A Representation Power of 75 ,,

A.1 Background on RKHS

We consider the following kernel function

K(z,y) = /W o 0) 6y w)p(w)duo. (A1)

Here ¢ is a random feature map parametrized by w, which follows a distribution with density p(-)
[43]. Any function in the RKHS induced by K (-, -) takes the form

fule) = /W (w)(a; w)p(w) duw, (A2)

such that each ¢(-) corresponds to a function f.(-). The following lemma connects the #-norm of
fe(+) to the £2-norm of ¢(-) associated with the density p(-), denoted as ||c||,.
Lemma A.1. It holds that || f.[|3, = ||c[|? = [ ¢(w)?*p(w)dw.

Proof. Recall if f(x) = [, a(y)K (x,y)dy, then by the reproducing property [27], we have

112 = /X  ala)ay) K (a,)dndy.

Now we write f(-) in the form of (A.2). By (A.1), we have
@)= [ ) K.y
= [ o) | otazwyotywptu)dudy
= /W (/X a(y)¢(y;w)dy) ¢(; w)p(w)dw.

c(w)

Thus, for c(w) = [ a(y)o(y; w)dy, we have

1= [ alwate)K (e p)dsdy

X

= /){x)( a(y)a(x) (/W ¢(x;w)q§(y;w)p(w)dw)dxdy

~ [ ([ atwotswis) ([ o)t wide)plw)du
wNx x
— [ ctwPptw)dw = |2
w
which completes the proof of Lemma A.1. O
A2 Fp, as RKHS
We characterize the approximate stationary point @0(1’; W*) defined in Definition 4.1, which is

attained by Algorithm 1 according to Theorems 4.4 and 4.6. We focus on its representation power
when m — oco. We first write Fp ,, in (4.5) as

Fpm = {f(x) = Q(z;W(0)) + Zq&r(x)T(Wr - W, (0)) : W e SB}, (A.3)

where the feature map {¢,-(z)}", is defined as
or(x) = % - ¢(z; W (0)) = % - 1{W,.(0) "2 > 0}z foranyr € [m].
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As m — oo, the empirical distribution supported on {¢,.(x) }"™ ;, which has sample size m, converges
to the corresponding population distribution. Therefore, from (A.3) we obtain

FBoo = {f(fﬂ) = fo(x) + /(ﬁ(fv;?U)Ta(U)) -p(w)dw : / lac(w)][3 - p(w)dw < Bz}.

Here p(w) is the density of N (0, I;/d) and fo(z) = limy,_,ec Q(z; W(0)), which by the central
limit theorem is a Gaussian process indexed by x. Furthermore, as discussed in Appendix A.l,
¢(x; W) induces an RKHS, namely #, which is the completion of the set of all functions that take
the form

N
f(x) =ZaiK(x,xi), r; € X, a;, €R, N €N,
i=1

where K (z,y) = Eyon(0,7,/a) [1{w 2 > 0,0y > 0}a"y].
In particular, # is equipped with the inner product induced by (K (-, z;), K (-, z;))u = K(z;, x;).
[44] prove that, similar to Lemma A.1, for any f1(-) = [ ¢(-;w) a1 (w) - p(w)dw and fo(-) =

J (- ;w) T as(w) - p(w)dw, we have f1, fo € H, and moreover, their inner product has the following
equivalence

o fohn = / 1 (w) T (w) - pluw)duw.
As a result, we have
Fpoo =1{f=fo+h:|hlxn < B}, (A4)

which is known to be a rich function class [27]. As m — oo, @0(- ; W*) becomes the fixed-point
solution to the projected Bellman equation

Q=1r, . T7Q,
which also implies that @0(- ; W*) is the global optimum of the MSPBE
E, [(Q(x) ~ Tlr, T"Q(x))°].
If we further assume that the Bellman evaluation operator 7™ satisfies 7 Qo(-:W*) — fol) eH
and B is sufficiently large such that ||[7"Qo(-; W*) — fo(-)||2 < B, then the projection ITx,
reduces to identity at 7™ Qo(-; W*), which implies Qo(-; W*) = Q™(-) as they both solve the

Bellman equation Q = 77(Q. In other words, if the Bellman evaluation operator is closed with
respect to Fp o, Which up to the intercept of fj(-) is a ball with radius B in 7, the approximate

stationary point Qg (- ; W*) is the unique fixed-point solution to the Bellman equation or equivalently
the global optimum of the MSBE

