
Supplementary Material

A Gaussian Composition Derivation

In this section, we review a proof that the weighted product of k univariate Gaussian primitives
πi(x) = N (µi, σi), with mean µi, variance σi, and weight wi, results in a composite Gaussian
distribution π(x) with mean µ and variance σ given by:

π(x) =
1

Z

k∏
i=1

πi(x)wi = N (µ, σ) (5)

µ =
1∑k
i=1

k∑
i=1

wi
σi
µi, σ =

(
k∑
i=1

wi
σi

)−1

, (6)

where Z is the normalilzation constant that ensures the composite distribution is normalized. We
start by writing out the expression of the product of Gaussian primitives

π(x) =
1

Z

∏
i

πi(x)wi

=
1

Z

∏
i

exp

(
− wi

2σi
(x− µi)2

)

=
1

Z
exp

(
−
∑
i

wi
2σi

(x− µi)2

)
.

(7)

Let σ−i =
∏
j 6=i σj ,

=
1

Z
exp

(
−
∑
i wiσ−i (x− µi)2

2
∏
i σi

)

=
1

Z
exp

(
−
∑
i wiσ−i

(
x2 − 2xµi + µ2

i

)
2
∏
i σi

)

=
1

Z
exp

(
−1

2
∏
i σi

((∑
i

wiσ−i

)
x2 − 2x

(∑
i

wiσ−iµi

)
+
∑
i

wiσ−iµ
2
i

))
.

(8)

Multiplying the exponent by
∑
i wiσ−i∑
i wiσ−i

we get,

=
1

Z
exp

(
−
∑
i wiσ−i

2
∏
i σi

(
x2 − 2x

∑
i wiσ−iµi∑
i wiσ−i

+

∑
i wiσ−iµ

2
i∑

i wiσ−i

))
=

1

Z
exp

(
−1

2

(∑
i

wi
σi

)(
x2 − 2x

∑
i wiσ−iµi∑
i wiσ−i

+

∑
i wiσ−iµ

2
i∑

i wiσ−i

))
.

(9)

Next, we complete the squares

=
1

Z
exp

(
−1

2

(∑
i

wi
σi

)(
x2 − 2x

∑
i wiσ−iµi∑
i wiσ−i

+

(∑
i wiσ−iµi∑
i wiσ−i

)2

−
(∑

i wiσ−iµi∑
i wiσ−i

)2

+

∑
i wiσ−iµ

2
i∑

i wiσ−i

))
=

1

Z
exp

(
−1

2

(∑
i

wi
σi

)((
x−

∑
i wiσ−iµi∑
i wiσ−i

)2

−
(∑

i wiσ−iµi∑
i wiσ−i

)2

+

∑
i wiσ−iµ

2
i∑

i wiσ−i

))

=
1

Z
exp

−1

2

(∑
i

wi
σi

)(x− 1∑
i
wi
σi

∑
i

wi
σi
µi

)2

−
(∑

i wiσ−iµi∑
i wiσ−i

)2

+

∑
i wiσ−iµ

2
i∑

i wiσ−i

 .

(10)

13

Finally, since −
(∑

i wiσ−iµi∑
i wiσ−i

)2

+
∑
i wiσ−iµ

2
i∑

i wiσ−i
is independent of x, it can be subsumed into the

normalization constant Z, resulting in the desired expression for the composition distribution

π(x) =
1

Z
exp

−1

2

(∑
i

wi
σi

)(
x− 1∑

i
wi
σi

∑
i

wi
σi
µi

)2

= N

 1∑
i
wi
σi

∑
i

wi
σi
µi,

(∑
i

wi
σi

)−1
 .

(11)

B Additional Experiments

A comprehensive set of learning curves for all transfer tasks are available in Figure 9 and Table 2
summarizes the performance of the final policies. Note that the hierarchical model selects a new
primitive at the start of each walk cycle, approximately 30 environment timesteps, and as such
operates at a lower frequency than the other models. Instead of recording the number of policy
steps, we record the number of environment timestep. This corresponds to the amount of physical
interactions that the agent requires to learn a policy, which is often the bottleneck for simulated and
real world domains.

