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Abstract

In this paper, we propose one novel model for point cloud semantic segmentation,
which exploits both the local and global structures within the point cloud based on
the contextual point representations. Specifically, we enrich each point represen-
tation by performing one novel gated fusion on the point itself and its contextual
points. Afterwards, based on the enriched representation, we propose one novel
graph pointnet module, relying on the graph attention block to dynamically com-
pose and update each point representation within the local point cloud structure.
Finally, we resort to the spatial-wise and channel-wise attention strategies to exploit
the point cloud global structure and thereby yield the resulting semantic label for
each point. Extensive results on the public point cloud databases, namely the
S3DIS and ScanNet datasets, demonstrate the effectiveness of our proposed model,
outperforming the state-of-the-art approaches. Our code for this paper is available
at https://github.com/fly519/ELGS.

1 Introduction

The point cloud captured by 3D scanners has attracted more and more research interests, especially for
the point cloud understanding tasks, including the 3D object classification [13, 14, 10, 11], 3D object
detection [21, 27], and 3D semantic segmentation [25, 13, 14, 23, 10]. 3D semantic segmentation,
aiming at providing class labels for each point in the 3D space, is a prevalent challenging problem.
First, the points captured by the 3D scanners are usually sparse, which hinders the design of one
effective and efficient deep model for semantic segmentation. Second, the points always appear
unstructured and unordered. As such, the relationship between the points is hard to be captured and
modeled.

As points are not in a regular format, some existing approaches first transform the point clouds into
regular 3D voxel grids or collections of images, and then feed them into traditional convolutional
neural network (CNN) to yield the resulting semantic segmentation [25, 5, 22]. Such a transformation
process can somehow capture the structure information of the points and thereby exploit their
relationships. However, such approaches, especially in the format of 3D volumetric data, require
high memory and computation cost. Recently, another thread of deep learning architectures on point
clouds, namely PointNet [13] and PointNet++ [14], is proposed to handle the points in an efficient
and effective way. Specifically, PointNet learns a spatial encoding of each point and then aggregates
all individual point features as one global representation. However, PointNet does not consider the
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33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

https://github.com/fly519/ELGS


local structures. In order to further exploit the local structures, PointNet++ processes a set of points
in a hierarchical manner. Specifically, the points are partitioned into overlapping local regions to
capture the fine geometric structures. And the obtained local features are further aggregated into
larger units to generate higher level features until the global representation is obtained. Although
promising results have been achieved on the public datasets, there still remains some opening issues.

First, each point is characterized by its own coordinate information and extra attribute values, i.e.
color, normal, reflectance, etc. Such representation only expresses the physical meaning of the point
itself, which does not consider its neighbouring and contextual ones. Second, we argue that the local
structures within point cloud are complicated, while the simple partitioning process in PointNet++
cannot effectively capture such complicated relationships. Third, each point labeling not only depends
on its own representation, but also relates to the other points. Although the global representation is
obtained in PointNet and PointNet++, the complicated global relationships within the point cloud
have not been explicitly exploited and characterized.

In this paper, we propose one novel model for point cloud semantic segmentation. First, for each
point, we construct one contextual representation by considering its neighboring points to enrich its
semantic meaning by one novel gated fusion strategy. Based on the enriched semantic representations,
we propose one novel graph pointnet module (GPM), which relies on one graph attention block
(GAB) to compose and update the feature representation of each point within the local structure.
Multiple GPMs can be stacked together to generate the compact representation of the point cloud.
Finally, the global point cloud structure is exploited by the spatial-wise and channel-wise attention
strategies to generate the semantic label for each point.

2 Related Work

Recently, deep models have demonstrated the feature learning abilities on computer vision tasks
with regular data structure. However, due to the limitation of data representation method, there are
still many challenges for 3D point cloud task, which is of irregular data structures. According to
the 3D data representation methods, existing approaches can be roughly categorized as 3D voxel-
based [5, 25, 22, 7, 9], multiview-based [18, 12], and set-based approaches [13, 14].

