
A Representation Power of FB,m

A.1 Background on RKHS

We consider the following kernel function

K(x, y) =

Z

W

�(x;w)�(y;w)p(w)dw. (A.1)

Here � is a random feature map parametrized by w, which follows a distribution with density p(·)
[43]. Any function in the RKHS induced by K(·, ·) takes the form

fc(x) =

Z

W

c(w)�(x;w)p(w)dw, (A.2)

such that each c(·) corresponds to a function fc(·). The following lemma connects the H-norm of
fc(·) to the `2-norm of c(·) associated with the density p(·), denoted as kckp.
Lemma A.1. It holds that kfck2H = kck

2
p =

R
c(w)2p(w)dw.

Proof. Recall if f(x) =
R
X
a(y)K(x, y)dy, then by the reproducing property [27], we have

kfk
2
H

=

Z

X⇥X

a(x)a(y)K(x, y)dxdy.

Now we write f(·) in the form of (A.2). By (A.1), we have

f(x) =

Z

X

a(y)K(x, y)dy

=

Z

X

a(y)

Z

W

�(x;w)�(y;w)p(w)dwdy

=

Z

W

⇣Z

X

a(y)�(y;w)dy
⌘

| {z }
c(w)

�(x;w)p(w)dw.

Thus, for c(w) =
R
X
a(y)�(y;w)dy, we have

kfk
2
H

=

Z

X⇥X

a(y)a(x)K(x, y)dxdy

=

Z

X⇥X

a(y)a(x)
⇣Z

W

�(x;w)�(y;w)p(w)dw
⌘
dxdy

=

Z

W

⇣Z

X

a(y)�(y;w)dy
⌘⇣Z

X

a(x)�(x;w)dx
⌘
p(w)dw

=

Z

W

c(w)2p(w)dw = kck
2
p,

which completes the proof of Lemma A.1.

A.2 FB,1 as RKHS

We characterize the approximate stationary point bQ0(x;W ⇤) defined in Definition 4.1, which is
attained by Algorithm 1 according to Theorems 4.4 and 4.6. We focus on its representation power
when m ! 1. We first write FB,m in (4.5) as

FB,m =

⇢
f(x) = bQ

�
x;W (0)

�
+

mX

r=1

�r(x)
>
�
Wr �Wr(0)

�
: W 2 SB

�
, (A.3)

where the feature map {�r(x)}mr=1 is defined as

�r(x) =
1

p
m

· �
�
x;Wr(0)

�
=

1
p
m

· 1{Wr(0)
>
x > 0}x for any r 2 [m].
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As m ! 1, the empirical distribution supported on {�r(x)}mr=1, which has sample size m, converges
to the corresponding population distribution. Therefore, from (A.3) we obtain

FB,1 =

⇢
f(x) = f0(x) +

Z
�(x;w)>↵(w) · p(w)dw :

Z
k↵(w)k22 · p(w)dw  B

2

�
.

Here p(w) is the density of N(0, Id/d) and f0(x) = limm!1
bQ(x;W (0)), which by the central

limit theorem is a Gaussian process indexed by x. Furthermore, as discussed in Appendix A.1,
�(x;W ) induces an RKHS, namely H, which is the completion of the set of all functions that take
the form

f(x) =
NX

i=1

aiK(x, xi), xi 2 X , ai 2 R, N 2 N,

where K(x, y) = Ew⇠N(0,Id/d)

⇥
1{w>

x > 0, w>
y > 0}x>

y
⇤
.

In particular, H is equipped with the inner product induced by hK(·, xi),K(·, xj)iH = K(xi, xj).
[44] prove that, similar to Lemma A.1, for any f1(·) =

R
�(· ;w)>↵1(w) · p(w)dw and f2(·) =R

�(· ;w)>↵2(w) ·p(w)dw, we have f1, f2 2 H, and moreover, their inner product has the following
equivalence

hf1, f2iH =

Z
↵1(w)

>
↵2(w) · p(w)dw.

As a result, we have
FB,1 =

�
f = f0 + h : khkH  B

 
, (A.4)

which is known to be a rich function class [27]. As m ! 1, bQ0(· ;W ⇤) becomes the fixed-point
solution to the projected Bellman equation

Q = ⇧FB,1T
⇡
Q,

which also implies that bQ0(· ;W ⇤) is the global optimum of the MSPBE

Eµ

⇥�
Q(x)�⇧FB,1T

⇡
Q(x)

�2⇤
.