To analyze the effects of the number of primitives used, we trained MCP models with k = 4, 8, 16, 32
primitives. Figure 4 illustrates the learning curves with varying numbers of primitives. We do
not observe a noticeable performance difference between 4 and 8 primitives. But as the number
of primitives increases, learning efficiency appears to decrease. In the case of 32 primitives, the
dimensionality of w is larger than the dimensionality of the original action space for the humanoid
(28D), which diminishes some of the benefits of the dimensionality reduction provided by the
primitives.

When transferring primitives to new tasks, we train a new gating function for composing the primitives
for the new task while keeping the parameters of the primitives fixed. To test the effects of this design
decision, we compare the performance of policies on transfer tasks where only the gating function is
trained for the new task (Train Gating), and policies where both the gating function and primitives
are trained jointly on the transfer tasks (Train Gating + Prims). Figure 8 compares learning curves for
fixing or finetuning the primitives on various transfer tasks. Overall, the performance of fixing vs
finetuning the primitives lead to similar performance on most tasks. Fixing the primitives appears to
lead to more significant improvements on harder tasks, such as those with the humanoid. Since no
reference motions are used during training on the transfer tasks, finetuning the primitives tend to lead
to more unnatural behaviors.

Figure 8: Learning curves comparing policies where only the gating function is trained for the
transfer tasks, while keeping the parameters of the primitives fixed, and policies where both the gating
function and primitives are trained for the new tasks. Overall, these different design decisions show
similar performance on most tasks.

C Reference Motions

During pre-training, the primitives are trained by imitating a corpus of reference motions. The biped
and humanoid share the same set of reference motions, consisting of mocap clips of walking and
turning motions collected from a publicly available database [38]. In total, 230 seconds of motion

14

Figure 9: Learning curves of the various models when applied to transfer tasks. MCP improves
learning speed and performance on challenging tasks (e.g. carry and dribble), and is the only method
that succeeds on the most difficult task (Dribble: T-Rex).

Environment Scratch Finetune Hierarchical Option-Critic MOE Latent Space MCP (Ours)
Heading: Biped 0.927± 0.032 0.970± 0.002 0.834± 0.001 0.952± 0.012 0.918± 0.002 0.970± 0.001 0.976± 0.002
Heading: Humanoid 0.965± 0.010 0.975± 0.008 0.681± 0.006 0.958± 0.001 0.857± 0.018 0.969± 0.002 0.970± 0.003
Heading: T-Rex 0.840± 0.003 0.953± 0.004 − 0.830± 0.004 0.672± 0.011 0.686± 0.003 0.932± 0.007
Carry: Biped 0.027± 0.035 0.324± 0.014 0.001± 0.002 0.346± 0.011 0.013± 0.013 0.456± 0.031 0.575± 0.032
Dribble: Biped 0.072± 0.012 0.651± 0.025 0.546± 0.024 0.046± 0.008 0.073± 0.021 0.768± 0.012 0.782± 0.008
Dribble: Humanoid 0.076± 0.024 0.598± 0.030 0.198± 0.002 0.058± 0.007 0.043± 0.021 0.751± 0.006 0.805± 0.006
Dribble: T-Rex 0.065± 0.032 0.074± 0.011 − 0.098± 0.013 0.070± 0.017 0.115± 0.013 0.781± 0.021
Holdout: Ant 0.951± 0.093 0.885± 0.062 − − − 0.745± 0.060 0.812± 0.030

Table 2: Performance statistics of different models on transfer tasks.

data is used to train the biped and humanoid. To retarget the humanoid reference motions to the biped,
we simply removed extraneous joints in the upper body (e.g. arms and head). The reference motions
for the T-Rex consist of artist generated keyframe animations. Due to the cost of manually authored
animations, the T-Rex is trained with substantially less motion data than the other characters. In total,
11 seconds of motion data is used to train the T-Rex. The T-Rex motions include 1 forward walk, 2
left turns, and 2 right turns. Despite having access to only a small corpus of reference motions, MCP
is nonetheless able to learn a flexible set of primitives that enables the complex T-Rex character to
perform challenging tasks.

D Transfer Tasks

Heading: First we consider a simple heading task, where the objective is for the character to move
in a target heading direction θ̂t. The heading is changed every timestep by applying a random pertur-
bation θ̂t = θ̂t−1 +∇θt sampled from a uniform distribution∇θt ∼ Uniform(−0.15rad, 0.15rad).

