Appendices

A Detailed description of AlphaNPI

When learning the ¢-th program, the environment is reset to a state that satisfies the program pre-
conditions. At the same time, we adopt a reward that returns 1 when the program post-condition is
satisfied and O otherwise. A tree is built for this specific task, to maximize the expected reward.

For a specific program, a node corresponds to an environment stateE] e and an edge corresponds to an
action a. The root node corresponds to the initial environment state. Every node contains a prior,
a visit count and a Q-value estimate. The prior P(e, a) corresponds to the probability of this node
being chosen by its parent node. The visit count N (e, a) records how many times this node has been
visited through simulations and the Q-value (e, a) estimates the expected reward the agent will
accrue if it chooses action a from this node.

A simulation involves three operations: select, expand and evaluate, and value backup. When a
selected action corresponds to a non-zero level program, we recursively build a new tree to execute it,
see Algorithm[I] Finally, when a given budget of simulations has been spent, a tree policy vector is
computed and the next action is chosen according to this vector. We delve into the details of these
steps in the following subsections. These steps are illustrated in Figure 3]

A.1 Select

From a non-terminal node, the next action is chosen to maximise the P-UCT criterion:

a = argmax (Q(e,a’) + U(e,a’) + L(i,a')) 3)
a’'€A
N(e,b
Ule, a) = cpuaP(e, a)ﬁf\f(e(ea))' “)

The coefficient cpyu is user-defined and trades-off exploration and exploitation. The level balancing
term L is defined as:

L(i,a) = ¢everexp (—1), if a is STOP
{ L(i,a) = cever exp (—1), iflevel(:) = level(a) %)
L(i,a) = ciever exp (— (level(7) — level(a))), otherwise

where cieve 1S a user-defined constant and level is an operator that returns a program level. This term
encourages programs to call programs near them in the hierarchy.

We perform additional exploration as in the original AlphaZero work of [Silver et al.|[2017] by adding
Dirichlet noise to the priors:

P(e,a) «— (1 —€q)P(e,a) + eqng, where ng ~ Dir(ayg) (6)

where 1y follows a Dirichlet distribution with hyper-parameters «.

A.2 Tree recursion

If the chosen action is atomic, we apply it directly in the environment and the new environment
observation is recorded inside the node. Otherwise, a new tree is built to execute the newly invoked
program. In this case, the environment reward changes to correspond to this new task (program), and
the LSTM internal state is re-initialized to zero. The new tree is built in exploitation mode. When the
search terminates, we check if the program post-conditions are satisfied. If unsatisfied, we stop the
entire search and discard the corresponding trace. If satisfied, the task at hand becomes the previous
one (return to calling program). In this case, the LSTM is assigned its previous internal state and the
new environment state is recorded inside the child node. From this point of view, the program has
been executed as if it was an atomic action.

3Strictly speaking, the node is for the pair (e,) but we are assuming a fixed ¢ and dropping the program
index to simplify notation.

12

Algorithm 1: Perform one MCTS simulation

Input: Node n = (e, ¢) and LSTM internal state h

while True do

if n has not been expanded then

Compute possible children nodes to respect programs levels and pre-conditions;
Evaluate the node with NPI network to compute priors and V-value;

If the mode is exploration add Dirichlet noise to the priors;

Get and store new LSTM internal state h;

Store the priors in the node;

Stop the simulation and return V-value;

else

Select an action a to according to Equation ,

if simulation length > maximum tree depth then
‘ Stop the simulation ;

Return a reward of -1
else

if a == STOP then
‘ Stop the simulation ;

Return the obtained reward
else

if a is a level 0 program then
‘ Apply a in the environmenﬂ
else
‘ Build a new tree* in exploitation mode to execute @ ;
end
Record new environment observation e’;
Consider new node n = (€', 1);

end

end
end

end

A.3 Expand and evaluate

When a node is expanded, we construct a new child node for every possible action available to the
parent node. The possible actions correspond to the programs whose pre-conditions are satisfied
and whose level is lower (or equal if the setup is recursive) than the current program’s level. The
priors over the edges and node V-value are computed using the AlphaNPI network. The child nodes’
Q-values are initialized to 0 and their visit counts to 0.