3D Voxel-based Approach. The 3D voxel-based methods first transform the point clouds into regular
3D voxel grids, and then the 3D CNN can be directly applied similarly as the image or video. Wu et
al. [25] propose the full-voxels based 3D ShapeNets network to store and process 3D data. Due to
the constraints of representation resolution, information loss are inevitable during the discretization
process. Meanwhile, the memory and computational consumption are increases dramatically with
respect to the resolution of voxel. Recently, Oct-Net [16], Kd-Net [7], and O-CNN [22] have been
proposed to reduce the computational cost by skipping the operations on empty voxels.

Multiview-based Approach. The multiview-based methods need to render multiple images from the
target point cloud based on different view angle settings. Afterwards, each image can be processed by
the traditional 2D CNN operations [18]. Recently, the multiview image CNN [12] has been applied
to 3D shape segmentation, and has obtained satisfactory results. The multiview-based approaches
help reducing the computational cost and running memory. However, converting the 3D point cloud
into images also introduce information loss. And how to determine the number of views and how to
allocate the view to better represent the 3D shape still remains as an intractable problem.

Set-based Approach. PointNet [13] is the first set-based method, which learns the representation
directly on the unordered and unstructured point clouds. PointNet++ [14] relies on the hierarchical
learning strategy to extend PointNet for capturing local structures information. PointCNN [10] is
further proposed to exploit the canonical order of points for local context information extraction.

Recently, there have been several attempts in the literature to model the point cloud as structured
graphs. For example, Qi et al. [15] propose to build a k-nearest neighbor directed graph on top of point
cloud to boost the performance on the semantic segmentation task. SPGraph [8] is proposed to deal
with large scale point clouds. The points are adaptively partitioned into geometrically homogeneous
elements to build a superpoint graph, which is then fed into a graph convolutional network (GCN) for
predicting the semantic labels. DGCNN [24] relies on the edge convolution operation to dynamically
capture the local shapes. RS-CNN [11] extends regular grid CNN to irregular configuration, which
encodes the geometric relation of points to achieve contextual shape-aware learning of point cloud.
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Figure 1: Our proposed model for the point cloud semantic segmentation, consisting of three fully-
coupled components. The point enrichment not only considers the point itself but also its contextual
points to enrich the corresponding semantic representation. The feature representation relies on
conventional encoder-decoder architecture with lateral connections to learn the feature representation
for each point. Specifically, the GPM is proposed to dynamically compose and update each point
representation via a GAB module. For the prediction, we resort to both channel-wise and spatial-wise
attentions to exploit the global structure for the final semantic label prediction for each point.

These approaches mainly focus on the point local relationship exploitation, and neglect the global
relationship.

Unlike previous set-based methods that only consider the raw coordinate and attribute information of
each single point, we pay more attentions on the spatial context information within neighbor points.
Our proposed context representation is able to express more fine-grained structural information. We
also rely on one novel graph pointnet module to compose and update each point representation within
the local point cloud structure. Moreover, the point cloud global structure information is considered
with the spatial-wise and channel-wise attention strategies.

3 Approach

The point cloud semantic segmentation aims to take the 3D point cloud as input and assign one
semantic class label for each point. We propose one novel model for handling this point cloud
semantic segmentation, as shown in Fig. 1. Specifically, our proposed network consists of three
components, namely, the point enrichment, the feature representation, and the prediction. These three
components fully couple together, ensuring an end-to-end training manner.

Point Enrichment. To make accurate class prediction for each point within the complicated point
cloud structure, we need to not only consider the information of each point itself but also its
neighboring or contextual points. Different from the existing approaches, relying on the information
of each point itself, such as the geometry, color, etc., we propose one novel point enrichment layer to
enrich each point representation by taking its neighboring or contextual points into consideration.
With the incorporated contextual information, each point is able to sense the complicated point cloud
structure information. As will be demonstrated in Sec. 4.4, the contextual information, enriching the
semantic information of each point, can help boosting the final segmentation performance.