If we further assume that the Bellman evaluation operator T ⇡ satisfies T ⇡ bQ0(· ;W ⇤)� f0(·) 2 H

and B is sufficiently large such that kT ⇡ bQ0(· ;W ⇤) � f0(·)kH  B, then the projection ⇧FB,1

reduces to identity at T ⇡ bQ0(· ;W ⇤), which implies bQ0(· ;W ⇤) = Q
⇡(·) as they both solve the

Bellman equation Q = T
⇡
Q. In other words, if the Bellman evaluation operator is closed with

respect to FB,1, which up to the intercept of f0(·) is a ball with radius B in H, the approximate
stationary point bQ0(· ;W ⇤) is the unique fixed-point solution to the Bellman equation or equivalently
the global optimum of the MSBE

Eµ

⇥�
Q(x)� T

⇡
Q(x)

�2⇤
.

B Proofs for Section 4

B.1 Proof of Lemma 4.2

Proof. Following the same argument for W † in (4.4) and the definition of W ⇤ in (4.6), we know that
W

⇤ being an approximate stationary point is equivalent to bQ0(· ;W ⇤) being a fixed-point solution to
the projected Bellman equation

Q = ⇧FB,mT
⇡
Q. (B.1)

Meanwhile, the Bellman evaluation operator T ⇡ is a �-contraction in the `2-norm k · kµ with � < 1,
since
Ex⇠µ

⇥�
T

⇡
Q1(x)� T

⇡
Q2(x)

�2⇤
= �

2Ex⇠µ

⇥�
E[Q1(x

0)�Q2(x
0) | s0 ⇠ P(· | s, a), a0 ⇠ ⇡(s0)]

�2⇤

 �
2Ex⇠µ

⇥�
Q1(x)�Q2(x)

�2⇤
,

where the second equality follows from Hölder’s inequality and the fact that marginally x
0 and x have

the same stationary distribution. Since the projection onto a convex set is nonexpansive, ⇧FB,mT
⇡ is

also a �-contraction. Thus, the projected Bellman equation in (B.1) has a unique fixed-point solution
bQ0(· ;W ⇤) in FB,m, which corresponds to an approximate stationary point W ⇤.
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B.2 Proof of Lemma 4.5

Proof. It suffices to show that Einit,µ[kg(t)k22] is both upper bounded. By (4.10) we have

Einit,µ
⇥
kg(t)k22

⇤
= Einit,µ

h���
�
x, r, x

0;W (t)
�
·rW

bQt(x)
��2
2

i
 Einit,µ

h���
�
x, r, x

0;W (t)
���2

i
,

(B.2)

where the inequality follows from the fact that, for any W 2 SB ,

krW
bQ(x;W )k2 =

1

m

mX

r=1

1{W>
x > 0} · kxk22  1 (B.3)

almost everywhere. Using the fact that x and x
0 have the same marginal distribution we obtain

Einit,µ
⇥���

�
x, r, x

0;W (t)
���2⇤  Einit,µ

⇥
3
� bQt(x)

2 + r
2 + bQt(x

0)2
�⇤

= Einit,µ[6 bQt(x)
2 + 3r2].

(B.4)

By (B.3), we know that bQ(x;W ) is 1-Lipschitz continuous with respect to W . Therefore, we have

| bQt(x)� bQ0(x)|  kW (t)�W (0)k2  B, (B.5)

Plugging (B.5) into (B.4) and using the Cauchy-Schwarz inequality we obtain

Einit,µ
⇥���

�
x, r, x

0;W (t)
���2⇤  Einit,µ[12 bQ0(x)

2 + 12B2 + 3r2]. (B.6)

Note that by the initialization of bQ0(x) as defined in (3.2), we have

Einit,µ[ bQ0(x)
2] =

1

m

mX

r=1

Einit
⇥
�
�
Wr(0)

>
x
�2
]  Ew⇠N(0,Id/d)[kwk

2
2] = 1. (B.7)

Combining (B.2), (B.6), and (B.7) we obtain Einit,µ
⇥
kg(t)k22

⇤
= O(B2). Since

Einit,µ
⇥
kg(t)� g(t)k22

⇤
= Einit

h
Eµ

⇥
kg(t)� g(t)k22

⇤i
 Einit

h
Eµ

⇥
kg(t)k22

⇤i
= Einit,µ[kg(t)k

2
2],

we conclude the proof of Lemma 4.5.