A.4 Value back-up

When an action is chosen, if the new node is not terminal, we compute its value with the value head
of the AlphaNPI network. Otherwise, we use the episode’s final reward. When the obtained reward
equals 0, we replace it by a value of -1 as the Q-values are initialized to 0. To encourage short traces,
we penalize positive rewards by multiplying them by 1™, where n is the trace length and 7y € [0, 1].
This value is then backpropagated on the path between the current node and the root node. The visit
counts of the nodes in this path are also incremented. For each node, we maintain a list of all the
values that have been backpropagated. In classical two-player MCTS, the Q-value is computed as
the sum of the values, generated by the neural network for the child node, divided by the visit count.

*When an action a is called, we apply it into the environment only the first time. The resulting environment
state is stored inside the outgoing node. When this action is to be called again from the same node we reset the
environment in the correct environment state. We apply the same strategy when a corresponds to a non-atomic
program. The recursive tree is built only the first time.

13

Algorithm 2: AlphaNPI tree search

Input: program index ¢ and a mode (exploration/exploitation)

Initialize LSTM internal state h to O

Initialize execution trace to empty list

Get initial environment observation eg

Build root node n = (eo, %)

while T'rue do

fork=1, ..., ngimu do
Reset the environment in the state corresponding to root node n
Perform one simulation from root node n using Algorithm 1
Back-up values in the tree
Update nodes visit counts

end

Compute tree policy m with visit counts

Choose next action a ~ 7™ (exploration) or ¢ = argmax 7™** (exploitation)

Add action to the execution trace

if trace length > maximum tree depth then

Stop the search;

Return the execution trace and a -1 reward;

mcts

else
if a == STOP then
Stop the search;
Get final reward;
Return the execution trace and the final reward;
else
From root node select the edge corresponding to a;
The outgoing node becomes the new root node n;
end

end
end

Since our approach is single-player, we use a slightly different expression:

Q(e»a) = Z pe/V(e/)»

e’|le;a—e’
Dot = exp (71V(€I)) (7)
‘ > exp(nV(e))’

e’|le,a—e’

where 7 is a temperature coefficient and e’|e, a — €’ indicates that a simulation eventually reached
e’ after taking action a from node e. In two-player MCTS, the expected reward does not depend
only on the chosen action but also on the other player’s response. Due to the stochasticity (typically
adversarial) of this response, it is judicious to choose actions with good Q-values on average. In our
single-player approach, the environment is deterministic, therefore we focus on a highly rewarding
course of actions.

A.5 Final execution trace construction

To compute the final execution trace, we begin at the tree root-node and launch ng,, simulations. We
choose the next action in the execution trace according to the nodes’ visit counts. We compute tree
policy vectors

7_(_mcts (a) — N(ev a’)TQ , (8)

Zb N (e’ b)Tz

where 7 is a temperature coefficient. If the tree is in exploration mode, the next action is sampled
according to this probability vector. If the tree is in exploitation mode, it is taken as the tree policy
argmax. When an action is chosen, the new node becomes the root-node, and ngn,, simulations are
played from this node and so-on until the end of the episode, see Algorithm[2] The final trajectory is
then stored inside a replay buffer.

14

A.6 Prioritized replay buffer

The experience generated by MCTS is stored inside a prioritized replay buffer. This experience takes
the form of tuples (e, i, h, 7™!* 1) where e is an environment observation, 4 the program index, h
the LSTM internal state, 7™¢*¢ the tree policy for the corresponding node and 7 the reward obtained
at the end of the trajectory. The buffer has a maximum memory size ny, ;. When the memory is full,
we replace a past experience with a new one. To construct a training batch, we sample buffer tuples
with probability py,, r, which measures the chance that the tuple results in positive reward. We also
make sure that the buffer does not contain experiences related to tasks for which a positive reward
has not been found yet.