Feature Representation. With the enriched point representation, we resort to the conventional
encoder-decoder architecture with lateral connections to learn the feature representation for each
point. To further exploit local structure information of the point cloud, the GPM is employed in the
encoder, which relies on the GAB to dynamically compose and update the feature representation of
each point within its local regions. The decoder with lateral connections works on the compacted
representation obtained from the encoder, to generate the semantic feature representation for each
point.

Prediction. Based on the obtained semantic representations, we resort to both the channel-wise
and spatial-wise attentions to further exploit the global structure of the point cloud. Afterwards, the
semantic label is predicted for each point.
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3.1 Point Enrichment

The raw representation of each point is usually its 3D position and associated attributes, such as color,
reflectance, surface normal, etc. Existing approaches usually directly take such representation as
input, neglecting its neighboring or contextual information, which is believed to play an essential
role [17] for characterizing the point cloud structure, especially from the local perspective. In this
paper, besides the point itself, we incorporate its neighboring points as its contextual information to
enrich the point semantic representation. With such incorporated contextual information, each point
is aware of the complicated point cloud structure information.

Figure 2: The point enrichment process relies on our
proposed gated fusion strategy to enrich the point repre-
sentation by considering the neighbouring and contex-
tual points of each point.

As illustrated in Fig. 2, a point cloud con-
sists of N points, which can be represented as
{P1, P2, ..., PN}, with Pi ∈ RCf denoting the
attribute values of the i-th point, such as posi-
tion coordinate, color, normal, etc. To charac-
terize the contextual information for each point,
k-nearest neighbor set Ni within the local re-
gion centered on i-th point are selected and con-
catenated together, where the contextual repre-
sentation Ri ∈ RkCf of the given point i is as
follows:

Ri = ‖
j∈Ni

Pj . (1)

For each point, we have two different representa-
tions, specifically the Pi andRi. However, these
two representations are of different dimensions and different characteristics. How to effectively fuse
them together to produce one more representative feature for each point remains an open issue. In
this paper, we propose a novel gated fusion strategy. We first feed Pi into one fully-connected (FC)
layer to obtain a new feature vector P̃i ∈ RkCf . Afterwards, the gated fusion operation is performed:

gi = σ(wiRi + bi), P̂i = gi � P̃i,
gRi = σ(wRi P̃i + bRi ), R̂i = gRi �Ri,

(2)

where wi, wRi ∈ RkCf×kCf and bi, bRi ∈ RkCf are the learnable parameters. σ is the non-linear
sigmoid function. � is the element-wise multiplication. The gated fusion aims to mutually absorb
useful and meaningful information of Pi and Ri. And the interactions between Pi and Ri are updated,
yielding P̂i and R̂i. As such, the i-th point representation is then enriched by concatenating them
together as P̂i ‖ R̂i. For easing the following introduction, we will re-use Pi to denote the enriched
representation of the i-th point.

3.2 Feature Representation

Based on the enriched point representation, we rely on one traditional encoder-decoder architecture
with lateral connections to learn the feature representation of each point.

3.2.1 Encoder

Although the enriched point representation has somewhat considered the local structure information,
the complicated relationships within points, especially from the local perspective need to be further
exploited. In order to tackle this challenge, we propose one novel GPM in the encoder, which aims to
learn the composition ability between points and thereby more effectively capture the local structural
information within the point cloud.

Graph Pointnet Module. Same as [14], we first use the sampling and grouping layers to divide
the point set into several local groups. Within each group, the GPM is used to exploit the local
relationships between points, and thereby update the point representation by aggregating the point
information within the local structure.
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Figure 3: The architecture of our proposed GPM, which
stacks MLP and GAB to exploit the point relationships within
the local structure.

