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Abstract

This paper develops a prediction-based prescriptive model for optimal decision
making that (i) predicts the outcome under each action using a robust nonlinear
model, and (ii) adopts a randomized prescriptive policy determined by the predicted
outcomes. The predictive model combines a new regularized regression technique,
which was developed using Distributionally Robust Optimization (DRO) with
an ambiguity set constructed from the Wasserstein metric, with the K-Nearest
Neighbors (K-NN) regression, which helps to capture the nonlinearity embedded in
the data. We show theoretical results that guarantee the out-of-sample performance
of the predictive model, and prove the optimality of the randomized policy in terms
of the expected true future outcome. We demonstrate the proposed methodology
on a hypertension dataset, showing that our prescribed treatment leads to a larger
reduction in the systolic blood pressure compared to a series of alternatives. A
clinically meaningful threshold level used to activate the randomized policy is also
derived under a sub-Gaussian assumption on the predicted outcome.

1 Introduction

Suppose we are given a discrete set of available actions [M] = {1,..., M}, and our goal is to choose
m € [M] such that the future outcome y is optimized. We are interested in finding the optimal
decision with the aid of auxiliary data x € R? that are concurrently observed, and correlated with
the uncertain outcome y. A main challenge with learning from observational data lies in the lack of
counterfactual information. One solution is to estimate/predict the effects of counterfactual policies
by learning an action-dependent predictive model that groups the training samples based on their
actions, and fits a model in each group between the outcome y and the feature x. The predictions
from this composite model can be used to determine the optimal action to take. The performance of
the prescribed decision hinges on the quality of the predictive model. We have observed that (i) there
are often “outliers” in the data, especially in the medical applications motivating this work, caused
by recording errors, missing values, and factors not captured in the data, and (ii) the underlying
relationship we try to learn is usually nonlinear and its parametric form is not known a priori. To deal
with these issues, a nonparametric robust learning procedure is in need.

Motivated by the observation that individuals with similar features x would have similar outcomes y
if they were to take the same action, we propose a predictive model that makes predictions based
on the outcomes of similar individuals/neighbors in each group of the training set. It is a nonlinear
and nonparametric estimator which constructs locally linear (constant) curves based on the similarity
between individuals. To find reasonable neighbors, we need to accurately identify the set of features
that are predictive of the outcome. We propose a regularized regression procedure for this task in
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consideration of the outliers that could potentially bias the estimation. Our prescriptive methodology
is established on the basis of a regression informed K-Nearest Neighbors (K-NN) model [2] that
evaluates the importance of features through regularized regression, and estimates the outcome by
averaging over the neighbors identified by a regression coefficients-weighted distance metric.

The regularized regression has its root in Distributionally Robust Linear Regression (DRLR) with a
Wasserstein metric-based uncertainty set [13]. The K-NN model builds locally linear (and globally
nonlinear) predictions using information from neighbors, accounting for the non-linearity that is
not captured by DRLR. Furthermore, it is easy to estimate and is efficient to solve. Our framework
uses both parametric (DRLR) and nonparametric (K-NN) predictive models, producing robust
predictions immunized against outliers and capturing the underlying non-linearity in the data. It
is more information-efficient and more interpretable than the vanilla K-NN. We then develop a
randomized prescriptive policy that chooses each action m, whose predicted outcome is ¢, (x), with

probability e~&9m(x) / Zj\il e~ (%) for some pre-specified positive constant £. As we will see,
this randomized strategy leads to a nearly optimal future outcome by an appropriate choice of &.

In recent years there has been an emerging interest in combining ideas from machine learning
with operations research to develop a framework that uses data to prescribe optimal decisions
[4, 16, 10, 22]. Current research has focused on applying machine learning methodologies to predict
the counterfactuals, based on which optimal decisions can be made. Local learning methods such
as K-NN [2], LOESS (LOcally Estimated Scatterplot Smoothing) [15], CART (Classification And
Regression Trees) [12], and Random Forests [11] have been studied [4, 7, 8, 17, 9]. Extensions to
continuous and multi-dimensional decision spaces with observational data were considered in [5].
To prevent overfitting, [6] proposed two robust prescriptive methods based on Nadaraya-Watson
and nearest-neighbors learning. Deviating from such a predict-optimize paradigm, [3] presented
a new bandit algorithm based on the LASSO to learn a model of decision rewards conditional on
individual-specific covariates.