A.7 Network architecture
To adapt the original NPI algorithm to our setting, me make the following modifications:

1. Programs do not accept arguments anymore. The program ACT and its finite set of possible
arguments are replaced by atomic actions, one for each argument.

2. The termination scalar returned by the network is replaced by the action STOP.

3. For simplicity, the program keys matrix has been replaced by a dense layer with identity
activation function.

4. We added policy and value modules to the architecture to obtain an actor-critic architecture
necessary for RL.

In our architecture, the LSTM core has one layer of H neurons. Both the actor and the critic modules
are multi-layer perceptrons with one hidden layer of H/2 neurons and ReLu activation functions.
The encoder is environment dependent, however in the three environments we consider, it is a simple
multi-layer perceptron with one hidden layer.

A.8 Curriculum learning

In the curriculum scheduler, we maintain a maximum program level [, .., which is initialized to
1. At the beginning of each training iteration, the curriculum scheduler is called to determine the
next program to be learned. This program must have a level lower than l,,,,,. Each time a validation
episode for the i-th program is conducted, we record the final reward r and update the i-th program
average reward R; as follows:

R; <— BR; + (1 - B)r 9
where (3 is a user-defined coefficient.
When the minimum average reward R; over the programs of level lower than [,,,, reaches Ay
we increment l,,,4,. To determine which program should be learned next, the curriculum scheduler

computes probabilities over the programs of level lower than its internal maximum level. The i-th
program probability p; is defined as follows

- exp(73¢)
f EkJeXP (T3ck) (10)
C; = l/Rq‘,

where 73 is a temperature coefficient.

B Environments

B.1 Sorting environment

We consider a list of n digits and two pointers that refer to elements in the list. The atomic actions
are moving the pointers and swapping elements at the pointer locations. The level 1 programs may
move both pointers at the same time and conditionally swap elements. Level 2 programs are RESET
and BUBBLE. RESET moves both pointers to the extreme left of the list and BUBBLE conditionally
compares two by two the elements from left to right. BUBBLESORT is level 3 and sorts the list.

15

| program | description [level |
BUBBLESORT | sort the list 3
RESET move both pointers to the extreme left of the list 2
Bubble make one pass through the list 2
RSHIFT move both pointers once to the right 1
LSHIFT move both pointers once to the left 1
COMPSWAP if both pointers are at the same position, move pointer 2 to the left, 1
then swap elements at pointers positions if left element > right element
PTR_2_L move pointer 2 to the left 0
PTR_1_L move pointer 1 to the left 0
PTrR_1 R move pointer 1 to the right 0
PTR_2_R move pointer 2 to the right 0
SWAP swap elements at the pointers positions 0
STop terminates current program 0
Table 4: Program library for the list sorting environment.

| program | pre-condition

BUBBLESORT | both pointers are at the extreme left of the list

RESET both pointers are not at the extreme left of the list

BUBBLE both pointers are at the extreme left of the list

RSHIFT both pointers are not at the extreme right of the list

LSHIFT both pointers are not at the extreme left of the list

COMPSWAP pointer 1 is directly at the left of pointer 2, or they are at the same position

PTR 2 L pointer 2 is not at the extreme left of the list

PTR_1_L pointer 1 is not at the extreme left of the list

PTR_1 R pointer 1 is not at the extreme right of the list

PTR_2_R pointer 2 is not at the extreme right of the list

SWAP the pointers are not at the same position

STOP no condition

Table 5: Program pre-conditions for the list sorting environment.

