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Abstract

We consider the task of estimating the entropy of k-ary distributions from samples
in the streaming model, where space is limited. Our main contribution is an
algorithm that requires O

(
k log(1/ε)2

ε3

)
samples and a constant O(1) memory

words of space and outputs a ±ε estimate of H(p). Without space limitations, the
sample complexity has been established as S(k, ε) = Θ

(
k

ε log k + log2 k
ε2

)
, which

is sub-linear in the domain size k, and the current algorithms that achieve optimal
sample complexity also require nearly-linear space in k.
Our algorithm partitions [0, 1] into intervals and estimates the entropy contribution
of probability values in each interval. The intervals are designed to trade off the
bias and variance of these estimates.

1 Introduction

Streaming Algorithms. Algorithms that require a limited memory/space/storage1 have garnered
great interest over the last two decades, and are popularly known as streaming algorithms. Initially
studied by [1, 2], this setting became mainstream with the seminal work of [3]. Streaming algorithms
are particularly useful in handling massive datasets that are impossible to be stored in the memory of
the system. It is also applicable in networks where data is naturally generated sequentially and the
data rates are much higher than the capabilities of storing them, e.g., on a router.

The literature on streaming algorithms is large, and many problems have been studied in this model.
With roots in computer science, a large fraction of this literature considers the worst case model,
where it is assumed that the input Xn := X1, . . . , Xn is an arbitrary sequence over some domain of
size k (e.g., [k] := {1, . . . , k}). The set-up is as follows:

Given a system with limited memory that can make a few (usually just one) passes over Xn, the
objective is to estimate some f(Xn) of the underlying dataset. The primary objective is solving the
task with as little memory as possible, which is called the space complexity.

Some of the research closest to our task is the estimation of frequency moments of the data stream [3,
4, 5], the Shannon and Rényi entropy of the empirical distribution of the data stream [6, 7, 8, 9, 10],
the heavy hitters [11, 12, 13, 14], and distinct elements [15, 16]. There has also been work on random
order streams, where one still considers a worst case data stream Xn, but feeds a random permutation
Xσ(1), . . . , Xσ(n) of Xn as input to the algorithm [10, 17, 18].

1We use space, storage, and memory interchangeably.
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Statistical Estimation. At the same time, there has been great progress in the classical fields of
statistical learning and distribution property estimation. The typical set-up is as follows:

Given independent samplesXn from an unknown distribution p, the objective is to estimate a property
f(p) using the fewest samples, called the sample complexity.

Distribution property estimation literature most related to our work include entropy estimation [19,
20, 21, 22, 23, 24, 25], support size estimation [21, 23, 26], Rényi entropy estimation [27, 28, 29],
support coverage estimation [30, 31], and divergence estimation [32, 33]. In these tasks, the optimal
sample complexity is sub-linear in k, the domain size of the distribution.

Streaming Algorithms for Statistical Estimation. While space complexity of streaming algorithms,
and sample complexity of statistical estimation have both received great attention, the problem of
statistical estimation under memory constraints has received relatively little attention. Interestingly,
almost half a century ago, Cover and Hellman [34, 35] studied this setting for hypothesis testing with
finite memory, and [36] had studied estimating the bias of a coin using a finite state machine. However,
until recently, there are few works on learning with memory constraints. There has been a recent
interest in space-sample trade-offs in statistical estimation [37, 38, 39, 40, 41, 42, 43, 44]. Within
these, [40] is the closest to our paper. They consider estimating the integer moments of distributions,
which is equivalent to estimating Rényi entropy of integer orders under memory constraints. They
present natural algorithms for the problem, and perhaps more interestingly, prove non-trivial lower
bounds on the space complexity of this task. More recently, [45] obtained memory sample trade-offs
for testing discrete distributions.

We initiate the study of distribution entropy estimation with space limitations, with the goal of
understanding the space-sample trade-offs.