Our method constructs a locally linear estimator of the future outcome through learning a robust
metric in the feature space. Different from the classical metric learning works (e.g., [20]), we solve a
downstream decision making problem by utilizing the information filtered by the learned metric. [20]
focuses on the computational aspect of solving the metric regression problem. By contrast, we focus
on developing a novel method for the optimal decision making problem rather than improving the
algorithmic efficiency. Moreover, [20] studies only the regression problem, whereas we considered a
richer framework of combining regression with a randomized prescriptive policy.

Our problem is closely related to contextual bandits [14, 1, 23, 25] where an agent learns a sequence
of decisions conditional on the contexts, with the aim of maximizing its cumulative reward. It has
recently found applications in learning personalized treatment for chronic diseases from mobile
health data [24, 26, 27]. However, in this work, we learn the interaction between the context and
rewards in each action group across similar individuals, not over the history of the same individual as
in contextual bandits. Contextual bandits are most suitable for learning sequential strategies through
repeated interactions with the environment, which requires a substantial amount of historical data
for exploring the reward function and exploiting the promising actions. By contrast, our method
does not require the availability of historical data, but instead learns the payoff function from similar
individuals. This can be viewed as a different type of exploration, i.e., when little information can
be acquired for the past states of an individual, investigating the behavior of similar subjects may
be beneficial. This is essential for learning from Electronic Health Records (EHRs) available in the
hospital, which do not include frequent patient data. For instance, we may observe a very sparse
treatment history for some patients, and the lag between patient visits is usually large.

Our method is similar to K-NN regression with an Ordinary Least Squares (OLS)-weighted metric
used in [7] to learn the optimal treatment for type-2 diabetic patients. The key differences lie in
that: (i) we adopt a robustified regression procedure that is immunized against outliers and is thus
more stable and reliable; (ii) we propose a randomized prescriptive policy that adds robustness to
the methodology, whereas [7] deterministically prescribed the treatment with the best predicted
outcome; (iii) we establish theoretical guarantees on the quality of the predictions and the prescribed
actions, and (iv) the prescriptive rule in [7] was activated when the improvement of the recommended
treatment over the standard of care exceeded a certain threshold whereas our method looks into the
improvement over the previous regimen. This distinction makes our algorithm applicable in the
scenario where the standard of care is unknown or ambiguous. Further, we derive a closed-form



expression for the threshold level, which greatly improves the computational efficiency compared to
[7] where a threshold was selected by cross-validation.

The remainder of the paper is organized as follows. In Sec. 2, we introduce the DRLR+K-NN model
and present the performance guarantees on its predictive power. Sec. 3 develops the randomized
prescriptive policy and proves its optimality in terms of the expected true outcome. Experimental
results using real medical (EHR) data are presented in Sec. 4. We conclude the paper in Sec. 5.

2 DRLR Informed K-Nearest Neighbors

Given a feature vector x € RP, and a set of M available actions [M], our goal is to predict the future
outcome ¥, (x) under each possible action m € [M]. Assume the following relationship between
the features and the outcome:

Ym = X'/r?z/@:n + hm(xm) + €m,

where prime denotes transpose, (X, ¥ ) represents the feature-outcome pair of an individual taking
action m; [3;, is the coefficient that captures the linear trend; h,,(-) is a Lipschitz continuous
nonlinear function (whose form is unknown) describing the nonlinear fluctuation in y,,,, and €,, is
the noise term with zero mean and standard deviation 7),,, that expresses the intrinsic randomness of
Y and is assumed to be independent of x,,,.

Suppose for each m € [M], we observe N,, training samples (Xmi, Ymi),¢ = 1,..., Ny, that
take action m. To estimate 3),, we adopt the robust formulation that was developed in [13]. A
robust model could lead to an improved out-of-sample performance, and accommodate the potential
nonlinearity that is not explicitly revealed by the linear coefficients 3., thus resulting in a more
accurate assessment of the features. The DRLR model developed in [13] minimizes the worst-case
absolute loss within a distributional ambiguity set defined using the Wasserstein metric [18, 19] that
contains all possible perturbations on the distribution of the data. The robustness is achieved through
hedging against this family of distributions. The learning problem is formulated as:

inf sup E@» [lym - X;nﬂm”a (1)
B Qum €Qm

where Q,,, is the probability distribution of (X, ¥, ), belonging to some set €2,,, defined as:

Qi 2 {Qu € M(Z) : W1 (Qu, Py.) <7},

where Z,, is the set of all possible values for (X, ym); M(Zy,) is the space of probability distri-
butions supported on Z,,; P N,, 1s the uniform empirical distribution on the N,,, observed samples
(Xmis Ymi)s® = 1,..., N3 r, is a pre-specified parameter indicating the amount of ambiguity
allowed; and W1 (Qy,,, P N,, ) is the order-1 Wasserstein distance between Q,,, and P N,, defined as:

fec

Wl(@maﬁbNm Sup{/ f zm Qm dzm / f zm IEDN (dzm)}

where z,, = (X, Ym ), and L is the space of all Lipschitz continuous functions satisfying | f (1) —
f(zm2)| § Hzml - Zm2||23 vzmlaznﬂ € Zm-

With N,,, independently and identically distributed samples (X;i, Ymi),¢ = 1,..., N, [13] has
shown that problem (1) can be reformulated as:

WL 7" .

lnf Z [Ymi = XmiB| + 1| (=B Dll2- 2
=1

Solvmg Eq. (2) gives us a robust estimator of the linear regression coefficient 3;,,, which we denote

by ,6 . The elements of ﬁ measure the relative significance of the predictors in determmmg the
outcome y,,. We feed the estimator into the nonlinear non-parametric K-NN regression model, by

considering the following Bm-weighted metric:

llx — sz’HWm = \/(X - Xmi)lwm(x — Xmi)s 3



where W, is a diagonal matrix with elements (5m1)?, . . ., (Bmp)?, With B the i-th element of 3,,,.
For a new test sample x, within each group m, we find its K,,, nearest neighbors using the weighted
distance function (3). The predicted future outcome for x under action m, denoted by ¥, (x), is
computed as the average response among the K, nearest neighbors, i.e.,

K
1

Im (%) = 2= D Um(): )
moi=1

where y,,,(;) is the response of the i-th closest sample to x within group m. Eq. (4) computes a K-NN
estimate of the future outcome by using the linear regression coefficients weighted distance function,
which can be viewed as a locally smoothed estimator in the neighborhood of x. The intuition for
using the ,@m-weighted metric is to amplify the weight of features that are most predictive of y,,
and downweight the unimportant ones. As a result, the selected samples are close to x in the most
relevant features, and their corresponding response values should serve as a good approximation.
Notice that Eq. (4) treats all neighbors equally by using the same weight. An alternative is to take
a distance-weighted average of the responses of neighbors; we have numerically tried this strategy
on our medical datasets in Section 4, but we find that its effect is not significantly different from
the strategy where a uniform average of the responses is taken. We also want to point out that the
following theoretical analysis can be easily adapted to the weighted average response prediction.

We next show that Eq. (4) provides a good prediction in the sense of Mean Squared Error (MSE).
The bias-variance decomposition implies the following:

MSE(Qm(x)|x, Xmirt =1,..., Nm) = E[(g}m(x) — ym(x))Q.X, Xmi bt =1,..., Nm}
K

1 ; ) )
=E |:(K Z(x;n(z)/gm + hm(xm(i)) + Gm(i)) - (Xlﬁm + hm(X) + 6m)>
m i=1

X, Xmis Vi:|

(&)

K

. 1 . 2
= (X8 + hon(30) = 7= D (KB + o (om)) )+ 22+,

) 2 n
= (E ;((X — Xp(i)) By 4 hin (x) — hm(xm(i)))) + K, + 02,

where y,,(x) is the true future outcome on x if action m is prescribed; and Xm(i)s €m(s) are the
feature vector and the noise term corresponding to the ¢-th closest sample to x within group m,
respectively. The third equality comes from the fact that the error term is independent of the features.
For each m € [M], we aim to provide a probabilistic bound for 5 w.r.t. the measure of the N,
training samples. By examining the first term of the last line of (5), we see that for MSE to be small,

the following three conditions need to be satisfied: (i) |3, — B, ||2 is small; (ii) ||x — Xm(i) v, 18
small fori = 1,..., Kp; and (iii) hp (X) — A (X)) is small fori = 1,. .., K,,,. Below we state
the assumptions that are needed to establish the result.

