
4i3
i,j (t), Ui,k(t), U

4i4
i,k (t)}

⌘

+
, (8)

where (s)+ := max{s, 0}. If all the bounds obtained by SETri in rounds i < j are correct then

dj,k 2
⇥
L4
j,k(t), U

4
j,k(t)

⇤
, where L4

j,k(t) := max
i<j

L4i

j,k(t) and U4
j,k(t) := min

i<j
U4i

j,k (t).
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The proof is in Appendix B.1. ANNTri has access to two sources of bounds on distances: concentration
bounds and triangle inequality bounds, and as can be seen in Lemma 3.1, the former affects the
latter. Furthermore, triangle bounds are computed from other triangle bounds, leading to the recursive
definitions of L4i

j,k and U4i

j,k . Because of these facts, triangle bounds are dependent on the order
in which ANNTri finds each nearest neighbor. These bounds can be computed using dynamic
programming and brute force search over all possible i1, i2, i3, i4 is not necessary. We note that the
above recursion is similar to the Floyd-Warshall algorithm for finding shortest paths between all pairs
of vertices in a weighted graph [11, 7]. The results in [27] show that the triangle bounds obtained in
this manner have the minimum L1 norm between the upper and lower bound matrices.

Extension to k-Nearest Neighbor Graphs: All algorithms and theory in this paper can be extended
to the case of k-nearest neighbor graphs where one wishes to draw a directed edge from each point
to all of its k-nearest neighbors. To modify ANNTri, one can change the subroutine SETri to be a
variant of the KL-Racing algorithm by [21], for instance. Racing style algorithms are the natural
extension of Successive-Elimination style algorithms to the top-k bandit setting. To achieve best
complexity, in this case, one would again want to sample the distances with the only minimum
number of calls to the oracle first, as in Line 3 of SETri. To make a statement similar to Theorem 4.4,
i.e. to bound the complexity of learning k-NN graphs, it is necessary to alter the definition of the
events Aj,k so as to certify that a point has been eliminated from being a k-nearest neighbor as
opposed to a 1-nearest neighbor in the current form. The suboptimality gaps �j,k (and therefore
Hj,k) would be defined differently for the k-nearest neighbor case leading to a different bound. A
similar statement as Theorem 4.6 can likewise be achieved as long as k < log(n) and one should
expect a complexity of O

⇣
kn log(n)��2

⌘
for an appropriately defined ��2.

4 Analysis

All omitted proofs of this section can be found in the Appendix Section B.
Theorem 4.1. ANNTri finds the nearest neighbor for each point in X with probability 1� �.

4.1 A simplified algorithm

The following Lemma indicates which points must be eliminated initially in the jth round.
Lemma 4.2. If 9i : 2Ui,j < Li,k, then xk /2 Aj(0) for ANNTri.

Proof. 2Ui,j < Li,k () Ui,j < Li,k � Ui,j  L4i

j,k

Next, we define ANNEasy, a simplified version of ANNTri that is more amenable to analysis. Here,
we say that xk is eliminated in the jth round of ANNEasy if i) k<j and 9i : Ui,j < Lj,k (symmetry
from past samples) or ii) 9i : 2Ui,j < Li,k (Lemma 4.2). Therefore, xj’s active set for ANNEasy is

Aj = {a 6=j : La,k  2Uj,k 8k and La,j < min
k

Uj,k}. (9)

To define ANNEasy in code, we remove lines 3-6 of ANNTri (Algorithm 1), and call a subroutine
SEEasy in place of SETri. SEEasy matches SETri (Algorithm 2) except that lines 1 and 8 are
replaced with (9) instead. We provide full pseudocode of both ANNEasy and SEEasy in the Appendix
A.1.1. Though ANNEasy is a simplification for analysis, we note that it empirically captures much of
the same behavior of ANNTri. In the Appendix A.1.2 we provide an empirical comparison of the two.

4.2 Complexity of ANNEasy

We now turn our attention to account for the effect of the triangle inequality in ANNEasy.
Lemma 4.3. For any xk 2 X if the following conditions hold for some i < j, then xk /2 Aj(0).

6C�/n(1)  di,k � 2di,j and {j, k} \ ([m<i{` : 2dm,i < dm,`}) = ;. (10)

The first condition characterizes which xk’s must satisfy the condition in Lemma 4.2 for the jth

round. The second guarantees that xk was sampled in the ith round, a necessary condition for forming
triangle bounds using xi.