E,[(Q() - T™Q(x))"].
B Proofs for Section 4

B.1 Proof of Lemma 4.2

Proof. Following the same argument for W in (4.4) and the definition of W* in (4.6), we know that

W* being an approximate stationary point is equivalent to @0(- ; W*) being a fixed-point solution to
the projected Bellman equation

Q=1x,, TQ. (B.1)

Meanwhile, the Bellman evaluation operator 7™ is a y-contraction in the ¢5-norm || - ||, with v < 1,
since

Eomp [(T7Q1(z) — T”QQ(SC))Q] = VB [(B[Q1(2") — Qa(2) | 8" ~ P(-|5,a),0" ~ F(s/)])Q]
< Vo [(Qu(e) — Qa()7],

where the second equality follows from Holder’s inequality and the fact that marginally «’ and = have
the same stationary distribution. Since the projection onto a convex set is nonexpansive, Ilx, 7T is
also a «y-contraction. Thus, the projected Bellman equation in (B.1) has a unique fixed-point solution

@0(' ; W*) in Fg ., which corresponds to an approximate stationary point TW*. O
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B.2 Proof of Lemma 4.5

Proof. 1t suffices to show that Eiyii ,,[[| g(£)]|3] is both upper bounded. By (4.10) we have

B [19(8)13] = Bancse| 0 (7,25 W) - Vv Qu(@)|[3] < Bine|[6 (2,725 W(®) ]
(B.2)

where the inequality follows from the fact that, for any W € S,

IVwQ(z; W)l = Z]l{WTx >0} |z)2<1 (B.3)

r=1

almost everywhere. Using the fact that 2 and 2’ have the same marginal distribution we obtain

Einicye [|8 (2,7, 2's W () [*] < Einieo[3(Qi(2)? + 72 + Qu(2)?)] = Einie u[6Q: () + 372).
(B.4)

By (B.3), we know that @(x, W) is 1-Lipschitz continuous with respect to W. Therefore, we have

Qi) = Qo()| < IW(t) = W(0)||2 < B, (B.5)
Plugging (B.5) into (B.4) and using the Cauchy-Schwarz inequality we obtain

Einicye [|8 (2, 7, s W () ] < Einie u[12Q0 () + 12B% + 372 (B.6)

Note that by the initialization of éo(x) as defined in (3.2), we have
~ 1 & 9
Einit,u[Qo(2)*] = - > Einic[o(We(0)"2)7] < Eunio.zayaylwlf3] = 1. (B.7)

Combining (B.2), (B.6), and (B.7) we obtain Eiy ., [|lg(2)[13] = O(B?). Since

Eiis [l9(2) — 9(2)13] = B [, [l9(8) — 50 13]] < Baw [Eu[19®13]] = Biiullo @3],

we conclude the proof of Lemma 4.5. O

B.3 Proof of Proposition 4.7
Proof. By the triangle inequality, we have

1Qo(-:W*) = Q7 ()l < 1Qo(-: W) = gy, Q" (Ml + Mz, @7 () = Q7 ()l (B

Since Q™ (+) is the fixed-point solution to the Bellman equation, we replace Q7 (-) by 77 Q™ (-) and
obtain

Uz, ,. Q" () =Ur, ,, T"Q" (). (B.9)
Meanwhile, by Lemma 4.2, @0 (+; W*) is the solution to the projected Bellman equation, that is,
Qo(-: W) =TIz,  T™Qo(-; W"). (B.10)

Combining (B.9) and (B.10), we obtain
1Qo(-: W) = Tipy , Q" (llw = Ty, T™ Qo5 W*) = Ty, T7Q™ ()l
< [Qo(s W) = Q7 ()| (B.11)

where the inequality follows from the fact that IT =, , 77 is a y-contraction, as discussed in the proof
of Lemma 4.2. Plugging (B.11) into (B.8), we obtain

(=) Qo W) = Q7O < IMpp,, @7 () = Q7 (s

which completes the proof of Proposition 4.7. O
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C Proofs for Section 5

C.1 Proof of Lemma 5.1

Proof. By the definition that Q,(z) = Q(x; W (t)) and the definition of Qq(z; W (t)) in (4.7), we
have

|Qe(z) — Qo (s W (2))]
- %‘Z(H{WT(t)Tx > 0}~ 1{W,(0) T > 0}) - bW, (1)

m

Z | L{W, (1) "2 > 0} — 1{W,.(0) & > O}| - (W (0) "] + ([ W (t) — W (0)]|2),
(C.1)
where we use the fact that ||z» = 1. Note that 1{W,.(t) "z > 0} # 1{W,.(0) " > 0} implies
(W (0) "] < [We(t) T — Wi (0) 2| < [[W(t) = W (0)]|2.