In this environment, compositionality is mandatory for the tree search to find a way to sort the list
when n is greater than 3. Indeed, BUBBLE requires 3n atomic actions and RESET 2n atomic actions.
When both programs are known, BUBBLESORT simply alternates BUBBLE and RESET 7 times.
Therefore, if BUBBLESORT had to use atomic actions only, it would require n X 3n + n X 2n = 5n2
actions, while it might require only a correct sequence of 2n actions if BUBBLE and RESET programs
have already been learned.

The environment observations have the form e = (v1, va, b1, b1e, bai, bae, b12, bs) where vy and vo
are the one-hot-encoded vectors that represent the digits referenced by the pointers 1 and 2. by, boi
and by e, boe respectively equal 1 if the pointer 1/2 is at the beginning/end of the list and O otherwise.
b12 equals 1 if both pointers are at the same position and 0 otherwise. b, equals 1 if the list is sorted
and O otherwise. The dimension of the observation space is 26. The encoder is composed of one
hidden layer with 100 neurons and a ReLu activation function.

The program library specification appears in Table] with the pre-conditions defined in Table 5]
B.2 Recursive Sorting environment
We consider the same environment and the same programs library than for the non-recursive

case. The only difference is the environment ability to decrease the size of the list when a task
corresponding to recursive program starts and to increase back its size when the task ends.

Learning recursive programs in this environment has the strong advantage to remove the dependency
to execution traces length. Indeed, in the non-recursive case, the size of the execution traces of Reset,

16

Bubble and Bubblesort depends linearly of the list length. Their execution traces size are constant in
the recursive case which facilitates the tree search.

B.3 Tower of Hanoi environment

We consider three pillars and n disks. When a game is started, each pillar is attributed an initial
role that can be source, auxiliary or target. The n disks are initially placed on the source pillar in
decreasing order, the largest one being at the bottom. The goal is to move all disks from the source
pillar to the target pillar, without ever placing a disk on a smaller one. For each pillar, we consider its
initial role and its current role. At the beginning, both are equivalent. Acting consists of switching the
current roles of two pillars and moving a disk from the current source pillar to the current target pillar.

The game starts when the program TOWEROFHANOT is called. If during a game the TOWEROFHANOI
program is called again, i.e. is called recursively, the largest disk is removed and the game restarts.
The roles of the initial pillars become the current roles in the previous game. The reward signal
changes accordingly. When TOWEROFHANOI terminates, the largest disk is placed back at its
previous location and the pillars get the initial roles they had in the previous game.

A
——

T Auxilary pillar T

Source pillar Target pillar

Figure 4: Tower of Hanoi environment illustration.

The combinatorial nature of the Tower of Hanoi puzzle, and in particular its sparse reward signal,
makes this game a challenge for conventional reinforcement learning algorithms. In [Edwards et al.|
2018]], the authors introduced a backward induction, to enable the agent to reason backwards in
time. Through an iterative process, it both explores forwards from the start position and backwards
from the target/goal. They have shown that by endowing the agent with knowledge of the reward
function, and in particular of the goal, it can outperform the standard DDQN algorithm. However,
their experiments were limited to three-disks which they solved perfectly without mentioning any
generalisation performance beyond this number.

The environment observations have the form e = (m1, ma, ms, b, bs) where my, ms and ms are
equal to 1 if respectively the move from the source/auxiliary/source pillar to the auxiliary/target/target
pillar is possible, and 0 otherwise. b,, equals 1 if n = 1 and 0 otherwise. b, equals 1 if the puzzle is
solved, i.e. all the disks are on the target pillar and the target pillar is in its initial location.Therefore,
the observations dimension is 5. The encoder is composed of one hidden layer with 100 neurons and
a ReLu activation function.

The program library specification appears in Table[6] while the pre-conditions are defined in Table

| program | description | level |
TOWEROFHANOI | move n disks from source pillar to target pillar 1
SWAP_S_A source pillar becomes auxiliary and vice-versa 0
SWAP_A_T auxiliary pillar becomes target and vice-versa 0
MOVEDISK move disk from source to target 0
SToP terminates current program 0

Table 6: Program library for Tower of Hanoi.