5



C1

C2
C3

(a) Clustered data

C1

C2 C4
C3

C1 [ C2 C3 [ C4

(b) Hierarchical clusters

Figure 1: Example datasets where triangle inequalities lead to provable gains.

Theorem 4.4. Conditioned on the event that all confidence bounds are valid at all times, ANNEasy
learns the nearest neighbor graph of X in the following number of calls to the distance oracle:

O

0

@
nX

j=1

X

k>j

1[Aj,k]Hj,k +
X

k<j

1[Aj,k](Hj,k � 1[Ak,j ]Hk,j)+

1

A . (11)

In the above expression Hj,k := log(n2/(��j,k))
�2

j,k
and 1[Aj,k] := 1, if xk does not satisfy the triangle

inequality elimination conditions of (10) 8i < j, and 0 otherwise.

The expression in (11) can be understood as a sum over the complexity of each of the n rounds, as
specified by the outer sum. The complexity of each individual round is a sum of two terms. Consider
the jth round. The first term bounds the number of calls to Q(j, k) for all k > j. In general Hj,k

calls are necessary, unless a triangle inequality bound allows for elimination of k without sampling,
as given by 1[Aj,k]. The second term bounds the number of calls to Q(j, k) for all k < j. It has
the same form as the first term, except we must now use past samples we may already have via
symmetry of distances (provided the triangle inequality did not prevent us from querying Q(k, j) in
the previous round). The (·)+ operation prevents negative terms, since it may be the case that no
additional samples are necessary, even if we don’t use the triangle inequality for elimination.

In Theorem B.6, in the Appendix, we state the sample complexity when triangle inequality bounds
are ignored by ANNTri, and this upper bounds (11). Whether a point can be eliminated by the triangle
inequality depends both on the underlying distances and the order in which ANNTri finds each
nearest neighbor (c.f. Lemma 4.3). In general, this dependence on the order is necessary to ensure
that past samples exist and may be used to form upper and lower bounds. Furthermore, it is worth
noting that even without noise the triangle inequality may not always help. A simple example is any
arrangement of points such that 0 < r  dj,k < 2r 8j, k. To see this, consider triangle bounds on
any distance dj,k due to any xi, xi0 2 X\{xj , xk}. Then |di,j � di,k|  r < 2r  di0,j + di0,k 8i, i0
so L4

i,j < U4
j,k 8i, j, k. Thus no triangle upper bounds separate from triangle lower bounds so no

elimination via the triangle inequality occurs. In such cases, it is necessary to sample all O(n2)
distances. However, in more favorable settings where data may be split into clusters, the sample
complexity can be much lower by using triangle inequality.

The order in which {xi⇤} are found follows their subscript index, which is randomly chosen and
fixed before starting the algorithm. As described above, different orders in which {xi} are processed
can affect the query complexity of our algorithm. The best order that minimizes the total number of
queries made in general depends on the true distance values. Even if the oracle is noiseless, there are
datasets where the pair (i, j) with the smallest di,j must be queried within the first n queries in order
to identify the NN-graph using the minimum number of queries. Since this requirement cannot be
ensured by any algorithm that only has access to information via a distance oracle, it is not possible
to achieve the minimum number of queries in such examples.

4.3 Adaptive gains via the triangle inequality

We highlight two settings where ANNTri provably achieves sample complexity better than O(n2)
independent of the order of the rounds. Consider a dataset containing c clusters of n/c points each as
in Fig. 1a. Denote the mth cluster as Cm and suppose the distances between the points are such that

{xk : di,k < 6C�/n(1) + 2di,j} ✓ Cm 8i, j 2 Cm. (12)

6



The above condition is ensured if the distance between any two points belonging to different clusters
is at least a (�, n)-dependent constant plus twice the diameter of any cluster.

Theorem 4.5. Consider a dataset of
p
n clusters which satisfy the condition in (12). Then ANNEasy

learns the correct nearest neighbor graph of X with probability at least 1� � in

O
⇣
n3/2��2

⌘
(13)

queries where ��2 := 1
n3/2

Pp
n

i=1

P
j,k2Ci

log(n2/(��j,k))�
�2
j,k is the average number of samples

distances between points in the same cluster.