Thus, we obtain

[ 1{W(8) "2 > 0} = 1{W,(0) " > O} < B{|W,(0) "] < [[Wi(t) = Wi(0)]l2}. (C2)
Plugging (C.2) into (C.1), we obtain the following upper bound,

|@t - éo(x'W( t)]

Z LW (0) | < [[Wo(t) = Wr(0) 2} - (W (0) "] + [[W () = Wi (0)]l2)

m

Z]l{\W "] < Wi(t) = Wi (0)[l2} - Wi () — Wi (0)]|2.

ﬂ\

\/>

Here the second inequality follows from the fact that
|z <y < T{|z[ < y}y

for any x and y > 0. To characterize ]Eimw[@t () — Qo(x; W (t))|?], we first invoke the Cauchy-
Schwarz inequality and the fact that ||W(t) —W(0)|l2 < B, which gives

|Qe(2) — Qo (z; W(t))|* < Znﬂw Tal < [Wi(t) — W (0)|2}-

Taking expectation on both sides, by Lemma D.1 we obtain
Eini U@t(x) — Qo(z; W (1)) ﬂ < 46, B3 -m~V2,
Thus, we finish the proof of Lemma 5.1. O]
C.2 Proof of Lemma 5.2
Proof. By the definition of g(¢) and g (£) in (5.1) and (5.2), respectively, we have
155 = Go ()l = |, [6(x,r,a’s W (1)) - Viv Qu() = o (w,r, s W (1)) - Vi Qo (s W (1))] |,
< B[ (37 s wn) 750(10,1",9: WD) - Vi Qi)
+ o (7, 2y W (H)) (VWCA)t(ac) — Vi Qo W(t)))} H2
<E, [|5(x,r, & W (E)) = 6o, 2 W (L) (C3)

+ [0 (r,2s W) - |V Qul) = Vi Qo (s WD) -
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Here to obtain the second inequality, we use the fact that, for any ¢t € [T,

IV Qu(@)]2 < [|z]l2 = 1.

Taking expectation with respect to the random initialization on the both sides of (C.3), we obtain

Eini [[[7(t) — 70 (t)113]

< i [\5(95, ra, W(t)) — b (z,7, 2, W(t)) ﬂ (C.4)
6
+ 2By [E (160 (2,725 W) [*] - B [V w@e(2) — T Qo (s W (1)) Hi]] :
(iii) (ii)

In the following, we characterize the three terms on the right-hand side of (C.4).

For (i) in (C.4), note that
16z, 7, 2's W () = 6o (,r,a's W (2)) |
= ‘(@t(x) — 7 —Qu(2)) — (@o (2 W (t)) —r — vQo('; W(t))) ‘2
= [(@@) — Qo w(1))) ~ (@) ~ Qo (a'sw0)) |
< 2(@(@ — Qolx; W(t))>2 + Z(Qt(x') — Qo(; W(t))>2. (C.5)

Since x and 2’ follow the same stationary distribution y on the right-hand side of (C.5), by Lemma
5.1 we have

B |37, a'sW(0) = b0 (w2 W) ]

< AR [I@(z) — Qo(z; W (1)) |2] < 16c,B% - m~12, (C.6)
For (ii) in (C.4), we have
~ ~ 1 &
IV Qu(@) = VwQo(: W)[I; = — (LW (6)T > 0} = 1{W,(0)T > 0)? a3
r=1

1 m

< =S 1 W,.(0) x| < [|[Wy(t) — W, (0)]]2}, C.7

_m;{\ (0) = < [[Wi(t) Ot (€D
where the inequality follows from (C.2) and the fact that ||| = 1.
For (iii) in (C.4), we have

’60 (z,r,a"; W(t)) ‘2 < 3(@0 (z; VV(L‘))2 +72 4+ +4%Qq (; W(t))2> ) (C.8)
To obtain an upper bound of the right-hand side of (C.8), we use the fact that
[Qo(; W (1) ~ Qol@)| < [W (1) = W(O)]2- ]2 < B,
which follows from (4.7), and obtain
E,[Qo(x; W(t))] = E, [(Qo(x) + Qo(x; W (L)) — Qo(x)) } < 9E,,[Qo(x)?] + 2B2.