B.3 Proof of Proposition 4.7

Proof. By the triangle inequality, we have

k bQ0(· ;W
⇤)�Q

⇡(·)kµ  k bQ0(· ;W
⇤)�⇧FB,mQ

⇡(·)kµ + k⇧FB,mQ
⇡(·)�Q

⇡(·)kµ. (B.8)

Since Q
⇡(·) is the fixed-point solution to the Bellman equation, we replace Q

⇡(·) by T
⇡
Q

⇡(·) and
obtain

⇧FB,mQ
⇡(·) = ⇧FB,mT

⇡
Q

⇡(·). (B.9)

Meanwhile, by Lemma 4.2, bQ0(· ;W ⇤) is the solution to the projected Bellman equation, that is,

bQ0(· ;W
⇤) = ⇧FB,mT

⇡ bQ0(· ;W
⇤). (B.10)

Combining (B.9) and (B.10), we obtain

k bQ0(· ;W
⇤)�⇧FB,mQ

⇡(·)kµ = k⇧FB,mT
⇡ bQ0(· ;W

⇤)�⇧FB,mT
⇡
Q

⇡(·)kµ

 � · k bQ0(· ;W
⇤)�Q

⇡(·)kµ, (B.11)

where the inequality follows from the fact that ⇧FB,mT
⇡ is a �-contraction, as discussed in the proof

of Lemma 4.2. Plugging (B.11) into (B.8), we obtain

(1� �) · k bQ0(· ;W
⇤)�Q

⇡(·)kµ  k⇧FB,mQ
⇡(·)�Q

⇡(·)kµ,

which completes the proof of Proposition 4.7.
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C Proofs for Section 5

C.1 Proof of Lemma 5.1

Proof. By the definition that bQt(x) = bQ(x;W (t)) and the definition of bQ0(x;W (t)) in (4.7), we
have
�� bQt(x)� bQ0

�
x;W (t)

���

=
1

p
m

���
mX

r=1

�
1{Wr(t)

>
x > 0}� 1{Wr(0)

>
x > 0}

�
· brWr(t)

>
x

���


1

p
m

mX

r=1

|1{Wr(t)
>
x > 0}� 1{Wr(0)

>
x > 0}| ·

�
|Wr(0)

>
x|+ kWr(t)�Wr(0)k2

�
,

(C.1)

where we use the fact that kxk2 = 1. Note that 1{Wr(t)>x > 0} 6= 1{Wr(0)>x > 0} implies

|Wr(0)
>
x|  |Wr(t)

>
x�Wr(0)

>
x|  kWr(t)�Wr(0)k2.

Thus, we obtain

|1{Wr(t)
>
x > 0}� 1{Wr(0)

>
x > 0}|  1{|Wr(0)

>
x|  kWr(t)�Wr(0)k2}. (C.2)

Plugging (C.2) into (C.1), we obtain the following upper bound,
�� bQt(x)� bQ0

�
x;W (t)

���


1

p
m

mX

r=1

1{|Wr(0)
>
x|  kWr(t)�Wr(0)k2} ·

�
|Wr(0)

>
x|+ kWr(t)�Wr(0)k2

�


2

p
m

mX

r=1

1{|Wr(0)
>
x|  kWr(t)�Wr(0)k2} · kWr(t)�Wr(0)k2.

Here the second inequality follows from the fact that

1{|x|  y}|x|  1{|x|  y}y

for any x and y > 0. To characterize Einit,µ[| bQt(x)� bQ0(x;W (t))|2], we first invoke the Cauchy-
Schwarz inequality and the fact that kW (t)�W (0)k2  B, which gives

�� bQt(x)� bQ0

�
x;W (t)

���2 
4B2

m

mX

r=1

1{|Wr(0)
>
x|  kWr(t)�Wr(0)k2}.

Taking expectation on both sides, by Lemma D.1 we obtain

Einit,µ

h�� bQt(x)� bQ0

�
x;W (t)

���2
i
 4c1B

3
·m

�1/2
.

Thus, we finish the proof of Lemma 5.1.

