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Abstract

Many reinforcement learning (RL) tasks have specific properties that can be lever-
aged to modify existing RL algorithms to adapt to those tasks and further improve
performance, and a general class of such properties is the multiple reward channel.
In those environments the full reward can be decomposed into sub-rewards obtained
from different channels. Existing work on reward decomposition either requires
prior knowledge of the environment to decompose the full reward, or decomposes
reward without prior knowledge but with degraded performance. In this paper,
we propose Distributional Reward Decomposition for Reinforcement Learning
(DRDRL), a novel reward decomposition algorithm which captures the multiple
reward channel structure under distributional setting. Empirically, our method cap-
tures the multi-channel structure and discovers meaningful reward decomposition,
without any requirements on prior knowledge. Consequently, our agent achieves
better performance than existing methods on environments with multiple reward
channels.

1 Introduction

Reinforcement learning has achieved great success in decision making problems since Deep Q-
learning was proposed by Mnih et al. [2015]. While general RL algorithms have been deeply studied,
here we focus on those RL tasks with specific properties that can be utilized to modify general RL
algorithms to achieve better performance. Specifically, we focus on RL environments with multiple
reward channels, but only the full reward is available.

Reward decomposition has been proposed to investigate such properties. For example, in Atari game
Seaquest, rewards of environment can be decomposed into sub-rewards of shooting sharks and those
of rescuing divers. Reward decomposition views the total reward as the sum of sub-rewards that are
usually disentangled and can be obtained independently (Sprague and Ballard [2003], Russell and
Zimdars [2003], Van Seijen et al. [2017], Grimm and Singh [2019]), and aims at decomposing the
total reward into sub-rewards. The sub-rewards may further be leveraged to learn better policies.

Van Seijen et al. [2017] propose to split a state into different sub-states, each with a sub-reward
obtained by training a general value function, and learn multiple value functions with sub-rewards.
The architecture is rather limited due to requiring prior knowledge of how to split into sub-states.
Grimm and Singh [2019] propose a more general method for reward decomposition via maximizing
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disentanglement between sub-rewards. In their work, an explicit reward decomposition is learned
via maximizing the disentanglement of two sub-rewards estimated with action-value functions.
However, their work requires that the environment can be reset to arbitrary state and can not apply
to general RL settings where states can hardly be revisited. Furthermore, despite the meaningful
reward decomposition they achieved, they fail to utilize the reward decomposition into learning better
policies.

In this paper, we propose Distributional Reward Decomposition for Reinforcement Learning (DR-
DRL), an RL algorithm that captures the latent multiple-channel structure for reward, under the
setting of distributional RL. Distributional RL differs from value-based RL in that it estimates the
distribution rather than the expectation of returns, and therefore captures richer information than
value-based RL. We propose an RL algorithm that estimates distributions of the sub-returns, and com-
bine the sub-returns to get the distribution of the total returns. In order to avoid naive decomposition
such as 0-1 or half-half, we further propose a disentanglement regularization term to encourage the
sub-returns to be diverged. To better separate reward channels, we also design our network to learn
different state representations for different channels.

We test our algorithm on chosen Atari Games with multiple reward channels. Empirically, our method
has following achievements:

• Discovers meaningful reward decomposition.
• Requires no external information.
• Achieves better performance than existing RL methods.

2 Background

We consider a general reinforcement learning setting, in which the interaction of the agent and the
environment can be viewed as a Markov Decision Process (MDP). Denote the state space by X ,
action space by A, the state transition function by P , the action-state dependent reward function by
R and γ the discount factor, we write this MDP as (X , A,R, P, γ).