Assumption A ||(Xy, Ym)|l2 < Ry, a.s..
Assumption B ||(—03,,,1)|]2 < By

Assumption C For some set A(B3;,) = cone{v| ||(=8},,1) + V|2 < (=85, 1)|l2} N SPT! and
some positive scalar o, where SP™1 is the unit sphere in the (p + 1)-dimensional Euclidean space,

inf VvZn,Z! v>a
veAg;) T

where Z, = [Zm1 -+ ZmN,, | IS the matrix with columns z,1, . . ., ZmnN,,, With Zpm; = (Xmi, Ymi)-

Assumption D (x,,,y,,) is a centered sub-Gaussian random vector, i.e., it has zero mean and
satisfies the following condition:

|||(Xmaym)|”¢2 = (Xmaym)/u|”¢2 < pm-

sup ||
uesptt



Assumption E The covariance matrix of (X, ym) has bounded positive eigenvalues. Set T, =
E[(XTHJ ym) (XWH yﬂl),]; then:

0< A7n0 £ Amin(]:‘m) S )\max(:[‘m) = A7n1 < 00.

To see the validity of the above assumptions, notice that with standardized data, Assumptions A and B
are easily satisfied. Assumptions C, D, and E bound the variance of (x, y) in terms of the eigenvalues
of its covariance matrix and its sub-Gaussian norm. (If the variance in the data is prohibitively high,
the samples would contain little information to learn from.) Due to limited space, we defer the

intermediate results that bound || 3%, — 3,,||2 and ||x — Xm(i)llvy,, to the supplementary. But those
results will be used as the foundation to derive the bound on the MSE of ¢, (x).

Theorem 2.1 Suppose we are given N,, i.i.d. copies of (Xp,Ym), denoted by (Xpmi,Ymi),t =
1,..., N,,, where x,,, has independent, centered coordinates, and

_ 2 2
cov(X,,) = diag (aml, e ,amp).
Given a fixed predictor x = (x1, . .., xp), and some scalar W,,, assuming

1. hy(+) is Lipschitz continuous with a Lipschitz constant Ly, on the metric spaces (X, || - ||2)
and (Y, | - |), where Xy, Vi, are the domain and codomain of h,, (-), respectively.

2. w2, > B2, ?Zl(afnj + 23), where By, is specified in Assumption B.

3 [(@mij — ) — (ofnj + I§)| < Ty, Yi,j, where x,,;; is the j-th component of X

4. The coordinates of any feasible solution to (2) have absolute values greater than or equal to
some positive number b,,, (dense estimators).

Under Assumptions A, B, C, D, E, when Ny, > n,,, with probability at least 6., — I1_p, ,(Ny, —
K., + 1, K,;,) w.r.t. the measure of samples,

T Lyon \? | 2
+\/‘me+B> +K7n

m m

E [ (s (0) i (0, 31 = L N ] < ( 2 )

2 2
Win Tm — Ly Wiy N 2
and for any a > (71)"1 + /D + yEm ) + g,

_ _ 2 2
(mem + \/ﬁwm + L@wm) + N + ,'72
b"n m m m
IP’((;&m(x)—ym(x))2 Za‘x,xmi,izl,...,Nm) < B K ;
a
@)

where I, (-, -) is the regularized incomplete beta function, and

2 )
O-’NL

o2 T w’an/Bgn - Zj(o-gnj + 333)

Pmo =1 —eXp<—mg

with

Om = zp: var((:c,m-j - xj)Q), g(u) = (1 +u)log(l+ u) — u.

Jj=1

The notations Ny, , O, and T, come from a simplified version of Theorem 3.11 in [13], which states
that when the sample size N,, > n,, with probability at least 6,

||ﬁ:n - ﬂmHQ < T

The parameters Ny, , O, Ty, are related to the sub-Gaussian norm of (X, Ym ), the eigenvalues of
the covariance matrix of (X, Ym ), and the geometric structure of the true regression coefficient (3,

Remark 2.1 The expectation in (6) and the probability in (7) are w.r.t. the measure of the noise €.
Thm. 2.1 essentially says that for any given x, with a high probability (w.r.t. the measure of samples),
the prediction is close to the true future outcome. The prediction bias is determined by the accuracy



of the linear coefficient estimate, the similarity between the individual in query and its K nearest
neighbors, the dimensionality of data, and the smoothness of the regression hypothesis.