17

[program | pre-condition

TOWEROFHANOI | all n disks are on the source pillar
SWAP_S_A the number of disks is greater than one
SWAP_A_T the number of disks is greater than one
MOVEDISK the move from source to target is possible
STOP no pre-condition

Table 7: Program pre-conditions for Tower of Hanoi.

The TOWEROFHANOI post-condition is satisfied when n disks have been moved from the initial
source pillar to the initial target pillar and all pillars’ current roles correspond to their initial roles.
When TOWEROFHANOI is called recursively, its pre-condition is tested in the new environment with
the largest disk removed.

C Tower of Hanoi recursion proof

In this section, we prove that once trained AlphaNPI can generalize to Hanoi puzzles with an arbitrary
number of disks.

We remind the reader that the environment observations have the form e = (mq, ma, ms, by, bs)
where m1, mo and mg are equal to 1 if respectively the move from the source/auxiliary/source pillar
to the auxiliary/target/target pillar is possible, and O otherwise. b, is equal to 1 if n = 1 and O
otherwise. by is equal to 1 if the puzzle is solved, i.e. all the disks are on the target pillar and all
pillars are at their initial locations. Otherwise, b, = 0.

The environment is initialized with all disks on the source pillar. Therefore, there are only two
possible initial observations: e} = (1,0, 1,1, 0) if there is only 1 disk, and e} = (1,0,1,0,0) if
n > 2.

In exploitation mode, AlphaNPI has a deterministic behavior, so two identical sequences of observa-
tions necessarily correspond to the exact same sequence of actions.

We assume that the trained agent solves the case n = 1, and that, for n = 2, it solves the Hanoi
puzzle with the following sequence of observations and actions:

- e2=(1,0,1,0,0) — SWAP_A_T

- e?=(1,0,1,0,0) — TOWEROFHANOI
- €2 =(1,0,0,0,0) — SWAP_A_T

- ¢e2=(0,1,1,0,0) - MOVEDISK

- e2=1(0,1,0,0,0) — SWAP_S_A

- e2=(1,0,1,0,0) - TOWEROFHANOI
- e2=1(0,0,0,0,1) — SWAP_S_A

- ¢2=1(0,0,0,0,1) — STOP

For any n > 3, the initial observation is the same: e = 6(2) = (1,0,1,0,0), leading to the

same action SWAP_A_T. The next observation is again (1,0, 1,0, 0), so the second action is also
TOWEROFHANOI. Assuming that the recursive call to TOWEROFHANOI is successful (i.e. the case
n — 1 is solved), it can be verified that the exact same sequence of 8 observations and actions is
generated. Besides, if the recursive call to TOWEROFHANOI is successful, this sequence of 8 actions
actually solves the puzzle. By induction, we conclude that for any n > 2, the agent generates the
same sequence of actions, which solves the puzzle.

This proof shows that by simply observing the behavior of the trained agent on the cases with 1 and
2 disks, we can possibly acquire the certainty that the agent generalizes correctly to any number of
disks. By encouraging agents to try recursive calls during their training (see Section [E.T), AlphaNPI
agents often end up solving the case n = 2 with the above sequence of actions. So, even though this
generalization proof does not apply to every trained agent, it is often a convenient way to verify the
correctness of the agent’s behavior for any number of disks.

18

D More experimental results and comparisons

1.0 A
"c% 0.8 1
B
2 0.6
<]
e
= 0.4 -
°
< 0.2 1
0.0 1
T T T T T T T T T
0 30 60 90 120 150 180 210 240 270
Number of iterations
RSHIFT COMPSWAP RESET — TOTAL
LSHIFT BUBBLE BUBBLESORT

Figure 5: Validation reward evolution during training on the sorting environment for the different
programs in the library. The TOTAL curve corresponds to the sum of all programs rewards divided
by the number of programs.