As illustrated in Fig. 3, the proposed
GPM consists of one multi-layer percep-
tron (MLP) and GAB. The MLP in conven-
tional PointNet [13] and PointNet++ [14]
independently performs on each point to
mine the information within the point it-
self, while neglects the correlations and
relationships among the points. In order
to more comprehensively exploit the point
relationship, we rely on the GAB to aggre-
gate the neighboring point representations
and thereby updated the point representation.

For each obtained local structure obtained by the sampling and grouping layers, GAB [20] first
defines one fully connected undirected graph to measure the similarities between any two points with
such local structures. Given the output feature map G ∈ RCe×Ne of the MLP layer in the GPM
module, we first linearly project each point to one common space through a FC layer to obtain new
feature map Ĝ ∈ RCe×Ne . The similarity αij between point i and point j is measured as follows:

αij = Ĝi · Ĝj . (3)

Afterwards, we calculate the influence factor of point j on point i:

βij = softmaxj(LeakyReLU(αij)), (4)

where βij is regarded as the normalized attentive weight, representing how point j relates to point i.
The representation of each point is updated by attentively aggregating the point representations with
reference to βij :

G̃i =

Ne∑
j=1

βijĜj . (5)

It can be observed that the GAB dynamically updates the local feature representation by referring to
the similarities between points and captures their relationships. Moreover, in order to preserve the
original information, the point feature after MLP is concatenated with the updated one via one skip
connection through a gated fusion operation, as shown in Fig. 3.

Please note that we can stack multiple GPMs, as shown in Fig. 3, to further exploit the complicated
non-linear relationships within each local structure. Afterwards, one max pooling layer is used to
aggregate the feature map into a one-dimensional feature vector, which not only lowers the dimen-
sionality of the representation, thus making it possible to quickly generate compact representation of
the point cloud, but also help filtering out the unreliable noises.

3.2.2 Decoder

For decoder, we use the same architecture as [14]. Specifically, we progressively upsample the
compact feature obtained from the encoder until the original resolution. Please note that for preserving
the information generated in the encoder as much as possible, lateral connections are also used.

3.3 Prediction

After performing the feature representation, rich semantic representation for each point is obtained.
Note that our previous operations, including contextual representation and feature representation, only
mine the point local relationships. However, the global information is also important, which needs to
be considered when determining the label for each individual point. For the semantic segmentation
task, two points departing greatly in space may belong to the same semantic category, which can be
jointly considered to mutually enhance their feature representations. Moreover, for high-dimensional
feature representations, the inter-dependencies between feature channels also exist. As such, in order
to capture the global context information for each point, we introduce two attention modules, namely
spatial-wise and channel-wise attentions [4] for modeling the global relationships between points.

Spatial-wise Attention. To model rich global contextual relationships among points, the spatial-wise
attention module is employed to adaptively aggregate spatial contexts of local features. Given the
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feature map F ∈ RCd×Nd from the decoder, we first feed it into two FC layers to obtain two new
feature maps A and B, respectively, where {A,B} ∈ RCd×Nd . Nd is the number of points and Cd is
number of feature channel. The normalized spatial-wise attentive weight vij measures the influence
factor of point j on point i as follows:

vij = softmaxj(Ai ·Bj), (6)

Afterwards, the feature map F is fed into another FC layer to generate a new feature map D ∈
RCd×Nd . The output feature map F̂ ∈ RCd×Nd after spatial-wise attention is obtained:

F̂i =

Nd∑
j=1

(vijDj) + Fi. (7)

As such, the global spatial structure information is attentively aggregated with each point representa-
tion.

Channel-wise Attention. The channel-wise attention performs similarly with the spatial-wise
attention, with the channel attention map explicitly modeling the interdependencies between channels
and thereby boosting the feature discriminability. Similar as the spatial-wise attention module, the
output feature map F̃ ∈ RCd×Nd is obtained by aggregating the global channel structure information
with each channel representation.

After summing the feature maps F̂ and F̃, the semantic label for each point can be obtained with
one additional FC layer. With such attention processes from the global perspective, the feature
representation of each point is updated. As such, the complicated relationships between the points
can be comprehensively exploited, yielding more accurate segmentation results.