Given a fixed policy π, reinforcement learning estimates the action-value function of π, defined by
Qπ(x, a) =

∑∞
t=0 γ

trt(xt, at) where (xt, at) is the state-action pair at time t, x0 = x, a0 = a and
rt is the corresponding reward. The Bellman equation characterizes the action-value function by
temporal equivalence, given by

Qπ(x, a) = R(x, a) + γ E
x′,a′

[Qπ(x′, a′)]

where x′ ∼ P (·|x, a), a′ ∼ π(·|x′). To maximize the total return given by E
x0,a0

[Qπ(x0, a0)], one

common approach is to find the fixed point for the Bellman optimality operator

Q∗(x, a) = T Q∗(x, a) = R(x, a) + γE
x′

[
max
a′
Q∗(x′, a′)

]
with the temporal difference (TD) error, given by

δ2t =

[
rt + γ max

a′∈A
Q (xt+1, a

′)−Q (xt, at)

]2
over the samples (xt, at, st, xt+1) along the trajectory. Mnih et al. [2015] propose Deep Q-Networks
(DQN) that learns the action-value function with a neural network and achieves human-level perfor-
mance on the Atari-57 benchmark.

2.1 Reward Decomposition

Studies for reward decomposition also leads to state decomposition (Laversanne-Finot et al. [2018],
Thomas et al. [2017]), where state decomposition is leveraged to learn different policies. Extending
their work, Grimm and Singh [2019] explore the decomposition of the reward function directly, which
is considered to be most related to our work. Denote the i-th (i=1,2,...,N ) sub-reward function at
state-action pair (x, a) as ri(x, a), the complete reward function is given by

r =

N∑
i=1

ri
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For each sub-reward function, consider the sub-value function Uπi and corresponding policy πi:

Uπi (x0, a0) = Ext,at [

∞∑
t=0

γtri(xt, at)]

πi = arg max
π

Uπi

where xt ∼ P (·|π, x0, a0), at ∼ π(·|xt).

In their work, reward decomposition is considered meaningful if each reward is obtained indepen-
dently (i.e. πi should not obtain rj) and each reward is obtainable.

Two evaluate the two desiderata, the work proposes the following values:

Jindependent (r1, . . . , rn) = Es∼µ

∑
i6=j

αi,j(s)U
π∗j
i (s)

 , (1)

Jnontrivial (r1, . . . , rn) = Es∼µ

[
n∑
i=1

αi,i(s)U
π∗i
i (s)

]
, (2)

where αi,j is for weight control and for simplicity set to 1 in their work. During training, the network
would maximize Jnontrivial − Jindependent to achieve the desired reward decomposition.

2.2 Distributional Reinforcement Learning

In most reinforcement learning settings, the environment is not deterministic. Moreover, in general
people train RL models with an ε-greedy policy to allow exploration, making the agent also stochastic.
To better analyze the randomness under this setting, Bellemare et al. [2017] propose C51 algorithm
and conduct theoretical analysis of distributional RL.

In distributional RL, reward Rt is viewed as a random variable, and the total return is defined by
Z =

∑∞
t=0 γ

tRt. The expectation of Z is the traditional action-value Q and the distributional
Bellman optimality operator is given by

T Z(x, a) :
D
= R(x, a) + γZ

(
x′, arg max

a′∈A
EZ (x′, a′)

)
where if random variable A and B satisfies A D

= B then A and B follow the same distribution.

Random variable is characterized by a categorical distribution over a fixed set of values in C51, and it
outperforms all previous variants of DQN on Atari domain.

3 Distributional Reward Decomposition for Reinforcement Learning

3.1 Distributional Reward Decomposition

In many reinforcement learning environments, there are multiple sources for an agent to receive
reward as shown in Figure 1(b). Our method is mainly designed for environments with such property.

Under distributional setting, we will assume reward and sub-rewards are random variables and
denote them by R and Ri respectively. In our architecture, the categorical distribution of each
sub-return Zi =

∑∞
t=0 γ

tRi,t is the output of a network, denoted by Fi(x, a). Note that in most
cases, sub-returns are not independent, i.e. P (Zi = v)! = P (Zi = v|Zj). So theoretically we need
Fij(x, a) for each i and j to obtain the distribution of the full return. We call this architecture as non-
factorial model or full-distribution model. The non-factorial model architecture is shown in appendix.
However, experiment shows that using an approximation form of P (Zi = v) ≈ P (Zi = v|Zj) so
that only Fi(x, a) is required performs much better than brutally computing Fij(x, a) for all i, j, we
believe that is due to the increased sample number. In this paper, we approximate the conditional
probability P (Zi = v|Zj) with P (Zi = v).