Since z and 2’ follow the same stationary distribution x on the right-hand side of (C.8) and |y| < 1,
we have

E, {|50 (z,r,2"; W(t)) ﬂ < 12E,[Qo(z)?] + 12B? + 372, (C.9)
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Plugging (C.6), (C.7), and (C.9) into (C.4), we obtain
Eini [[[9(1) — 90 (1)|[3] < 32¢1B -m~"/?

+ 2B | (122, Qo(a)?] + 1287 +37) - (= S 1{W(0) al < W) - W (0)]1}) |

Invoking Lemmas D.1 and D.2, we obtain
Eiie[[[5(t) — Go(1)[13] < (56¢1B® + 24¢2B + 6¢1BF2) - m~1/2,
which finishes the proof of Lemma 5.2. O

C.3 Proof of Lemma 5.3

Proof. Recall that
g(t) = E,[0(z,r,as W(E)) - Vi Q (5 W (1))] (C.10)
Go(t) =Eu[do (z, 7,2, W(2)) - Vir Qo (z; W ()] (C.11)

We denote the locally linearized population semigradient g, (¢) evaluated at the approximate stationary
point W* by

o = Eulbo(w,r,2"s W*) - Viy Qo (; W), (C.12)

For any W (t) (¢t € [T1]), by the convexity of S, we have
W (t+1) = W3 = ||Ts, (W(t) = n-5(t)) — Os, (W —n-75)
< (W) =n-50) = (W* =n-75)

= W (&) = W13 =20~ (5(t) —55) " (W(t) = W) + - |[g(t) - 7513
(C.13)

2
2

2
2

We decompose the inner product (g(t) — gg) T (W (t) — W*) on the right-hand side of (C.13) into
two terms,

@) —75) (W) = W*) = (Go(t) — g5) (W) = W*) + (g(t) —g0(1)) " (W(t) - W)
> (90(t) —73) (W) = W*) = B-|[g(t) = Go()]l2.  (C.14)

It remains to characterize the first term (g, (t) — g5) " (W (t) — W*) on the right-hand side of (C.14),
since the second term ||g(t) — g (¢)||2 is characterized by Lemma 5.2. Note that by (C.11) and (C.12),
we have

G0(0) = 35 = Bu| (00 (2, m, 2" W(0) = 0o, a's W) ) - T Qo(@s W(0) ], (C15)
where we use the following consequence of (4.7),
VW@O(x; W(0)) = Vi Qo(xz; W*).
Moreover, by (4.8) it holds that
So(z,m, 2 s W(t)) — do(, 7, 2", W)
= (Qo(@: W (®) = Qu(a: ™)) = (Qo(a's W () = Qola’s W) (C.16)
Combining (4.7), (C.15), and (C.16), we have
(50(t) — 35) " (W() W)
=E, [(50 (a:, r, ' W(t)) — 0o(m, 7, 2'; W*)) . (VWCAQO (a:; I/V(O))T (W(t) — W*)ﬂ
. ~ 2
= B, (Qo(a: W (1)) = Qo(as 7))
— 7 (Qolw: W(1) = Qolws W) - (Qo(a's W (1)) — Qo(a's W) )|

~

> (1= ) B[ (@olw: W) - Gl ) ], (€17)

18



where the last inequality is from the fact that 2 and 2’ have the same marginal distribution under 1
and therefore by the Cauchy-Schwarz inequality,

E, [(Qo(a: W(®) = Qolas W) - (Qo(@'s W(1) = Qo(a’s W) )|
E, K@o (z;W(t) — Qo(z; W*)>2} v "By [(@0 (z; W (1)) — Qol('; W*))z} v
= [ (G W) - Goles ™)) .

Inequality (C.17) is the key to our convergence result. It shows that the locally linearized population
semigradient update g, (t) is one-point monotonic to the approximate stationary point W*.

