- 1 Dear all reviewers: Thank you very much for taking your time to review our paper and providing us valuable and
- ² insightful comments. Below, we answer all of the questions.
- 3
- **R1** Q1) It wasn't totally clear to me how you ensure $T + \Delta T$ remains a valid transition matrix throughtout training. 5 Also, is ΔT initialized to zero matrix, or randomly?
- 6 A1) We ensure $T + \Delta T$ to be a valid transition matrix by first projecting their negative entries to be zero and then 7 performing row normalization. About ΔT , we initialize it to be a zero matrix in our experiments.
- 8 **R1** Q2) Can this approach take advantage of a small clean set?
- 9 A2) Yes. If a small clean set is available, it is helpful. It can be used to (1) better initialize the transition matrix, (2)
- ¹⁰ better validate the slack variable ΔT , and to (3) fine-tune the deep network.
- R1 Q3) It would be interesting to also include results using a subset of the WebVision dataset to see if the method
 works there too.
- A3) Due to the limited time, we do experiments on a subset of WebVision dataset. Specifically, we create the
- training data by sampling a hundred classes from the thousand classes and sampling 1,600 images for each class. 10%
- ¹⁵ of the training data is held out for validation. We use the total of 5,000 images from the sampled 100 classes in the ¹⁶ original validation set as the test set. We compare "Forward", "Reweight", "Forward-R", "Reweight-R" on this subset.
- original validation set as the test set. We compare "Forward", "Reweight", "Forward-R", "Reweight-R" on this subset.
 We use a ResNet-50 model pretrained on Imagenet. The results are 80.48% (Forward), 81.08% (Reweight), 85.12%
- We use a ResNet-50 model pretrained on Imagenet. The results are 80.48% (Forward), 81.08% (Reweight), 85.12%
 (Forward-R), 85.42% (Reweight-R). We can see that "Reweight" and "Reweight-R" achieve better results and the
- (Forward-R), 85.42% (Reweight-R). We can see that "Reweight" and "Reweight-R" achieve better results and the revision technique greatly boost the performance. Due to the limited time, we only compared with "Foward" and
- ¹⁹ revision technique greatly boost the performance. Due to the limited time, we only compared with ' ²⁰ "Reweighting" (in our setting, those two methods consistently work better than other baselines).
- **R1** Q4) Discuss the relationship with "Multiclass learning with partially corrupted labels" (Wang et al)
- 22 A4) Thank you for the valuable feedback. They both employ the importance reweighting technique. However, their
- ²³ approach requires anchor points to estimate the transition matrix; while the proposed approach is designed to release
- the strong requirement of anchor points.
- ²⁵ **R2** Q5) More experiments on real data.
- A5) We perform our experiments on the subset (metioned in A3) of WebVision using four models. The results of
- experiments are 80.48% (Forward), 81.08% (Reweight), 85.12% (Forward-R), 85.42% (Reweight-R). More details can be found in A3.
- **R3** O6) Please discuss the model performance on MNIST with more label noise.
- 30 A6) We raise the noise rates to be 60%, 70%, 80%. Other experiment settings are unchanged. The results are presented
- in Tables 1 and 2. We can see that the proposed model outperforms the baselines more significantly as the noise rate
- grows. Due to the limited time, we only compared with "Foward" and "Reweighting" (in our setting, those two methods
- consistently work better than other baselines).
- **R3** Q7) Discuss the potential extension of the proposed approach.
- A7) We can extend our approach to mixture proportion estimation [27] and learning with complementary label.

Table 1: Mean test accuracy (in %, \pm std dev).				
	Sym-60%	Sym-70%	Sym-80%	
Forward-A	97.10±0.08	$\begin{array}{c} 96.06{\pm}0.41 \\ 96.42{\pm}0.35 \end{array}$	91.46±1.03	
Forward-A-R	97.65±0.11		91.77±0.22	
Reweight-A	97.39±0.27	96.25±0.26	93.79±0.52	
Reweight-A-R	97.83±0.18	97.13±0.08	94.19±0.45	

36

Table 2: Mean test accuracy (in %, \pm std dev), anchor points removed.

	Sym-60%	Sym-70%	Sym-80%
Forward-N/A Forward-N/A-R	96.82±0.14 96.99±0.16	$\begin{array}{c} 94.61{\pm}0.28\\ 95.02{\pm}0.17\end{array}$	$\begin{array}{c} 85.95{\pm}1.01\\ 86.04{\pm}1.03\end{array}$
Reweight-N/A Reweight-N/A-R	97.01±0.20 97.81±0.12	95.94±0.14 96.59±0.15	91.59±0.70 91.91±0.65

- "-A" means the transition matrix is estimated by using the instance X with highest estimated $P(\bar{Y}|X)$ (which are likely to be anchor points).
- "-N/A" means instances with high estimated P(Y|X) are removed from the dataset.
- "-R" means that the transition matrix used is revised by a revision ΔT .
- The highest accuracy in each column is bold faced.