15

Property Biped Humanoid T-Rex
Links 12 13 20
Total Mass (kg) 42 45 54.5
Height (m) 1.34 1.62 1.66
Degrees-of-Freedom 23 34 55
State Features 105 196 261
Action Parameters 17 28 49

Table 3: Properties of the characters. Table 4: Learning curves of MCP with
different numbers of primitives k.

The goal gt = (cos(θ̂t),−sin(θ̂t)) encodes the heading as a unit vector along the horizontal plane.
The reward rt encourages the character to follow the target heading, and is computed according to

rt = exp
(
−4 (û · vcom − v̂)

2
)
.

Here, (·) denotes the dot product, vcom represents the character’s center-of-mass (COM) velocity
along the horizontal plane, v̂ = 1m/s represents the target speed that the character should travel in
along the target direction û = (cos(θ̂t),−sin(θ̂t)).

Carry: To evaluate our method’s performance on long horizon tasks, we consider a mobile ma-
nipulation task, where the goal is for the character to move a box from a source location to a target
location. The task can be decomposed into a sequence of subtasks, where the character must first
pickup the object from the source location, before carrying it to the target location and placing it
on the table. To enable the character to carry the box, when the character makes contact with the
box at the source location with a specific link (e.g. torso), a virtual joint is created that attaches
the box to the character. Once the box has been placed at the target location, the joint is detached.
The box has a mass of 5kg and is initialized to a random source location at a distance of [0m, 10m]
from the character. The target is initialized to a distance [0m, 10m] from the source. The goal
gt = (xtar, qtar, xsrc, qsrc, xb, qb, vb, ωb) encodes the target table’s position xtar and orientation
qtar as represented as a quaternion, the source table’s position xsrc and orientation qsrc, and box’s
position xb, orientation qb, linear velocity vb, and angular velocity ωb. The reward function consists
of terms that encourage the character to move towards the box, as well as to move the box towards
the target,

rt = wcvrcvt + wcprcpt + wbvrbvt + wbprbpt ,

rcvt encourages the character to move towards the box, while rcpt encourages the character to stay
near the box,

rcvt = exp
(
−1.5 min (0, ub · vcom − v̂)

2
)

rcpt = exp
(
−0.25 ||xcom − xb||2

)
.

ub represents the unit vector pointing in the direction of the box with respect to the character’s COM,
vcom is the COM velocity of the character, v̂ = 1m/s is the target speed, xcom is the COM position,
and xb is the box’s position. All quantities are expressed along the horizontal plane. Similarly, rbvt
and rbpt encourages the character to move the box towards the target,

rbvt = exp
(
−1 min (0, utar · vb − v̂)

2
)

rbpt = exp
(
−0.5 ||xb − xtar||2

)
.

utar represents the unit vector pointing in the direction of the target with respect to the box, vb is the
velocity of the box, and xtar is the target location. The weights for the reward terms are specified
according to (wcv, wcp, wbv, wbp) = (0.1, 0.2, 0.3, 0.4).

16

Dribble: This task poses a challenging combination of locomotion and object manipulation, where
the goal is for the character to move a soccer ball to a target location. Since the policy does not have
direct control over the ball, it must rely on complex contact dynamics in order to manipulate the
movement of the ball while also maintaining balance. The ball is randomly initialized at a distance
of [0m, 10m] from the character, and the target is initialized to a distance of [0m, 10m] from the
ball. The goal gt = (xtar, xb, qb, vb, ωb) encodes the target location xtar, and ball’s position xb,
orientation qb, linear velocity vb, and angular velocity ωb. The reward function for this task follows a
similar structure as the reward for the carry task, consisting of terms that encourage the character to
move towards the ball, as well as to move the ball towards the target,

rt = wcvrcvt + wcprcpt + wbvrbvt + wbprbpt ,

rcvt encourages the character to move towards the ball, while rcpt encourages the character to stay
near the ball,

rcvt = exp
(
−1.5 min (0, ub · vcom − v̂)

2
)

rcpt = exp
(
−0.5 ||xcom − xb||2

)
.

ub represents the unit vector pointing in the direction of the ball with respect to the character’s COM,
vcom is the character’s COM velocity, v̂ = 1m/s is the target speed, xcom is the COM position, and
xb is the ball’s position. Similarly, rbvt and rbpt encourages the character to move the ball towards the
target,

rbvt = exp
(
−1 min (0, utar · vb − v̂)

2
)

rbpt = exp
(
−0.5 ||xb − xtar||2

)
.

utar represents the unit vector pointing in the direction of the target with respect to the ball, vb is the
velocity of the ball, and xtar is the target location. The weights for the reward terms are specified
according to (wcv, wcp, wbv, wbp) = (0.1, 0.1, 0.3, 0.5).