C.2 Proof of Lemma 5.2

Proof. By the definition of g(t) and g0(t) in (5.1) and (5.2), respectively, we have

kg(t)� g0(t)k2 =
��Eµ

⇥
�
�
x, r, x

0;W (t)
�
·rW

bQt(x)� �0

�
x, r, x

0;W (t)
�
·rW

bQ0

�
x;W (t)

�⇤��
2



���Eµ

h⇣
�
�
x, r, x

0;W (t)
�
� �0

�
x, r, x

0;W (t)
�⌘

·rW
bQt(x)

+ �0

�
x, r, x

0;W (t)
�
·

⇣
rW

bQt(x)�rW
bQ0

�
x;W (t)

�⌘i���
2

 Eµ

h���
�
x, r, x

0;W (t)
�
� �0

�
x, r, x

0;W (t)
��� (C.3)

+
���0

�
x, r, x

0;W (t)
��� ·

��rW
bQt(x)�rW

bQ0

�
x;W (t)

���
2

i
.
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Here to obtain the second inequality, we use the fact that, for any t 2 [T ],

krW
bQt(x)k2  kxk2 = 1.

Taking expectation with respect to the random initialization on the both sides of (C.3), we obtain

Einit
⇥
kg(t)� g0(t)k

2
2

⇤

 2Einit,µ

h���
�
x, r, x

0;W (t)
�
� �0

�
x, r, x

0;W (t)
���2

i

| {z }
(i)

(C.4)

+ 2Einit


Eµ

h���0
�
x, r, x

0;W (t)
���2

i

| {z }
(iii)

·Eµ

h��rW
bQt(x)�rW

bQ0

�
x;W (t)

���2
2

i

| {z }
(ii)

�
.

In the following, we characterize the three terms on the right-hand side of (C.4).

For (i) in (C.4), note that
���
�
x, r, x

0;W (t)
�
� �0

�
x, r, x

0;W (t)
���2

=
���
� bQt(x)� r � � bQt(x

0)
�
�

⇣
bQ0

�
x;W (t)

�
� r � � bQ0

�
x
0;W (t)

�⌘���
2

=
���
⇣
bQt(x)� bQ0

�
x;W (t)

�⌘
� �

⇣
bQt(x

0)� bQ0

�
x
0;W (t)

�⌘���
2

 2
⇣
bQt(x)� bQ0

�
x;W (t)

�⌘2
+ 2

⇣
bQt(x

0)� bQ0

�
x
0;W (t)

�⌘2
. (C.5)

Since x and x
0 follow the same stationary distribution µ on the right-hand side of (C.5), by Lemma

5.1 we have

Einit,µ

h���
�
x, r, x

0;W (t)
�
� �0

�
x, r, x

0;W (t)
���2

i

 4Einit,µ

h�� bQt(x)� bQ0

�
x;W (t)

���2
i
 16c1B

3
·m

�1/2
. (C.6)

For (ii) in (C.4), we have

��rW
bQt(x)�rW

bQ0

�
x;W (t)

���2
2
=

1

m

mX

r=1

(1{Wr(t)
>
> 0}� 1{Wr(0)

>
> 0})2kxk22


1

m

mX

r=1

1{|Wr(0)
>
x|  kWr(t)�Wr(0)k2}, (C.7)

where the inequality follows from (C.2) and the fact that kxk2 = 1.

For (iii) in (C.4), we have
���0

�
x, r, x

0;W (t)
���2  3

⇣
bQ0

�
x;W (t)

�2
+ r

2 + �
2 bQ0

�
x
0;W (t)

�2⌘
. (C.8)

To obtain an upper bound of the right-hand side of (C.8), we use the fact that
�� bQ0

�
x;W (t)

�
� bQ0(x)

��  kW (t)�W (0)k2 · kxk2  B,

which follows from (4.7), and obtain

Eµ

⇥ bQ0

�
x;W (t)

�2⇤
= Eµ

h⇣
bQ0(x) + bQ0

�
x;W (t)

�
� bQ0(x)

⌘2i
 2Eµ[ bQ0(x)

2] + 2B2
.

Since x and x
0 follow the same stationary distribution µ on the right-hand side of (C.8) and |�| < 1,

we have

Eµ

h���0
�
x, r, x

0;W (t)
���2

i
 12Eµ[ bQ0(x)

2] + 12B2 + 3r2. (C.9)
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Plugging (C.6), (C.7), and (C.9) into (C.4), we obtain

Einit
⇥
kg(t)� g0(t)k

2
2

⇤
 32c1B

3
·m

�1/2

+ 2Einit

h�
12Eµ[ bQ0(x)

2] + 12B2 + 3r2
�
·

⇣ 1

m

mX

r=1

1{|Wr(0)
>
x|  kWr(t)�Wr(0)k2}

⌘i
.

Invoking Lemmas D.1 and D.2, we obtain

Einit
⇥
kg(t)� g0(t)k

2
2

⇤
 (56c1B

3 + 24c2B + 6c1Br
2) ·m�1/2

,

which finishes the proof of Lemma 5.2.