1.1 Problem Formulation

Let ∆k be the class of all k-ary discrete distributions over the set X = [k] := {0, 1, . . . , k − 1}.
The Shannon entropy of p ∈ ∆k is H (p) := −

∑
x∈[k] p (x) log (p (x)) . Entropy is a fundamental

measure of randomness and a central quantity in information theory and communications. Entropy
estimation is a key primitive in various machine learning applications for feature selection.

Given independent samples Xn := X1, . . . , Xn from an unknown p ∈ ∆k, an entropy estimator is a
possibly randomized mapping Ĥ : [k]n → R. Given ε > 0, δ > 0, Ĥ is an (ε, δ) estimator if

∀p ∈ ∆k, PrXn∼p⊗n
(
|Ĥ(Xn)−H(p)| > ε

)
< δ, (1)

where p⊗n denotes the joint distribution of n independent samples from p.

Sample Complexity. The sample complexity S(H, k, ε, δ) is the smallest n for which an estimator
satisfying (1) exists. Throughout this paper, we assume a constant error probability, say δ = 1/3,2
and exclusively study entropy estimation. We therefore denote S(H, k, ε, 1/3) by S(k, ε).

Memory Model and Space Complexity. The basic unit of our storage model is a word, which
consists of log k + log(1/ε) bits. This choice of storage model is motivated by the fact that at least
log(1/ε) bits are needed for a precision of ±ε, and log k bits are needed to store a symbol in [k]. The
space complexity of an algorithm is the smallest space (in words) required for its implementation.

1.2 Prior Work

Distribution Entropy Estimation. Entropy estimation from samples has a long history [19, 46, 47].
The most popular method is empirical plug-in estimation that outputs the entropy of the empirical
distribution of the samples. Its sample complexity [47, 20] is

Se(k, ε) = Θ
(
k/ε+ (log2 k)/ε2

)
. (2)

Paninski [48] showed that there exists an estimator with sub-linear sample complexity in k. A recent
line of work [21, 23, 22] has characterized the optimal sample complexity as

S(k, ε) = Θ
(
k/(ε log k) + log2 k/ε2

)
. (3)

2For smaller δ’s, we can apply median trick with an extra factor of log(1/δ) samples.
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Note that the optimal sample complexity is sub-linear in k, and that of empirical estimator is linear.

Estimating Entropy of Streams. There is significant work on estimating entropy of the stream
with limited memory. Here, no distributional assumptions on the input stream Xn, and the goal
is to estimate H(Xn), the entropy of the empirical distribution of Xn. [6, 49, 10, 9, 8] consider
multiplicative entropy estimation. These algorithms can be modified to additive entropy estimation
by noting that (1± ε/ log n) multiplicative estimation is equivalent to a ±ε additive estimation. With
this, [8, 10] give an algorithm requiring O( log3 n

ε2 ) words of space for ±ε estimate of H(Xn). [9]

proposes an algorithm using O( log2 n·log logn
ε2 ) words of space. A space lower bound of Ω(1/ε2) was

proved in [8] for the worst-case setting.

Another widely used notion of entropy is Rényi entropy [50]. The Rényi entropy of p of order α > 0
is Hα(p) := log(

∑
x p(x)α)/(1− α). [51, 52, 27] show that the sample complexity of estimating

Hα(p) is Θ(k1−1/α/ε2) for α ∈ N. [40] studies the problem of estimating the collision probability,
which can be seen as estimating Hα(p) for α = 2, under memory constraints. They propose an
algorithm with sample complexity n and the memory M satisfying n ·M ≥ Ω(k), when n is at least
O(k1−1/α). They also provide some (non-tight) lower bounds on the memory requirements.

1.3 Our Results and Techniques

We consider the problem of estimating H(p) from samples Xn ∼ p, with as little space as possible.
Our motivating question is: What is the space-sample trade-off of entropy estimation over ∆k?