Consider categorical distribution function Fi and Fj with same number of atoms K, the k-th atom
is denoted by ak with value ak = a0 + kl, 1 ≤ k ≤ K where l is a constant. Let random variable
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Figure 1: (a) Distributional reward decomposition network architecture. (b) Examples of multiple
reward channels in Atari games: the top row shows examples of Seaquest in which the submarine
receives rewards from both shooting sharks and rescuing divers; the bottom row shows examples of
Hero where the hero receives rewards from both shooting bats and rescuing people.

Zi ∼ Fi and Zj ∼ Fj , from basic probability theory we know that the distribution function of
Z = Zi + Zj is the convolution of Fi and Fj

F(v) = P (Zi + Zj = v) =

K∑
k=1

P (Zi = ak)P (Zj = v − ak|Zi = ak)

≈
K∑
k=1

P (Zi = ak)P (Zj = v − ak) = Fi(v) ∗ Fj(v).

(3)

When we use N sub-returns, the distribution function of the total return is then given by F =
F1 ∗ F2 ∗ · · · ∗ FN where ∗ denotes linear 1D-convolution.

While reward decomposition is not explicitly done in our algorithm, we can derive the decomposed
reward with using trained agents. Recall that total return Z =

∑N
i=1 Zi follows bellman equation, so

naturally we have

T Z D
= T (

N∑
i=1

Zi)
D
= R+ γZ ′ = (

N∑
i=1

Ri) + γ(

N∑
i=1

Z ′i) (4)

where Z ′i represents sub-return on the next state-action pair. Note that we only have access to a
sample of the full reward R, the sub-rewards Ri are arbitrary and for better visualization a direct way
of deriving them is given by

Ri = Zi − γZ ′i (5)
In the next section we will present an example of those sub-rewards by taking their expectation E(Ri).
Note that our reward decomposition is latent and we do not need Ri for our algorithm, Eq. 5 only
provides an approach to visualize our reward decomposition.

3.2 Disentangled Sub-returns

To obtain meaningful reward decomposition, we want the sub-rewards to be disentangled. Inspired
by Grimm and Singh [2019], we compute the disentanglement of distributions of two sub-returns F i
and F j on state x with the following value:

J ijdisentang = DKL(Fx,argmaxa E(Zi)||Fx,argmaxa E(Zj)), (6)

where DKL denotes the cross-entropy term of KL divergence.
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Intuitively, J ijdisentang estimates the disentanglement of sub-returns Zi and Zj by first obtaining
actions that maximize E(Zi) and E(Zj) respectively, and then computes the KL divergence between
the two estimated total returns of the actions. If Zi and Zj are independent, the action maximizing
two sub-returns would be different and such difference would reflect in the estimation for total
return. Through maximizing this value, we can expect a meaningful reward decomposition that learns
independent rewards.

3.3 Projected Bellman Update with Regularization

Following the work of C51 (Bellemare et al. [2017]), we use projected Bellman update for our
algorithm. When applied with the Bellman optimality operator, the atoms of T Z is shifted by rt and
shrank by γ. However to compute the loss, usually KL divergence between Z and T Z, it is required
that the two categorical distributions are defined on the same set of atoms, so the target distribution
T Z would need to be projected to the original set of atoms before Bellman update. Consider a sample
transition (x, a, r, x′), the projection operator Φ proposed in C51 is given by

(ΦT Z(x, a))i =

M−1∑
j=0

1−

∣∣∣[r + γaj ]
Vmax

Vmin
− ai

∣∣∣
l

1

0

Fx′,a′ (aj) , (7)

where M is the number of atoms in C51 and [·]ba bounds its argument in [a, b]. The sample loss for
(x, a, r, x′) would be given by the cross-entropy term of KL divergence of Z and ΦT Z

Lx,a,r,x′ = DKL(ΦT Z(x, a)||Z(x, a)). (8)

Let Fθ be a neural network parameterized by θ, we combine distributional TD error and disentan-
glement to jointly update θ. For each sample transition (x, a, r, x′), θ is updated by minimizing the
following objective function:

Lx,a,r,x′ − λ
∑
i

∑
j!=i

J ijdisentang, (9)

where λ denotes learning rate.