Holdout: The holdout task is based on the standard Gym Ant-v3 environment. The goal
gt =

(
cos(θ̂), sin(θ̂)

)
specifies a two-dimensional vector that represents the target direction θ̂ that the

character should travel in. The reward function is similar to that of the standard Ant-v3 environment:

rt = wforwardrforward
t + whealthyrhealthy

t + wcontrolrcontrol
t + wcontactrcontact

t ,

but the forward reward rforwardt is modified to reflect the target direction û =
(

cos(θ̂), sin(θ̂)
)

:

rforward
t = û · vcom

where vcom represents the character’s COM velocity along the horizontal plane. The weights of the
reward terms are specified according to

(
wforward, whealthy, wcontrol, wcontact

)
= (1.0, 1.0, 0.5, 0.0005).

During pre-training, the policies are trained with directions θ̂ ∈ [0, 3/2π]. During transfer, the
policies are trained with directions sampled from a holdout set θ̂ ∈ [3/2π, 2π].

E Model Setup

All models are trained using proximal policy optimization (PPO) [37], except for the option-critic
model, which follows the update rules proposed by Bacon et al. [2]. A discount factor of γ = 0.95
is used during pre-training, and γ = 0.99 is used for the transfer tasks. The value functions for all
models are trained using multi-step returns with TD(λ) [40]. The advantages for policy gradient
calculations are computed using the generalized advantage estimator GAE(λ) [36]. We detail the
hyperparmater settings for each model in the following sections.

E.1 MCP

The MCP model follows the architecture detailed in Figure 3. The value function V (s, g) is modeled
with a fully-connected network with 1024 and 512 hidden units, followed by a linear output unit.
Hyperparameter settings are available in Table 5.

17

Parameter Biped Humanoid T-Rex
k Primitives 8 8 8
π Stepsize (Pre-Train) 2× 10−5 1× 10−5 1× 10−5

π Stepsize (Transfer) 5× 10−5 5× 10−5 5× 10−5

V Stepsize 1× 10−2 1× 10−2 1× 10−2

Batch Size 4096 4096 4096
Minibatch Size 256 256 256
SGD Momentum 0.9 0.9 0.9
TD(λ) 0.95 0.95 0.95
GAE(λ) 0.95 0.95 0.95
PPO Clip Threshold 0.02 0.02 0.02

Table 5: MCP model hyperparamters.
E.2 Scratch

As a baseline, we train a model from scratch for each transfer task. The policy network consists of two
fully-connected layers with 1024 and 512 ReLU units, followed by a linear output layer that outputs
the mean of a Gaussian distribution µ(s, g). The covariance matrix is represented by a fixed diagonal
matrix Σ = diag(σ1, σ2, ...) with manually specified values for σi. The value function follows a
similar architecture, but with a single linear output unit. Hyperparameter settings are available in
Table 6.

Parameter Biped Humanoid T-Rex
π Stepsize 2.5× 10−6 2.5× 10−6 1× 10−6

V Stepsize 1× 10−2 1× 10−2 1× 10−2

Batch Size 4096 4096 4096
Minibatch Size 256 256 256
SGD Momentum 0.9 0.9 0.9
TD(λ) 0.95 0.95 0.95
GAE(λ) 0.95 0.95 0.95
PPO Clip Threshold 0.02 0.02 0.02

Table 6: Scratch model hyperparamters.

E.3 Finetuning

The finetuning model is first pre-trained to imitate a reference motion, and then finetuned on the
transfer tasks. The network architecture is identical to the scratch model. Pre-training is done using
the motion imitation approach proposed by Peng et al. [32]. When transferring to tasks with additional
goal inputs g that are not present during training, the networks are augmented with additional inputs
using the input injection method from Berseth et al. [3], which adds additional inputs to the network
without modifying the initial behavior of the model. Hyperparameter settings are available in Table 7.