The optimal sample complexity is given in (3). However, straight-forward implementations of sample-
optimal schemes in [21, 23, 22] require nearly linear space complexity in S(k, ε), which is nearly
linear (in k) words space. At the same time, when the number of samples is more than Se(k, ε),
given in (2), the empirical entropy of Xn is within ±ε of H(p). We can therefore use results from
streaming literature to estimate the empirical entropy of a data-stream with n = Se(k, ε) samples
to within ±ε, and in doing so, obtain a ±2ε estimate of H(p). In particular, the algorithm of [9]
requires Se(k, ε) samples, and with O( log2(Se(k,ε)) log log(Se(k,ε))

ε2 ) words of space, estimates H(p)
to ±ε. Note that Se(k, ε) is linear with respect to k.

Our work requires constant words of space while maintaining linear sample complexity in k.

Theorem 1. There is an algorithm that requires O
(
k(log(1/ε))2

ε3

)
samples and 20 words of space

and estimates H(p) to ±ε.

The results and the state of the art are given in Table 1. A few remarks are in order.

Remark. (1). Our algorithm can bypass the lower bound of Ω(1/ε2) for entropy estimation of data-
streams since Xn is generated by a distribution and not the worst case data stream. (2). Consider the
case when ε is a constant, say ε = 1. Then, the optimal sample complexity is Θ( k

log k ) (from (3)) and
all known implementations of these algorithms requires Θ̃(k) space. Streaming literature provides
an algorithm with O(k) samples and Õ((log k)2) memory words. We provide an algorithm with
O(k) samples, and 20 memory words. Compared to the sample-optimal algorithms, we have a log k
blow-up in the sample complexity, but an exponential reduction in space.

Table 1: Sample and space complexity for estimating H(p).

Algorithm Samples Space (in words)

Sample-Optimal [21],[23, 22] Θ
(

k
ε log k + log2 k

ε2

)
O
(

k
ε log k + log2 k

ε2

)
Streaming [8, 9] O

(
k
ε + log2 k

ε2

)
O
(
log2(kε ) log log(kε )/ε2

)
Algorithm 6 O

(
k(log(1/ε))2

ε3

)
20

We now describe the high level approach and techniques. We can write H(p) as

H(p) = −
∑
x

p(x) log p(x) = EX∼p [− log p(X)] . (4)
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A Simple Method. We build layers of sophistication to a simple approach: In each iteration,

1. Obtain a sample X ∼ p.

2. Using constant memory, over the next N samples, estimate log(1/p(X)).

From (4), for large enoughN , we can obtain a good estimate p̂(X) of p(X), and log(1/p̂(X)) will be
an almost unbiased estimate of the entropy. We can then maintain a running average of log(1/p̂(X))
over R iterations, where R is large enough for the empirical mean of log(1/p̂(X)) to concentrate.
The total sample requirement is NR. This approach is described in Algorithm 1 (in Section 2).
Theorem 4 states that it requires O(1) memory words and the sample complexity is super-linear.

Intervals for Better Sample Complexity. To improve the sample complexity, we partition [0, 1]
into T disjoint intervals (Algorithm 1 corresponds to T = 1). In Lemma 7 we express H(p) as a sum
of entropy-like expressions defined over probability values in these T intervals. We will then estimate
each of the terms separately with the approach stated above. We will show that the sample complexity
as a function of k drops down roughly as k(log(T ) k)2, where log(T ) is the T th iterated logarithm,
while the space complexity is still constant. In the simple algorithm described above, we need

1. N , the number of samples for each iteration, to be large enough for good estimates of p(X).

2. R, the number of iterations, to be large enough for concentration.

Note that when p(X) is large, fewer samples are needed to estimate p(X) (small N ), and for small
p(X) more samples are needed. However, if the intervals are chosen such that small probabilities are
also contained in small intervals, the number of iterations R needed for these intervals can be made
small (the range of random variables in Hoeffding’s inequality is smaller). Succinctly,

Fewer samples are needed to estimate the large probabilities, and fewer iterations are needed for
convergence of estimates for small probabilities by choosing the intervals carefully.