Figure [5] shows how the progress on non-elementary programs starts once a good performance
has been reached with all the programs of lower level in the hierarchy. It can be observed that,
for the BUBBLESORT program, the performance converges towards almost 100% of success after
approximately 250 iterations, which corresponds to the training on 250 x 20 = 5000 traces (20
episodes are played at each iteration). In the original NPI work, the network was trained on 1216
BUBBLESORT execution traces, which represents much more data as each trace contains also
sub-traces corresponding to all the executed sub-programs, while in our setting traces are limited to
the actions of a single program. Yet, our results exhibit better generalization properties.

With our method, the sizes of instances are limited but random during training. There is no ordering
of instances, as the curriculum uses only the hierarchy of programs. This hierarchy is not explicit in
Cai et al.|[2017] and in|Reed and de Freitas|[2016], but it could be easily inferred from the observed
execution traces. In |Xiao et al.| [2018]], authors report that learning programs via reinforcement
learning was not successful, even with a curriculum. To facilitate the reinforcement learning, they
used an adaptive sampling technique proposed in Reed and de Freitas|[2016]] to fetch example traces
with a frequency proportional to the current prediction error. In our work, traces are never given in
advance, they are generated via interactions between the system and the environment. Since execution
traces somehow require the problem to be already solved, replacing them by a hierarchy of programs
is, in our opinion, a significantly weaker supervision requirement.

E Implementation details

The code has been developed in Python3.6. We used Pytorch as the Deep Learning library. The code
is not based on existing implementations. Our AlphaNPI architecture, the search algorithm and the
environments have been developed from scratch. The code is open-source.

E.1 Recursive programs

When specifying a program library, the user can define recursive programs. In this setting, a program
can call lower level programs and itself. When the program calls itself, a new tree is recursively built
to execute it and everything happens as for any other program call. As we train the recursive programs
on small problem instances, for example on small lists, MCTS is likely to find non-recursive solutions.

19

Hence, when a program is defined as recursive by the user, we encourage the algorithm to find a
recursive execution trace, i.e. an execution in which the program calls itself, by subtracting from
the reward of non-recursive programs a constant 7'pey, —recyr- INOte that this helps the algorithm find
recursive solutions, but does not completely prevent it from finding non-recursive ones.

E.2 Computation resources

We trained AlphaNPI on the three environments with a 12 CPUs laptop with no GPU. With this
computing architecture, training on one environment (Tower of Hanoi or BUBBLESORT) takes
approximately 2 hours.

F Hyper-parameters

| Notation | description [value |

P program embedding dimension 256
H LSTM hidden state dimension 128
S observation encoding dimension 32
Acurr threshold in curriculum learning 0.97
y discount factor to penalize long traces reward 0.97
Nsimu number of simulations performed in the tree in exploration mode | 200/ 150(@
Nsimu—exploit | Number of simulations performed in the tree in exploitation mode

Nhatches number of batches used for training at each iteration 2
Nep number of episodes played at each iteration 20
Nyal number of episodes played for validation 25
Clevel coefficient to encourage choice of higher level programs 3.0
Cpuct coefficient to balance exploration/exploitation in MCTS 0.5
batch size batch size 256
Npu f buffer memory maximum size 2000
Pouf probability to draw positive reward experience in buffer 0.5
lr learning rate 0.0001
Tpen—recur penalty to encourage recursive execution trace 0.9
Ty g-values computation temperature coefficient 1.0
Ty tree policies temperature coefficient 1.3
T3 curriculum temperature coefficient 2.0
B curriculum scheduler moving average 0.99
€d AlphaZero Dirichlet noise fraction 0.25/0.5°
Qg AlphaZero Dirichlet distribution parameter 0.03/0.5°

Table 8: Hyperparameters.

SWe use a greater number of simulations and add more Dirichlet noise to train AlphaNPI on the Tower of
Hanoi than to train it on BUBBLESORT because of the higher complexity of the problem.

20