Parameter Biped Humanoid T-Rex
π Stepsize 2.5× 10−6 2.5× 10−6 1× 10−6

V Stepsize 1× 10−2 1× 10−2 1× 10−2

Batch Size 4096 4096 4096
Minibatch Size 256 256 256
SGD Momentum 0.9 0.9 0.9
TD(λ) 0.95 0.95 0.95
GAE(λ) 0.95 0.95 0.95
PPO Clip Threshold 0.02 0.02 0.02

Table 7: Finetune model hyperparamters.

18

E.4 Hierarchical

The hierarchical model consists of a gating function w(s, g) that specifies the probability of activating
a particular low-level primitive πi(a|s) from a discrete set of primitives. To enable the primitives to be
transferable between tasks with different goal representations, the hierarchical model follows a similar
asymmetric architecture, where the primitives have access only to the state. During pre-training, each
primitive is trained to imitate a different reference motion. All experiments use the same set of 7
primitives, including 1 primitive trained to walk forwards, 3 primitives trained to turn right at different
rates, and 3 primitives trained to turn left at different rates. Once the primitives have been trained,
their parameters are kept fixed, while a gating function is trained to sequence the primitives for each
transfer task. The gating function selects a new primitive every walk cycle, which has a duration
of approximately 1 second, the equivalent of about 30 timesteps. Each primitive is modeled using
a separate network with a similar network architecture as the scratch model. The gating function
is modeled with two fully-connected layers consisting of 1024 and 512 ReLU units, followed by a
softmax output layer that specifies the probability of activating each primitive. The gating function is
also trained with PPO. Hyperparameter settings are available in Table 8.

Parameter Biped Humanoid
k Primitives 7 7
π Stepsize 1× 10−3 1× 10−3

V Stepsize 1× 10−2 1× 10−2

Batch Size 4096 4096
Minibatch Size 256 256
SGD Momentum 0.9 0.9
TD(λ) 0.95 0.95
GAE(λ) 0.95 0.95
PPO Clip Threshold 0.02 0.02

Table 8: Hierarchical model hyperparamters.

E.5 Option-Critic

The option-critic model adapts the original implementation from Bacon et al. [2] to continuous action
spaces. During pre-training, the model is trained end-to-end with the motion imitation tasks. Unlike
the hierarchical model, the options (i.e. primitives) are not assigned to a particular skills, and instead
specialization is left to emerge automatically from the options framework. To enable transfer of
options between different tasks, we also use an asymmetric architecture, where the intra-option
policies πω(a|s) and termination functions βω(s) receive only the state as input. The policy over
options πΩ(ω|s, g), as defined by the option value function QΩ(s, g, ω), has access to both the state
and goal. When transferring the options to new tasks, the parameters of πω and βω are kept fixed,
and a new option value function QΩ is trained for the new task. We have also experimented with
finetuning πω and βω on the transfer tasks, but did not observe noticeable performance improvements.
Furthermore, joint finetuning often results in catastrophic, where the options degrade to producing
highly unnatural behaviours. Therefore, all experiments will have πω and βω fixed when training on
the transfer tasks. Hyperparameter settings are available in Table 9.

Parameter Biped Humanoid T-Rex
k Options 8 8 8
π Stepsize 2.5× 10−6 2.5× 10−6 1× 10−6

βω Stepsize 2.5× 10−6 2.5× 10−6 1× 10−6

QΩ Stepsize 1× 10−2 1× 10−2 1× 10−2

Batch Size 256 256 256
SGD Momentum 0.9 0.9 0.9
ξ Termination Cost 0.01 0.01 0.01

Table 9: Option-critic model hyperparamters.