3.4 Multi-channel State Representation

One complication of our approach outlined above is that very often the distribution Fi cannot
distinguish itself from other distributions (e.g., Fj , j 6= i) during learning since they all depend
on the same state feature input. This brings difficulties in maximizing disentanglement by jointly
training as different distribution functions are exchangeable. A naive idea is to split the state feature
ψ(x) into N pieces (e.g., ψ(x)1, ψ(x)2, ..., ψ(x)N ) so that each distribution depends on different
sub-state-features. However, we empirically found that this method is not enough to help learn good
disentangled sub-returns.

To address this problem, we utilize an idea similar to universal value function approximation
(UVFA) (Schaul et al. [2015]). The key idea is to take one-hot embedding as an additional in-
put to condition the categorical distribution function, and apply the element-wise multiplication
ψ � φ, to force interaction between state features and the one-hot embedding feature:

Fi(x, a) = Fθi(ψ(x)� φ(ei))a, (10)

where ei denotes the one-hot embedding where the i-th element is one and φ denotes one-layer
non-linear neural network that is updated by backpropagation during training.

In this way, the agent explicitly learns different distribution functions for different channels. The
complete network architecture is shown in Figure 1(a).

4 Experiment Results

We tested our algorithm on the games from Arcade Learning Environment (ALE; Bellemare et al.
[2013]). We conduct experiments on six Atari games, some with complicated rules and some with

5



0 20 40 60 80 100
Epoch

0

5000

10000

15000

20000

25000

30000

Re
tu

rn

Seaquest

RAINBOW + RD(3)
RAINBOW + RD(2)
RAINBOW

0 20 40 60 80 100
Epoch

0
2500
5000
7500

10000
12500
15000
17500
20000

Re
tu

rn

Asterix

RAINBOW + RD(3)
RAINBOW + RD(2)
RAINBOW

0 20 40 60 80 100
Epoch

0

2000

4000

6000

8000

10000

12000

14000

16000

Re
tu

rn

Gopher

RAINBOW + RD(3)
RAINBOW + RD(2)
RAINBOW

0 20 40 60 80 100
Epoch

0

10000

20000

30000

40000

50000

60000

70000

Re
tu

rn

StarGunner

RAINBOW + RD(3)
RAINBOW + RD(2)
RAINBOW

0 20 40 60 80 100
Epoch

0

10000

20000

30000

40000

Re
tu

rn

Hero

RAINBOW + RD(3)
RAINBOW + RD(2)
RAINBOW

0 20 40 60 80 100
Epoch

0

10000

20000

30000

40000

50000

60000

Re
tu

rn

UpNDown

RAINBOW + RD(3)
RAINBOW + RD(2)
RAINBOW

Figure 2: Performance comparison with Rainbow. RD(N) represents using N-channel reward
decomposition. Each training curve is averaged by three random seeds.

simple rules. For our study, we implemented our algorithm based on Rainbow (Hessel et al. [2018])
which is an advanced variant of C51 (Bellemare et al. [2017]) and achieved state-of-the-art results
in Atari games domain. We replace the update rule of Rainbow by Eq. 9 and network architecture
of Rainbow by our convoluted architecture as shown in Figure 1(a). In Rainbow, the Q-value is
bounded by [Vmin, Vmax] where Vmax = −Vmin = 10. In our method, we bound the categorical
distribution of each sub-return Zi(i = 1, 2, ..., N) by a range of [Vmin

N , Vmax

N ]. Rainbow uses a
categorical distribution with M = 51 atoms. For fair comparison, we assign K = bMN c atoms for the
distribution of each sub-return, which results in the same network capacity as the original network
architecture.