Remark 2.2 The dependence on b,,, in the upper bound provided by (6) is due to the fact that W,
has diagonal elements Bfnj ,j =1,...,p, which are assumed to be at least b2,. If we multiply W,
by a very large number, the neighbor selection criterion is not affected, since the relative significance
of the predictors stays unchanged, but the b,,, appearing in (6) would be replaced by a very large
number, diminishing the effect of the first term in the parenthesis, at the price of increasing B,, and
Wy, Which in turn has an effect on the number of neighbors that are needed. It might be interesting to
explore this 1mphclt trade- off and find the optimal W, to achieve the smallest MSE. For simplicity,
we just use W,,, = diag(32 . 7ﬁmp) in this work.

mly .
Remark 2.3 We offered similar insights to [20] for the generalization bounds. Theorem 5.1 in [20]
provided a risk bound that depends on the empirical risk (reflected in 7,,, and w,,, of our bound), the
dimensionality of data (p), and the smoothness of the regression hypothesis (L, ).

3 Prescriptive Policy Development

We now proceed to develop the prescriptive policy with the aim of minimizing the future outcome. A
natural idea is to take the action that yields the minimum predicted outcome. To allow for flexibility in
exploring alternatives that have a comparable performance, and also to correct for potential prediction
errors that might mislead the ranking of actions, we propose a randomized policy that prescribes
each action with a probability inversely proportional to its exponentiated predicted outcome. It can
be viewed as an offline Hedge algorithm [21] that increases the robustness of our method through
exploration. Specifically, given an individual with a feature vector x, and her predicted future outcome
under each action m, denoted by ¢,,(x), we consider a randomized policy that chooses action m
with probability e ~¢9m () / ZJA; e~£9:) with & being some pre-specified positive constant. We
would like to explore properties of this policy in terms of its expected frue outcome.

Theorem 3.1 Given any fixed predictor x € RP, denote its predicted and true future outcome under
action m by §pm,(x) and y,, (x), respectively. Assume that we adopt a randomized strategy that

prescribes action m with probability e~ ¢9m () / Z]Ail e89i (), for some & > 0. Assume 9, (x) and
Ym (X) are non-negative VYm. For any k € [M], the expected true outcome of this policy satisfies:

*Eym(X) My

M
1 _51/771 (x) 5 log M
+5(M +Zze—sy(x>ym< 9)+ H

m=1

®)

Theorem 3.1 says that the expected true outcome of the randomized policy is no worse than the true
outcome of any action k plus two components, one accounting for the gap between the predicted
outcome under k and the average predicted outcome, and the other depending on the parameter &.
Thinking about choosing k = arg min,, y,,(x), if §x(x) is below the average predicted outcome
(which should be true if we have an accurate prediction), it follows from (8) that the randomized
policy leads to a nearly optimal future outcome by an appropriate choice of £.

In medical applications, when determining the future prescription for a patient, we usually have
access to some auxiliary information such as the current prescription she is receiving, and her current
measurements. In consideration of the health care costs and treatment transients, it is not desired to
switch patients’ treatments too frequently. We thus set a threshold level for the expected improvement

in the outcome, below which the randomized strategy will be rendered inactive and the current
9 (%) L

therapy will be continued. Specifically, if >, Wyk( x) < oo — T(x), me(x) = m w.p.

e EIm(x)/ E L €891 otherwise mg(x) = me(x), where my(x) and m,(x) are the future and
current prescrlptlons for patient x, respectively; m is the prescribed action under the randomized
policy; x., represents the current observed outcome (e.g., current blood pressure), which is assumed
to be one of the components of x; and 7'(x) is some threshold level which will be determined later.
This prescriptive rule basically says that the randomized strategy will be activated only if the expected
improvement relative to the current observed outcome is significant.



Theorem 3.2 Assume that the distribution of the predicted outcome §,,(X) conditional on x, is

sub-Gaussian, and its 1y-norm is equal to /2C,,(x), for any m € [M] and any x. Given a small
0 < € < 1, in order to satisfy

e gyk (x

(Z Z e—£€9;(x) yk( )>xC”T(X)> <§,

it suffices to set a threshold

T(x) = max (0, min (xm — g, (%) — /=202, (x log(e/M)))
where g, (x) = E[g, (x)|x].
Theorem 3.2 finds the largest threshold 7'(x) such that the probability of the expected improvement

being less than T'(x) is small. The parameters (4, (x) and C), (x) for m € [M] can be estimated by
simulation through random sampling from a subset of the training examples.