19

E.6 Mixture-of-Experts

The mixture-of-experts (MOE) model is implemented according to Equation 1. The policy consists
of a set of primitives πi(a|s) and gating function w(s, g) that specifies the probability of activating
each primitive. To facilitate transfer, the primitives only receives the state as input, while the gating
function receives both the state and the goal. The primitives are first pre-trained with the motion
imitation task, and when transferring to new tasks, the parameters of the primitives are kept fixed,
while a new gating function is trained for each transfer task. Therefore, MOE is analogous to MCP
where only a single primitive is activated at each timestep. The gating function and the primitives are
modeled by separate networks. The network for the gating function consists of 1024 and 512 ReLU
units, followed by a softmax output layer that specifies wi(s, g) for each primitive. The primitives
are modeled jointly by a single network consisting of 1024 and 512 ReLU units, followed separate
linear output layers for each primitives that specifies the parameters of a Gaussian. As such, the MOE
model’s action distribution is modeled as a Gaussian mixture model. Hyperparameter settings are
available in Table 10.

Parameter Biped Humanoid T-Rex
k Primitives 8 8 8
π Stepsize 1× 10−5 5× 10−6 2× 10−6

V Stepsize 1× 10−2 1× 10−2 1× 10−2

Batch Size 4096 4096 4096
Minibatch Size 256 256 256
SGD Momentum 0.9 0.9 0.9
TD(λ) 0.95 0.95 0.95
GAE(λ) 0.95 0.95 0.95
PPO Clip Threshold 0.02 0.02 0.02

Table 10: Mixture-of-experts model hyperparamters.

20

E.7 Latent Space

The latent space model follows a similar architecture as Merel et al. [26], where an encoder q(wt|gt)
first maps the goal gt to a distribution over latent variables wt. wt is then sampled from the latent
distribution and provided to the policy as input π(at|st, wt). The latent distribution is modeled as
an IID Gaussian q(wt|gt) = N (µq(gt),Σq(gt)) with mean µq(wt) and diagonal covariance matrix
Σq(gt). Similar to VAEs, we include a term in the objective that regularizes the latent distribution
against a standard Gaussian prior p0(wt) = N (0, I),

arg max
π,q

Eτ∼pπ,q(τ)

[
T∑
t=0

γtrt

]
+ β Egt∼p(gt) [DKL [q(wt|gt)||p0(wt)]] (12)

Here, β is a manually specified coefficient for the KL regularizer. The encoder and policy are trained
end-to-end using the reparameterization trick [20].

The latent space model follows a similar pre-training procedure as the MCP model, where the model
is trained to imitate a corpus of reference motions with the goal gt = (ŝt+1, ŝt+2) specifying the
target states for the next two timesteps. The encoder is therefore trained to embed short motion
clips into the latent space. After pre-training, the parameters of π are frozen, and a new encoder
q′(wt|st, gt) is trained for each transfer task. Following the architectures from previous work [16, 26],
the encoder used during pre-training only receives the goal gt as input, while the encoder used in the
transfer tasks receives both the state st and goal gt as input, since additional information from the
state may be necessary when performing the new tasks.

The policy network follows a similar architecture as the ones used by the finetuning model, consisting
of two hidden with 1024 and 512 ReLU units followed by a linear output layer. The encoder used
during pre-training consists of 256 and 128 hidden units, followed by a linear output layer for µq(gt)
and Σq(gt). The size of the encoding is set to be 8D, the same dimensionality as the weights of the
gating function from the MCP model. The encoder used in the transfer tasks is modeled by a larger
network with 1024 and 512 hidden units. Hyperparameter settings are available in Table 11.

Parameter Biped Humanoid T-Rex
w Latent Size 8 8 8
π Stepsize (Pre-Train) 5× 10−6 2.5× 10−6 1× 10−6

π Stepsize (Transfer) 5× 10−5 5× 10−5 5× 10−5

V Stepsize 1× 10−2 1× 10−2 1× 10−2

Batch Size 4096 4096 4096
Minibatch Size 256 256 256
SGD Momentum 0.9 0.9 0.9
TD(λ) 0.95 0.95 0.95
GAE(λ) 0.95 0.95 0.95
PPO Clip Threshold 0.02 0.02 0.02
β KL Regularizer 1× 10−4 1× 10−4 1× 10−4

Table 11: Latent space model hyperparamters.

21

	Gaussian Composition Derivation
	Additional Experiments
	Reference Motions
	Transfer Tasks
	Model Setup
	MCP
	Scratch
	Finetuning
	Hierarchical
	Option-Critic
	Mixture-of-Experts
	Latent Space