By contrast, random sampling requires O(n2��2
min) where ��2

min := minj,k log(n2/(��j,k))�
�2
j,k �

��2. In fact, the value in (11) can be even lower if unions of clusters also satisfy (12). In this case,
the triangle inequality can be used to separate groups of clusters. For example, in Fig. 1b, if C1 [ C2
and C3 [ C4 satisfy (12) along with C1, · · · , C4, then the triangle inequality can separate C1 [ C2
and C3 [ C4. This process can be generalized to consider a dataset that can be split recursively into
subclusters following a binary tree of k levels. At each level, the clusters are assumed to satisfy (12).
We refer to such a dataset as hierarchical in (12).

Theorem 4.6. Consider a dataset X = [n/⌫i=1Ci of n/⌫ clusters of size ⌫ = O(log(n)) that is

hierarchical in (12). Then ANNEasy learns the correct nearest neighbor graph of X with probability

at least 1� � in

O
⇣
n log(n)��2

⌘
(14)

queries where ��2 := 1
n⌫

Pn/⌫
i=1

P
j,k2Ci

log(n2/(��j,k))�
�2
j,k is the average number of samples

distances between points in the same cluster.

Expression (14) matches known lower bounds of O(n log(n)) on the sample complexity for learning
the nearest neighbor graph from noiseless samples [30], the additional penalty of ��2 is due to the
effect of noise in the samples. An easy way to see the lower bound is to consider the fact that there are
O(nn�1) unique nearest neighbor graphs so any algorithm will require O(log(nn�1)) = O(n log(n))
bits of information to identify the correct one. In Appendix C, we state the sample complexity in the
average case, as opposed to the high probability statements above. The analog of the cluster condition
(12) there does not involve constants and is solely in terms of pairwise distances (c.f. (33)).

5 Experiments

Here we evaluate the performance of ANNTri on simulated and real data. To construct the tightest
possible confidence bounds for SETri, we use the law of the iterated logarithm as in [18] with
parameters ✏ = 0.7 and � = 0.1. Our analysis bounds the number of queries made to the oracle.
We visualize the performance by tracking the empirical error rate with the number of queries made
per point. For a given point xi, we say that a method makes an error at the tth sample if it fails
to return xi⇤ as the nearest neighbor, that is, xi⇤ 6= argminj d̂[i, j]. Throughout, we will compare
ANNTri against random sampling. Additionally, to highlight the effect of the triangle inequality, we
will compare our method against the same active procedure, but ignoring triangle inequality bounds
(referred to as ANN in plots). All baselines may reuse samples via symmetry as well. We plot all
curves with 95% confidence regions shaded.

5.1 Simulated Experiments

We test the effectiveness of our method, we generate an embedding of 10 clusters of 10 points spread
around a circle such that each cluster is separated by at least 10% of its diameter in R2 as in shown
in Fig. 2a. We consider Gaussian noise with � = 0.1. In Fig. 2b, we present average error rates of
ANNTri, ANN, and Random plotted on a log scale. ANNTri quickly learns xi⇤ and has lower error with
0 samples due to initial elimination by the triangle inequality. The error curves are averaged over
4000 repetitions. All rounds were capped at 105 samples for efficiency.
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(a) Example embedding (b) Error curves (c) Comparison to triangulation

Figure 2: Comparison of ANNTri to ANN and Random for 10 clusters of 10 points separated by 10%
of their diameter with � = 0.1. ANNTri identifies clusters of nearby points more easily.

5.1.1 Comparison to triangulation

An alternative way a practitioner may use to obtain the nearest neighbor graph might be to estimate
distances with respect to a few anchor points and then triangulate to learn the rest. [9] provide a
comprehensive example, and we summarize in Appendix A.2 for completeness. The triangulation
method is naïve for two reasons. First, it requires much stronger modeling assumptions than ANNTri—
namely that the metric is Euclidean and the points are in a low-dimensional of known dimension.
Forcing Euclidean structure can lead to unpredictable errors if the underlying metric might not be
Euclidean, such as in data from human judgments. Second, this procedure may be more noise
sensitive because it estimates squared distances. In the example in Section A.2, this leads to the
additive noise being sub-exponential rather than subGaussian. In Fig. 2c, we show that even in a
favorable setting where distances are truly sampled from a low-dimensional Euclidean embedding and
pairwise distances between anchors are known exactly, triangulation still performs poorly compared
to ANNTri. We consider the same 2-dimensional embedding of points as in Fig. 2a for a noise
variance of � = 1 and compare the ANNTri and triangulation for different numbers of samples.