4 Experiment

4.1 Experiment Setting

Dataset. To evaluate the performance of proposed model and compare with state-of-the-art, we
conduct experiments on two public available datasets, the Stanford 3D Indoor Semantics (S3DIS)
Dataset [1] and ScanNet Dataset[2]. The S3DIS dataset comes from real scan of the indoor envi-
ronment, including 3D scans of Matterport scanners from 6 areas. There are 271 rooms divided by
room. ScanNet is a point cloud dataset with scanned indoor scenes. It has 22 categories of semantic
tags, with 1513 scenes. ScanNet contains a wide variety of spaces. Each point is annotated with an
instance-level semantic category label.

Table 1: Results of S3DIS dataset on “Area 5”
and over 6 fold in terms of OA and mIoU. † and
‡ indicate that the PointNet performances are
directly copied from [8] and [3], respectively.
∗ indicates that the PointNet++ performances
are produced with the publicly available code.

Test Area Method OA mIoU

Area5

PointNet† [13] - 41.09
SEGCloud [19] - 48.92
RSNet [6] - 51.93
PointNet++∗ [14] 86.43 54.98
SPGraph [8] 86.38 58.04
Ours 88.43 60.06

6 fold

PointNet‡ [13] 78.5 47.6
SGPN [23] 80.8 50.4
Engelmann et al. [3] 81.1 49.7
A-SCN [26] 81.6 52.7
SPGraph [8] 85.5 62.1
DGCNN [24] 84.3 56.1
Ours 87.6 66.3

Implementation Details. The number of neighbor-
ing points k in contextual representation is set as 3,
where the farthest distance for neighboring point is
fixed to 0.06. For feature extraction, a four-layer en-
coder is used, where the spatial scale of each layer is
set as 1024, 256, 64, and 16, respectively. The GPM
is enabled in the first two layers of the encoder, to
exploit the local relationships between points. The
maximum training epochs for S3DIS and ScanNet
are set as 120 and 500, respectively.

Evaluation Metric. Two widely used metrics,
namely overall accuracy (OA) and mean intersection
of union (mIoU), are used to measure the semantic
segmentation performance. OA is the prediction accu-
racy of all points. IoU measures the ratio of the area
of overlap to the area of union between the ground
truth and segmentation result. mIoU is the average of
IoU over all categories.

Competitor Methods. For S3DIS dataset, we com-
pare our method with PointNet [13], PointNet++ [14],
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Figure 4: Qualitative results from the S3DIS dataset. All the walls are removed for better visualiza-
tion. From top to bottom are the result of the Point Cloud, PointNet++, Ours, and Ground Truth,
respectively. The segmentation results of our proposed model is closer to the ground truth than that
of PointNet++.

SEGCloud [19], RSNet [6], SPGraph [8], SGPN [23], Engelmann et al. [3], A-SCN [26] and
DGCNN [24]. For ScanNet dataset, we compare with 3DCNN [2], PointNet [13], PointNet++ [14],
RSNet [6] and PointCNN [10].

Table 2: The segmentation results of S3DIS dataset in terms of IoU for each category.

Test Area Method ceiling floor wall beam column window door table chair sofa bookcase board clutter

Area5

PointNet [13]in [8] 88.80 97.33 69.80 0.05 3.92 46.26 10.76 52.61 58.93 40.28 5.85 26.38 33.22
SEGCloud [19] 90.06 96.05 69.86 0.00 18.37 38.35 23.12 75.89 70.40 58.42 40.88 12.96 41.60
RSNet [6] 93.34 98.36 79.18 0.00 15.75 45.37 50.10 65.52 67.87 22.45 52.45 41.02 43.64
PointNet++ [14] 91.41 97.92 69.45 0.00 16.27 66.13 14.48 72.32 81.10 35.12 59.67 59.45 51.42
SPGraph [8] 89.35 96.87 78.12 0.00 42.81 48.93 61.58 84.66 75.41 69.84 52.60 2.10 52.22
Ours 92.80 98.48 72.65 0.01 32.42 68.12 28.79 74.91 85.12 55.89 64.93 47.74 58.22