Algorithm 1 Estimating the conditional mean and standard deviation of the predicted outcome.

Input: a feature vector x; a,,: the number of subsamples used to compute Bm, Am < Ny dpy:
the number of repetitions.
for:=1,...,d,, do

Randomly pick a,, samples from group m, and use them to estimate a robust regression
coefficient Bmi through solving 2.

The future outcome for x under action m is predicted as g, (x) = x'3,,,,.
end for
Output: Estimate the conditional mean of g, (x) as:

g, (X Z Um, (X

and the conditional standard deviation as:

dm

S (im0 — 1, ()

i=1

Cm(x) = d —1

A Special Case. As ¢ — oo, the randomized policy will assign probability 1 to the action with the
lowest predicted outcome, which is equivalent to the following deterministic policy:

) arg min g, (x), if min g, (x) < e — T'(x),
me(X) = m m
me(x), otherwise.

A slight modification to the threshold level T'(x) is given below:

T(x) = max(o, min (x — g, (x) — /—2C2 (x) log e))

4 Numerical Results on a Hypertension Dataset

In this section, we will apply our method to develop optimal prescriptions for patients with hyperten-
sion. The data used for the study come from a large academic hospital system handling more than 1
million patient visits per year and consist of Electronic Health Records (EHR) containing the patients’
medical history in the period 1999-2014. Our goal is to find the treatment that minimizes the future
systolic blood pressure based on the medical histories.



4.1 Dataset Description

According to certain cohort selection criteria (see the supplementary), we have identified 49,401
patients who have been diagnosed with hypertension. Each patient may have multiple entries in
her/his medical record. To capture the period when the patient was experiencing the effect of the drug
regimen, we define the line of therapy as a time period (between 200 and 500 days) during which the
combination of drugs prescribed to the patient does not change.

Patient Visits. During each line of therapy, we split the treatment history of each patient into
several patient visits, to reflect changes in the features and outcomes. The patient visits are considered
to be occurring every 70 days. The measurements and lab tests are averaged over the 10 days prior to
the visit. We define the current prescription of each visit as the combination of drugs that were given
during the 10 days immediately preceding the visit, and the standard of care as the drug regimen that
is prescribed by the doctors at the time of the visit. The future outcome of the visit is computed as the
average systolic blood pressure in mmHg 70 to 180 days after it. Patient visits that contain missing
values for the outcome are dropped. We have obtained 26,128 valid visits, each with 63 features.

Features. The features for building the predictive model include: (i) demographics: sex, age and
race; (ii) measurements: systolic blood pressure and diastolic blood pressure, Body Mass Index (BMI)
and pulse; (iii) lab tests: blood chemistry tests and hematology tests; and (iv) diagnosis history.

Prescriptions. We consider six types of prescriptions for hypertension, each corresponding to a
different medication that could be prescribed: ACE inhibitor, Angiotensin Receptor Blockers (ARB),
calcium channel blockers, thiazide and thiazide-like diuretics, a-blockers and 3-blockers. The patient
visits are grouped based on their standard of care.

4.2 Model Development and Results

We will compare our algorithm with several alternatives that replace our DRLR informed K-NN with
a different predictive model such as LASSO, CART, and OLS informed K-NN [7]. Both deterministic
and randomized prescriptive policies are considered using predictions from these models.

Parameter tuning. Within each prescription group, we randomly split the patient visits into three
sets: a training set (80%), a validation set (10%), and a test set (10%). To reflect the dependency
of the number of neighbors on the number of training samples, we perform a linear regression
between these two quantities, which we use to determine the number of neighbors needed in different
settings. To tune the exponent ¢ for the randomized strategy, we need to evaluate the effects of
counterfactual treatments. We assess the predictive power of a series of robust predictive models
(see the supplementary) in terms of their R? and out-of-sample estimation errors, and select the
DRLR+K-NN model (imputation model) that excels in all metrics, to impute the outcome for an
unobservable treatment m, using the validation set.

When comparing the predictive performance of the models (Table 1, Supplementary), we fit a common
regression model to all patients without dividing them into groups, with the prescription being used
as a predictor. This leads to a significant reduction in the unexplained variance of y, and thus the
advantages of DRLR+K-NN are not significant. However, when we do groupwise regression where
prescription is not used as a predictor, the unexplained noise increases, robustness becomes more
critical, and thus the advantages of our method become more prominent (see the following Table 1).