5.2 Human judgment experiments

5.2.1 Setup

Here we consider the problem of learning from human judgments. For this experiment, we used a
set X of 85 images of shoes drawn from the UT Zappos50k dataset [32, 33] and seek to learn which
shoes are most visually similar. To do this, we consider queries of the form “between i, j, and k,
which two are most similar?”. We show example queries in Figs. 5a and 5b in the Appendix. Each
query maps to a pair of triplet judgments of the form “is j or k more similar to i?”. For instance, if
i and j are chosen, then we may imply the judgments “i is more similar to j than to k” and “j is
more similar to i than to k”. We therefore construct these queries from a set of triplets collected from
participants on Mechanical Turk by [15]. The set contains multiple samples of all 85

�84
2

�
unique

triples so that the probability of any triplet response can be estimated. We expect that i⇤ is most
commonly selected as being more similar to i than any third point k. We take distance to correspond
to the fraction of times that two images i, j are judged as being more similar to each other than a
different pair in a triplet query (i, j, k). Let Ej

i,k be the event that the pair i, k are chosen as most
similar amongst i, j, and k. Accordingly, we define the ‘distance’ between images i and j as

di,j := Ek⇠Unif(X\{i,j})E[1Ej
i,k
|k]

where k is drawn uniformly from the remaining 83 images in X\{i, j}. For a fixed value of k,

E[1Ej
i,k
|k] = P(Ej

i,k|k) = P(“i more similar to j than to k”)P(“j more similar to i than to k”).

where the probabilities are the empirical probabilities of the associated triplets in the dataset. This
distance is a quasi-metric on our dataset as it does not always satisfy the triangle inequality; but
satisfies it with a multiplicative constant: di,j  1.47(di,k + dj,k) 8i, j, k. Relaxing metrics to
quasi-metrics has a rich history in the classical nearest neighbors literature [16, 29, 14], and ANNTri

can be trivially modified to handle quasi-metrics. However, we empirically note that < 1% of the
distances violate the ordinary triangle inequality here so we ignore this point in our evaluation.
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(a) Sample complexity gains (b) Comparison to STE

Figure 3: Performance of ANNTri on the Zappos dataset. ANNTri achieves superior performance
over STE in identifying nearest neighbors and has 5� 10x gains in sample efficiency over random.

5.2.2 Results

When ANNTri or any baseline queries Q(i, j) from the oracle, we randomly sample a third point
k 2 X\{i, j} and flip a coin with probability P(Ej

i,k). The resulting sample is an unbiased estimate
of the distance between i and j. In Fig. 3a, we compare the error rate averaged over 1000 trials
of ANNTri compared to Random and STE. We also plot associated gains in sample complexity by
ANNTri. In particular, we see gains of 5� 10x over random sampling, and gains up to 16x relative
to ordinal embedding. ANNTri also shows 2x gains over ANN in sample complexity (see Fig. 6 in
Appendix).

Additionally, a standard way of learning from triplet data is to perform ordinal embedding. With a
learned embedding, the nearest neighbor graph may easily be computed. In Fig. 3b, we compare
ANNTri against the state of the art STE algorithm [31] for estimating Euclidean embeddings from
triplets, and select the embedding dimension of d = 16 via cross validation. To normalize the number
of samples, we first perform ANNTri with a given max budget of samples and record the total number
needed. Then we select a random set of triplets of the same size and learn an embedding in R16 via
STE. We compare both methods on the fraction of nearest neighbors predicted correctly. On the x
axis, we show the total number of triplets given to each method. For small dataset sizes, there is
little difference, however, for larger dataset sizes, ANNTri significantly outperforms STE. Given that
ANNTri is active, it is reasonable to wonder if STE would perform better with an actively sampled
dataset, such as [28]. Many of these methods are computationally intensive and lack empirical
support [20], but we can embed using the full set of triplets to mitigate the effect of the subsampling
procedure. Doing so, STE achieves 52% error, within the confidence bounds of the largest subsample
shown in Fig. 3b. In particular, more data and more carefully selected datasets, may not correct for
the bias induced by forcing Euclidean structure.

6 Conclusion

In this paper we solve the nearest neighbor graph problem by adaptively querying distances. Our
method makes no assumptions beyond standard metric properties and is empirically shown to achieve
sample complexity gains over passive sampling. In the case of clustered data, we show provable
gains and achieve optimal rates in favorable settings. One interesting avenue for future work would
be to specialize to the case of hyperbolic embeddings which naturally encode trees [8] and may be a
more flexible way to describe hierarchical clusters as in Theorem 4.6. Implementations of ANNTri,
ANN, and RANDOM can be found alongside a demo and summary slides at https://github.com/
blakemas/nngraph.
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