Our code is built upon dopamine framework (Castro et al. [2018]). We use the default well-tuned
hyper-parameter setting in dopamine. For our updating rule in Eq. 9, we set λ = 0.0001. We run our
agents for 100 epochs, each with 0.25 million of training steps and 0.125 million of evaluation steps.
For evaluation, we follow common practice in Van Hasselt et al. [2016], starting the game with up to
30 no-op actions to provide random starting positions for the agent. All experiments are performed
on NVIDIA Tesla V100 16GB graphics cards.

4.1 Comparison with Rainbow

To verify that our architecture achieves reward decomposition without degraded performance, we
compare our methods with Rainbow. However we are not able to compare our method with Van Seijen
et al. [2017] and Grimm and Singh [2019] since they require either pre-defined state pre-processing
or specific-state resettable environments. We test our reward decomposition (RD) with 2 and 3
channels (e.g., RD(2), RD(3)). The results are shown in Figure 2. We found that our methods
perform significantly better than Rainbow on the environments that we tested. This implies that
our distributional reward decomposition method can help accelerate the learning process. We also
discover that on some environments, RD(3) performs better than RD(2) while in the rest the two have
similar performance. We conjecture that this is due to the intrinsic settings of the environments. For
example, in Seaquest and UpNDown, the rules are relatively complicated, so RD(3) characterizes
such complex reward better. However in simple environments like Gopher and Asterix, RD(2) and
RD(3) obtain similar performance, and sometimes RD(2) even outperforms RD(3).

4.2 Reward Decomposition Analysis

Here we use Seaquest to illustrate our reward decomposition. Figure 3 shows the sub-rewards
obtained by taking the expectation of the LHS of Eq.5 and the original reward along an actual
trajectory. We observe that while r1 = E(R1) and r2 = E(R2) basically add up to the original
reward r, r1 dominates as the submarine is close to the surface, i.e. when it rescues the divers and
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Figure 3: Reward decomposition along the trajectory. While sub-rewards r1 and r2 usually adds
up to the original reward r, we see that the proportion of sub-rewards greatly depends on how the
original reward is obtained.

refills oxygen. When the submarine scores by shooting sharks, r2 becomes the main source of reward.
We also monitor the distribution of different sub-returns when the agent is playing game. In Figure 4
(a), the submarine floats to the surface to rescue the divers and refill oxygen and Z1 has higher values.
While in Figure 4 (b), as the submarine dives into the sea and shoots sharks, expected values of Z2

(orange) are higher than Z1 (blue). This result implies that the reward decomposition indeed captures
different sources of returns, in this case shooting sharks and rescuing divers/refilling oxygen. We
also provide statistics on actions for quantitative analysis to support the argument. In Figure 6(a), we
count the occurrence of each action obtained with arg maxa E(Z1) and arg maxa E(Z2) in a single
trajectory, using the same policy as in Figure 4. We see that while Z1 prefers going up, Z2 prefers
going down with fire.

4.3 Visualization by saliency maps

To better understand the roles of different sub-rewards, we train a DRDRL agent with two channels
(N=2) and compute saliency maps (Simonyan et al. [2013]). Specifically, to visualize the salient
part of the images as seen by different sub-policies, we compute the absolute value of the Jacobian
|∇xQi(x, arg maxa′ Q(x, a′))| for each channel. Figure 5 shows that visualization results. We find
that channel 1 (red region) focuses on refilling oxygen while channel 2 (green region) pays more
attention to shooting sharks as well as the positions where sharks are more likely to appear.

4.4 Direct Control using Induced Sub-policies

We also provide videos2 of running sub-policies defined by πi = arg maxa E(Zi). To clarify,
the sub-policies are never rolled out during training or evaluation and are only used to compute
J ijdisentang in Eq. 6. We execute these sub-policies and observe its difference with the main policy

π = arg maxa E(
∑M
i=1 Zi) to get a better visual effect of the reward decomposition. Take Seaquest

in Figure 6(b) as an example, two sub-policies show distinctive preference. As Z1 mainly captures the
reward for surviving and rescuing divers, π1 tends to stay close to the surface. However Z2 represents
the return gained from shooting sharks, so π2 appears much more aggressive than π1. Also, without
π1 we see that π2 dies quickly due to out of oxygen.

2https://sites.google.com/view/drdpaper
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