C.3 Proof of Lemma 5.3

Proof. Recall that

g(t) = Eµ

⇥
�
�
x, r, x

0;W (t)
�
·rW

bQ
�
x;W (t)

�⇤
, (C.10)

g0(t) = Eµ

⇥
�0

�
x, r, x

0;W (t)
�
·rW

bQ0

�
x;W (t)

�⇤
. (C.11)

We denote the locally linearized population semigradient g0(t) evaluated at the approximate stationary
point W ⇤ by

g
⇤

0 = Eµ[�0(x, r, x
0;W ⇤) ·rW

bQ0(x;W
⇤)]. (C.12)

For any W (t) (t 2 [T ]), by the convexity of SB , we have

kW (t+ 1)�W
⇤
k
2
2 =

��⇧SB

�
W (t)� ⌘ · g(t)

�
�⇧SB (W

⇤
� ⌘ · g

⇤

0)
��2
2


���W (t)� ⌘ · g(t)

�
� (W ⇤

� ⌘ · g
⇤

0)
��2
2

= kW (t)�W
⇤
k
2
2 � 2⌘ ·

�
g(t)� g

⇤

0

�>�
W (t)�W

⇤
�
+ ⌘

2
· kg(t)� g

⇤

0k
2
2.

(C.13)

We decompose the inner product (g(t)� g
⇤

0)
>(W (t)�W

⇤) on the right-hand side of (C.13) into
two terms,
�
g(t)� g

⇤

0

�>�
W (t)�W

⇤
�
=
�
g0(t)� g

⇤

0

�>�
W (t)�W

⇤
�
+
�
g(t)� g0(t)

�>�
W (t)�W

⇤
�

�
�
g0(t)� g

⇤

0

�>�
W (t)�W

⇤
�
�B · kg(t)� g0(t)k2. (C.14)

It remains to characterize the first term (g0(t)� g
⇤

0)
>(W (t)�W

⇤) on the right-hand side of (C.14),
since the second term kg(t)�g0(t)k2 is characterized by Lemma 5.2. Note that by (C.11) and (C.12),
we have

g0(t)� g
⇤

0 = Eµ

h⇣
�0

�
x, r, x

0;W (t)
�
� �0(x, r, x

0;W ⇤)
⌘
·rW

bQ0

�
x;W (0)

�i
, (C.15)

where we use the following consequence of (4.7),

rW
bQ0

�
x;W (0)

�
= rW

bQ0(x;W
⇤).

Moreover, by (4.8) it holds that
�0

�
x, r, x

0;W (t)
�
� �0(x, r, x

0;W ⇤)

=
⇣
bQ0

�
x;W (t)

�
� bQ0(x;W

⇤)
⌘
� �

⇣
bQ0

�
x
0;W (t)

�
� bQ0(x

0;W ⇤)
⌘
. (C.16)

Combining (4.7), (C.15), and (C.16), we have
�
g0(t)� g

⇤

0

�>�
W (t)�W

⇤
�

= Eµ

h⇣
�0

�
x, r, x

0;W (t)
�
� �0(x, r, x

0;W ⇤)
⌘
·

⇣
rW

bQ0

�
x;W (0)

�>�
W (t)�W

⇤
�⌘i

= Eµ

h⇣
bQ0

�
x;W (t)

�
� bQ0(x;W

⇤)
⌘2

� �

⇣
bQ0

�
x;W (t)

�
� bQ0(x;W

⇤)
⌘
·

⇣
bQ0

�
x
0;W (t)

�
� bQ0(x

0;W ⇤)
⌘i

� (1� �) · Eµ

h⇣
bQ0

�
x;W (t)

�
� bQ0(x;W

⇤)
⌘2i

, (C.17)
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where the last inequality is from the fact that x and x
0 have the same marginal distribution under µ

and therefore by the Cauchy-Schwarz inequality,
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⌘2i

.

Inequality (C.17) is the key to our convergence result. It shows that the locally linearized population
semigradient update g0(t) is one-point monotonic to the approximate stationary point W ⇤.

Also, for kg(t)� g
⇤

0k
2
2 on the right-hand side of (C.13), we have

kg(t)� g
⇤

0k
2
2  2kg0(t)� g
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2
2 + 2kg(t)� g0(t)k

2
2. (C.18)

For the first term on the right-hand side of (C.18), by (C.15), (C.16), and the Cauchy-Schwarz
inequality, we have
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, (C.19)

where the first inequality follows from the fact
��rW

bQ0

�
x;W (0)

���
2
 kxk2 = 1.