Model training. We solve the predictive models on the whole training set with the best tuned
parameters, the output of which is used to develop the optimal prescriptions for the test set patients.
The parameter € in the threshold T'(x) is set to 0.1. We compute the average improvement (reduction)
in outcomes for patients in the test set, which is defined to be the difference between the (expected)
future outcome under the recommended therapy and the current observed outcome. If the recommen-
dation does not match the standard of care, its future outcome is estimated through the imputation
model that was discussed earlier, where k,,, should be selected to fit the size of the fest set.

Refinement of the policy. In consideration of the sensitivity of K-NN to the number of neighbors,
we propose a refinement of our model, where a patient-specific number of neighbors K, is used,



and the neighbors that are relatively far away from the patient in query are discarded. This can be
considered as taking a weighted average of the responses of neighbors to make the K-NN prediction.
Specifically, denote by d}* the distance between the patient in query and her ¢-th closest neighbor in
j—1 4"
i=1 j—1

group m; we know di* < dy* <...d% . Define j;, = argmax; (d;” - ) Given some

threshold T, the number of neighbors K/, will be determined as follows.
B
i=1 Jr =1 s

> T,

o Lo a5
m
K/ . ]mflv if gk, -1 _di”
m

- i=1 gk —1

K,,, otherwise.

Results and discussion. The reductions in outcomes (future minus current) for various models
are shown in Table 1. The columns indicate the prescriptive policies (deterministic or randomized);
the rows represent the predictive models whose outcomes ,,,(X) serve as inputs to the prescriptive
algorithm. We compare two strategies that use different rules for selecting the number of neighbors,
with a validated threshold 7" = 1 for the patient-specific strategy. We test the performance of all
algorithms over five repetitions, each with a different training set. We also list the reductions in
outcomes resulting from the standard of care, and the current prescription which continues the
current drug regimen.

Several observations are in order: (i) all models outperform the current prescription and the standard
of care; (ii) the DRLR+K-NN model leads to the largest reduction in outcomes with a relatively
stable performance; (iii) using a patient-specific K, in general leads to a more significant reduction
in outcomes, and (iv) the randomized policy achieves a similar (slightly better) performance than the
deterministic one. Overall, the best DRLR+K-NN model leads to a 69% reduction in future systolic
blood pressure compared to the 2nd best model. We expect the randomized strategy to win when
the effects of several treatments do not differ much, in which case the deterministic algorithm might
produce misleading results. The randomized policy could potentially improve the out-of-sample
performance, as it gives the flexibility of exploring options that are suboptimal on the training set, but
might be optimal on the test set.

It may be argued that the observed improvement is due to the evaluation model we choose; specifically,
using DRLR+K-NN to assess the performance of all candidates might cause bias that favors our
method. To mitigate this bias, we also used a mixture of OLS+K-NN and DRLR+K-NN (with equal
weights) as the imputation model, given that they achieve the best predictive performance. Under this
scheme, our model still outperforms all others.

Table 1: The reduction in future systolic blood pressured (mmHg); mean (standard deviation).

Training with a patient-specific K], Training with a uniform K,

Deterministic Randomized Deterministic ~ Randomized

LASSO -4.34 (0.28) -4.33 (0.28) -4.22 (0.20) -4.22 (0.19)

CART -4.46 (0.46) -4.49 (0.50) -4.48 (0.55) -4.51 (0.49)

OLS+K-NN -4.30 (0.35) -4.30 (0.32) -4.27 (0.32) -4.29 (0.31)

DRLR+K-NN -7.42 (0.46) -7.58 (0.51) -6.58 (0.70) -6.78 (0.73)
Current prescription -2.56 (0.14) -2.50 (0.16)
Standard of care -2.37 (0.11) -2.37 (0.11)

5 Conclusions

We developed a prediction-based prescriptive method that determines the probability of taking each
action based on the predictions from a DRLR informed K-NN model. Theoretical guarantees on the
out-of-sample performance of the predictive model and the optimality of the prescriptive algorithm
were established. We also derived a closed-form expression for the threshold level that is used to
activate the randomized policy. The proposed approach was applied to actual hypertension patient data
obtained from a major academic hospital system, providing numerical evidence for the superiority of
our algorithm in terms of the improvement in outcomes.
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