Also, for ||g(t) — g3 on the right-hand side of (C.13), we have

[9(t) = g3 < 21[90(t) — T5113 + 2[19(£) — Fo(2)I3- (C.18)

For the first term on the right-hand side of (C.18), by (C.15), (C.16), and the Cauchy-Schwarz
inequality, we have

g () - gon—H o[ (Boleer s W (0) = Gt s W) - T Qo (W (0) ||
[(@o(x W) = Qolas W) = 1Qa(a's W(D) +7Qo(a’: W) ]
< 4B, [ (@ (W) — Qolar: W) ], (19

where the first inequality follows from the fact
IV Qo (W (O))]l, < llall> = 1.
Plugging (C.17), (C.18), and (C.19) into (C.13), we finish the proof of Lemma 5.3. L]
C.4 Proof of Lemma 5.4
Proof. For any W (t) (¢t € [T1]), by the convexity of Sg, (4.10), and (C.12), we have
W (t+1) = W*[|3 = [|TLs,, (W(t) — - g(t)) = Mgy (W* =1 35)| 5

< W@ —n-g(t) = (W —n-gy)l;

= IIW(t) — WA =20+ (9() = F5) (W) = W) + 07+ [lg(t) - F5l13-
Taking expectation on both sides conditional on W (t), we obtain

Eu[IW(t+1) = W3 [ W(#)]

< [W(t) = W*2 =25+ (9(t) —g5) (W) = W) + 0> Eu[lg(t) — g5l | W(2)].
(C.20)

For the inner product (g(t) — gg) " (W (t) — W*) on the right-hand side of (C.20), it follows from
(C.14) and (C.17) that

(@) ~5) " (W(t) = W*) > (1 =) - B[ (Qolr: W(1)) — Qo W) | = B+ [1304) ~ Gol0) >

Meanwhile, for E,,[|| g(t) — g5 |3 | W (¢)] on the right-hand side of (C.20), we have the decomposition

Eu[lgt) = gallz [W®)] = 9(t) = Gollz + Ex[lla(t) = g®)lI3 | W (1)]
~ ~ 2
< 8, [ (Qo(a: W (B) = Qolas W) |W®)] +20ig(t) 5o + Ex [llg(t) - 5013 | W ()],
where the inequality follows from (C.18) and (C.19). Taking expectation on the both sides of (C.20)
with respect to W (t), we complete the proof of Lemma 5.4. O
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C.5 Proof of Theorem 4.4

Proof. By Lemma 5.2 we have

it [[9(t) — 3o(1)[3] = O(B*m™"/?), (c21

Einit [ B - [9() — Go(t) 2] = O(B>2m~/4). (C.22)
Setting n = (1 — ) /8 in Algorithm 1, by (C.21), (C.22), and Lemma 5.3, we have

A 21 B [[[W () = W[5 — [W(t+1) = W*|3]

mnu[(QO(w W( )) —Qo(l‘,W )) } - (1_,7)2/8
+O(B3m71/2 + B5/2m71/4)'

Telescoping (C.23) fort = 0,...,T — 1, we obtain

P 3 B (@00 - Qo)

(C.23)

Bt [[[W(0) = W*||2 — [|[W/(T) — W*||?] 3. _1/2 , p5/2, —1/4
= T —2/8 +O(B°m + B>/ =m™%)

8B2 -
G /2
S Ta =7 +O(B°m

Recall that as define in (4.7), @0(~ ; W) is linear in . By Jensen’s inequality, we have

+ B4,

R 2
Einic o[ (Qo (3 W) — Qo (a; W*))?] < % +O(B*m~ Y2 4 B 2m~1Y. (C.24)

Next we characterize the output @Om( )= @ (-; W) of Algorithm 1. Since Sp is convex and W € Sp,
by Lemma 5.1 we have

~ ) 2 _
mltu[(QO(x W) Qo(ﬂ?,W )) ] = O(B3m 1/2) (CZS)
Using the Cauchy-Schwarz inequality we have

1n1lu[(Q0ut( ) @0($,W*))2]
< Einis[2(Q(as W) = Qolas W) +2(Qo ;W) = Qolas W),
into which we plugging (C.24) and (C.25) and obtain

N 2
Einis[(Qou(@) = Qo(a; W))"] < T(lfiip +O(B'm™ 2+ B Pm=Y), - (C26)

which completes the proof of Theorem 4.4. [
C.6 Proof of Theorem 4.6
Proof. Similar to (C.23), by Lemmas 4.5, 5.2, and 5.4 we have
~ 2
m1t,u [(QO (ZE W( )) - QO(xv W*)> :|
Einie[[|W(¢) = W*I3] — B [[W(t + 1) — W*[3] +9° - o3
- 2n(1 =) — 8n?

+O(B>m~Y?% 4 B 2m~1/4). (C.27)

Telescoping (C.27) fort = 0,...,T — 1, by n*> < 1/T we have

% jz__; Einit, u {(@0 (2 W(t) — Qolw; W*))Z}

o _ * |2 2
Einit [[|W () — W*|[3] ‘:Ug +O(B¥mV/2 4 B2 1/4)
T (29(1 —v) — 8n%)

<BQ—|—0§. 1
T VT VT (291 =) —8p?)