Plugging (C.17), (C.18), and (C.19) into (C.13), we finish the proof of Lemma 5.3.

C.4 Proof of Lemma 5.4

Proof. For any W (t) (t 2 [T ]), by the convexity of SB , (4.10), and (C.12), we have
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Taking expectation on both sides conditional on W (t), we obtain
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(C.20)

For the inner product (g(t)� g
⇤

0)
>(W (t)�W

⇤) on the right-hand side of (C.20), it follows from
(C.14) and (C.17) that
�
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�B · kg(t)� g0(t)k2.

Meanwhile, for Eµ[kg(t)� g
⇤

0k
2
2 |W (t)] on the right-hand side of (C.20), we have the decomposition
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where the inequality follows from (C.18) and (C.19). Taking expectation on the both sides of (C.20)
with respect to W (t), we complete the proof of Lemma 5.4.
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C.5 Proof of Theorem 4.4

Proof. By Lemma 5.2 we have
Einit
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kg(t)� g0(t)k

2
2

⇤
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m
�1/2), (C.21)

Einit
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B · kg(t)� g0(t)k2

⇤
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m
�1/4). (C.22)

Setting ⌘ = (1� �)/8 in Algorithm 1, by (C.21), (C.22), and Lemma 5.3, we have
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+O(B3
m

�1/2 +B
5/2

m
�1/4).

Telescoping (C.23) for t = 0, . . . , T � 1, we obtain

1

T

T�1X

t=0

Einit,µ

h⇣
bQ0

�
x;W (t)

�
� bQ0(x;W

⇤)
⌘2i

=
Einit

⇥
kW (0)�W

⇤
k
2
� kW (T )�W

⇤
k
2
⇤

T (1� �)2/8
+O(B3

m
�1/2 +B

5/2
m

�1/4)


8B2

T (1� �)2
+O(B3

m
�1/2 +B

5/2
m

�1/4).

Recall that as define in (4.7), bQ0(· ;W ) is linear in W . By Jensen’s inequality, we have
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Next we characterize the output bQout(·) = bQ(· ;W ) of Algorithm 1. Since SB is convex and W 2 SB ,
by Lemma 5.1 we have
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Using the Cauchy-Schwarz inequality we have

Einit,µ
⇥� bQout(x)� bQ0(x;W

⇤)
�2⇤

 Einit,µ
⇥
2
� bQ(x;W )� bQ0(x;W )

�2
+ 2

� bQ0(x;W )� bQ0(x;W
⇤)
�2⇤

,

into which we plugging (C.24) and (C.25) and obtain
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which completes the proof of Theorem 4.4.

C.6 Proof of Theorem 4.6

Proof. Similar to (C.23), by Lemmas 4.5, 5.2, and 5.4 we have
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Telescoping (C.27) for t = 0, . . . , T � 1, by ⌘
2
 1/T we have
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where ⌘ = min{1/
p
T , (1� �)/8}. Note that when T � (8/(1� �))2, we have ⌘ = 1/

p
T and
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Similar to (C.24) and (C.26), by combining (C.28) and (C.29) with Lemma 5.1, we obtain
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which completes the proof of Theorem 4.6.

D Auxiliary Lemmas

Under Assumption 4.3, we establish the following auxiliary lemmas on the random initialization
W (0) and the stationary distribution µ, which plays a key role in quantifying the error of local
linearization.
Lemma D.1. There exists a constant c1 > 0 such that for any random vector W with kW �

W (0)k2  B, it holds that
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Proof. By Assumption 4.3, we have
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Applying Hölder’s inequality to the right-hand side, we obtain
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where the second inequality follows from
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(D.4)

Setting c1 = c0 · Ew⇠N(0,Id/d)[1/kwk
2
2]

1/2, we complete the proof of Lemma D.1.

Lemma D.2. There exists a constant c2 > 0 such that for any random vector W with kW �

W (0)k2  B, it holds that
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Proof. By the definition of bQ0(x) = bQ0(x;W (0)) in (4.7), we have
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Following the same derivation of (D.2) and (D.3), we have
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Note that br and bs are independent of W (0) and Einit[brbs] = 0. Thus, we obtain
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By the definition of �(Wr(0)>x) and the fact that kxk2 = 1, we have
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Hence, it holds that
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By (D.4) and the fact that
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the right-hand side of (D.6) is O(Bm
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we complete the proof of Lemma D.2.
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