6fold

PointNet [13] in [3] 88.0 88.7 69.3 42.4 23.1 47.5 51.6 42.0 54.1 38.2 9.6 29.4 35.2
Engelmann et al. [3] 90.3 92.1 67.9 44.7 24.2 52.3 51.2 47.4 58.1 39.0 6.9 30.0 41.9
SPGraph [8] 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9
Ours 93.7 95.6 76.9 42.6 46.7 63.9 69.0 70.1 76.0 52.8 57.2 54.8 62.5

4.2 S3DIS Semantic Segmentation

We perform semantic segmentation experiments on the S3DIS dataset to evaluate our performance
in indoor real-world scene scans and perform ablation experiments on this dataset. Same as the
experimental setup in PointNet [13], we divide each room evenly into several 1m3 cube, with each
uniformly sampleing 4096 points.

Same as [13, 3, 8], we perform 6-fold cross validation with micro-averaging. In order to compare
with more methods, we also report the performance on the fifth fold only (Area 5). The OA and
mIoU results are summarized in Table 1. From the results we can see that our algorithm performs
better than other competitor methods in terms of both OA and mIoU metrics.

Besides, the IoU values of each category are summarized in Table 2, it can be observed that our
proposed method achieves the best performance for several categories. For simple shapes such
as “floor” and “ceiling”, each model performs well, with our approach performing better. This
is mainly due to that the prediction layer of our propose method incorporates the global structure
information between points, which enhances the point representation in the flat area. For categories
with complex local structure, such as “chair” and “bookcase”, our model shows the best performance,
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Figure 5: Qualitative results from the S3DIS dataset. From top to bottom are the result of the Point
Cloud, PointNet++, Ours, and Ground Truth, respectively. The segmentation results of our proposed
model is closer to the ground truth than that of PointNet++.

since we consider the contextual representation to enhance the relationship between each point and its
neighbors, and use the GPM module to exploit the local structure information. However, the “window”
and “board” categories are more difficult to distinguish from the “wall”, as they are close to the “wall”
in position and appear similarly. The key to distinguishing them is to find subtle shape differences
and detect the edges. It can be observed that our model performs well on the “window” and “board”
categories. In order to further demonstrate the effectiveness of our model, some qualitative examples
from S3DIS dataset are provided in Fig. 4 and Fig. 5, demonstrating that our model can yield more
accurate segmentation results.

4.3 ScanNet Semantic Segmentation Table 3: The segmentation
results of ScanNet dataset in
terms of both OA and mIoU.

Method OA mIoU

3DCNN [2] 73.0 -
PointNet [13] 73.9 -
PointNet++ [14] 84.5 38.28
RSNet [6] - 39.35
PointCNN [10] 85.1 -

Ours 85.3 40.6

For the ScanNet dataset, the number of scenes trained and
tested is 1201 and 312, same as [14, 10]. We only use its XYZ
coordinate information. The results are illustrated in Table 3.
Compared with other competitive methods, our proposed model
achieves better performance in terms of both the OA and mIoU
metrics.

4.4 Ablation Study

To validate the contribution of each module in our framework,
we conduct ablation studies to demonstrate their effectiveness.
Detailed experimental results are provided in Table 4.

Table 4: Ablation studies in terms of OA and
mIoU.