+O(B*m ™% 4 B/ 2m =14y, (C.28)
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where 7 = min{1/+/T, (1 — 7)/8}. Note that when T > (8/(1 — 7))?, we have = 1/+/T and
VT - (20(1 =) =80) =2(1 =) =8/VT 21—
Meanwhile, when T' < (8/(1 — v))?, we have = (1 — v)/8 and
VI (20(1 =) =80%) = VT - (1 =7)*/8 = (1 =7)*/8.
Since |1 — | < 1, we obtain that for any 7" € N,
1 8

< . (C.29)
VT - (2n(1 =) —8p%) ~ (1 =7)?
Similar to (C.24) and (C.26), by combining (C.28) and (C.29) with Lemma 5.1, we obtain
~ 2 16(B? + 07) 3 —1/2 5
T - /2. —1/4
1n1tp[(Q0ut( ) QO(%W )) ] < \/T (1 _ 7)2 +O(B m + B”*m ),
which completes the proof of Theorem 4.6. O

D Auxiliary Lemmas
Under Assumption 4.3, we establish the following auxiliary lemmas on the random initialization

W(0) and the stationary distribution 1, which plays a key role in quantifying the error of local
linearization.

Lemma D.1. There exists a constant ¢; > 0 such that for any random vector W with |IW —
W(0)||2 < B, it holds that

mw[ Z]l{|W Tal < W, = Wo(0)2}] < B -m 2 (D.1)

Proof. By Assumption 4.3, we have

B | Zﬂ{\w Tal < W, = W (0)]2}]

< B[ S o 17, - Wo (0) |2/ W (0) 2] (D2)
r=1
Applying Holder’s inequality to the right-hand side, we obtain
B | Zn{\w To| < W, = Wo (0)]]2}]
1/2
<l (551w (3 )
_ 12
< coB-m 2 Eyno,ra/a) 1/ |w]3] / (D.3)

where the second inequality follows from

1/2 m 1 1/2
Einit [(Z ||W H2> } < Einit [Z W] = \/E : EwNN(O,Id/d) [1/||w||§] 1/2'
r=1 r

D4

Setting ¢; = ¢o - Eyymn(0,1,/a)[1/]/w]|3]*/2, we complete the proof of Lemma D.1. O

Lemma D.2. There exists a constant ¢; > 0 such that for any random vector W with |W —
W(0)|l2 < B, it holds that

m

Eic|E, [Qo(2)?] - [Znﬂw x|§||wr—wr<o>||2}Hs@B-m—W. (D.5)
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Proof. By the definition of @O(x) = @O(x; W(0)) in (4.7), we have

m

E,[Qo(x)?] = 1/m -E, [Z (W (0)Ta)* + 3 brbsa(WT(O)%)U(WS(O)%)] .

r=1 r#s

Following the same derivation of (D.2) and (D.3), we have

Z]l{|W el < W = W)

S\H

Einit { 2 [Qo(2)?] - By, [

3

< Eini {Mm B> o (Wr(0)T2)* + 3 brbsa(WAO)TD:)U(WAOF@}

r=1 r#s
)1/2'

Note that b,. and by are independent of W (0) and Ej; [brbs] = (. Thus, we obtain

3

2 O[3

B B2 Q0] B 1 3 111,07 < I — W<>|2}:]

< coB/m? - Eini [E [ia R (Z W0 ”2)1/1_

By the definition of o(W,.(0) " x) and the fact that ||z||; = 1, we have

B3 o(0%:070)"] < I 0

Hence, it holds that -
B £, [Qo(e)] B [ Znﬂw el < Wy = W0l
< B/ u«:m,t[(z;nw 3) (;W}O)H%)”Q]

} - (D.6)

< coB/m? - Eini Ki IIWT(O)\|§> } Einic {i

By (D.4) and the fact that

’l‘

m 2
Euid| (32 IWe )13) ] = m - Buewio rasa [Illd] +mm = 1) - Euno,zu/m [lwl3]* = 0m?),
r=1

the right-hand side of (D.6) is O(Bm~1/?). Setting

1/2
e = o (Bumno,ta/a [10l18] + Euwnno,tara [1013]°) - Bunnouraa [1/1013],

we complete the proof of Lemma D.2. O

22