Method OA mean IoU

Ours(w/o CR) 87.91 56.15
Ours(w/o GPM) 87.74 57.84
Ours(w/o AM) 87.90 58.67
Ours(CR with concatenation) 88.21 59.14

Ours 88.43 60.06

Contextual Representation Module. After remov-
ing the contextual representation module in the input
layer (denoted as w/o CR), we can see that the mIoU
value dropped from 60.06 to 56.15, as shown in Ta-
ble 4. Based on the results of each category in Table 5,
some categories have significant drops in IoU, such
as “column”, “sofa”, and “door”. The contextual
representation can enhance the point feature of the
categories with complex local structures. We also
replace the gating operation in the contextual repre-
sentation with a simple concatenation operation. Due to the inequality of the two kinds of information,
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Table 5: Ablation studies and analysis in terms of IoU for each category.

Method ceiling floor wall beam column window door table chair sofa bookcase board clutter

Ours(w/o CR) 92.62 98.69 69.65 0.00 7.81 66.02 21.92 74.64 84.38 29.94 62.53 66.52 55.19
Ours(w/o AM) 92.30 97.91 70.98 0.00 21.40 65.43 31.58 75.16 83.26 48.80 62.68 56.84 56.45

Ours(w/o GPM) 92.17 98.75 72.29 0.00 14.89 72.30 19.70 75.78 84.61 36.48 62.73 68.01 54.25

Ours 92.80 98.48 72.65 0.01 32.42 68.12 28.79 74.91 85.12 55.89 64.93 47.74 58.22

the OA and mIoU decreases. Thus, the proposed gating operation is useful for fusing the information
of the point itself and its neighborhood.

Graph Pointnet Module. The segmentation performance of our model without GPM module
(denoted as w/o GPM) also significantly drops, which indicates that both the proposed GPM and CR
are important for performance improvement. Specifically, without GPM, the mIoU of the categories,
such as “column” and “sofa” drops significantly.

Attention Module. Removing the attention module (denoted as w/o AM) decreases both OA and
mIoU. Moreover, the performances on categories with large flat area, such as “ceiling”, “floor”,
“wall”, and “window”, significantly drop. As aforementioned, the attention module aims to mine
the global relationship between points. Two points within the same category may with large spatial
distance. With the attention module, the features of these points are mutually aggregated.

Table 6: Performances of DGCNN with
our proposed module in terms of OA.

Model OA

DGCNN 84.31
DGCNN+CR 85.35
DGCNN+GPM 84.90
DGCNN+AM 85.17
DGCNN+CR+GPM+AM 86.07

We further incorporate the proposed CR, AM, and GPM together
with DGCNN [24] for point cloud semantic segmentation, with
the performances illustrated in Table 6. It can be observed that
CR, AM, and GPM can help improving the performances, demon-
strating the effectiveness of each module.

Model Complexity. Table 7 illustrates the model complexity
comparisons. The sample sizes for all the models are fixed as
4096. It can be observed that the inference time of our model
(28ms) is less than the other competitor models, except for Point-
Net (5.3ms) and PointNet++ (24ms). And the model size seems to be identical with other models
except PointCNN, which presents the largest model.

Table 7: Model complexity

Model Time (ms) Size (M)

PointNet 5.3 1.17
DGCNN 42.0 0.99
PointNet++ 24.0 0.97
RSNet 60.4 6.92
PointCNN 34.4 11.51
Ours 28.0 1.04

Robustness under Noise. We further demonstrate the robustness
of our proposed model with respect to PointNet++. As for scaling,
when the scaling ratio are 50%, the OA of our proposed model
and PointNet++ on segmentation task decreases by 3.0% and
4.5%, respectively. As for rotation, when the rotation angle is π

10 ,
the OA of our proposed model and PointNet++ on segmentation
task decreases by 1.7% and 1.0%, respectively. As such, our
model is more robust to scaling while less robust to rotation.

5 Conclusion

In this paper, we proposed one novel network for point cloud semantic segmentation. Different
with existing approaches, we enrich each point representation by incorporating its neighboring and
contextual points. Moreover, we proposed one novel graph pointnet module to exploit the point
cloud local structure, and rely on the spatial-wise and channel-wise attention strategies to exploit the
point cloud global structure. Extensive experiments on two public point cloud semantic segmentation
datasets demonstrating the superiority of our proposed model.
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