Some Useful Tools. We now state two concentration inequalities that we use throughout this paper.
Lemma 2. (Hoeffding’s Inequality) [53] Let X1, . . . , Xm ∈ [ai, bi] be independent random vari-

ables. Let X = (X1 + . . .+Xm)/m, then Pr (|X − E [X]| ≥ t) ≤ 2 exp
(
−2(mt)2∑
i(bi−ai)

2

)
.

In some algorithms we consider, m itself is a random variable. In those cases, we will use the
following variant of Hoeffding’s inequality, which is proved in Section B.
Lemma 3. (Random Hoeffding’s Inequality) LetM ∼ Bin (m, p). LetX1, . . . , Xm be independent
random variables such that Xi ∈ [a, b]. Let X = (

∑M
i=1Xi)/M . Then, for any 0 < p ≤ 1

Pr (|X − E [X]| ≥ t/p) ≤ 3 exp
(
−mt2/(8p (b− a)

2
)
)
. (5)

Outline. In Section 2 we describe the simple approach and its performance in Theorem 4. In
Section 3.1, Algorithm 5 we show how the sample complexity can be reduced from k log2 k in
Theorem 4 to k(log log k)2 in Theorem 8 by choosing two intervals (T = 2). The intervals are
chosen such that the number of iterations R for the small interval is poly(log log k) in Algorithm 5
compared to poly(log k) in Algorithm 1. The algorithm for general T is described in Section 3.2,
and the performance of our main algorithm is given in Theorem 1.

2 A Building Block: Simple Algorithm with Constant Space

We propose a simple method (Algorithm 1) with the following guarantee.

Theorem 4. Let ε > 0. Algorithm 1 takes O
(
k log2(k/ε)

ε3

)
samples from p ∈ ∆k, uses at most 20

words of memory, and outputs H̄ , such that with probability at least 2/3,
∣∣H̄ −H(p)

∣∣ < ε.

Based on (4), each iteration of Algorithm 1 obtains a sample X from p and estimates log(1/p(X)).
To avoid assigning zero probability value to p(X), we do add-1 smoothing to our empirical estimate
of p(X). The bias in our estimator can be controlled by the choice of N .

Performance Guarantee. Algorithm 1 only maintains a running sum at the end of each iteration.
We reserve two words for N , R and S. We reserve one word to store x and two words to keep track
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Algorithm 1 Entropy estimation with constant space: Simple Algorithm
Require: Accuracy parameter ε > 0, a data stream X1, X2, . . . ∼ p

1: Set
R← 4 log2(1 + 2k/ε)/ε2, N ← 2k/ε, S ← 0

2: for t = 1, . . . , R do
3: Let x← the next element in the data stream
4: Nx ← # appearances of x in the next N symbols
5: Ĥt = log (N/(Nx + 1))

6: S = S + Ĥt

7: H̄ = S/R

of Nx in each iteration. We reserve three words for the counters. Thus the algorithm uses less than
20 words of space.

To bound the accuracy, note that H̄ is the mean of R i.i.d. random variables Ĥ1, . . . , ĤR. We bound
the bias and prove concentration of H̄ using Lemma 2.

Bias Bound. Larger values of N provides a better estimate of p(X), and therefore a smaller bias in
estimation. This is captured in the next lemma, which is proved in Section C.

Lemma 5. (Bias Bound)
∣∣E [H̄]−H (p)

∣∣ ≤ k
N .

Concentration. Since ∀t, Ĥt ∈ [log(N/(N + 1)), logN ], we show in the next lemma that with large
enough R, H̄ concentrates. This is proved in Section C.

Lemma 6. (Concentration) For any µ > 0, Pr
(
|H̄ − E

[
H̄
]
| ≥ µ

)
≤ 2 exp

(
− 2Rµ2

log2(N+1)

)
.

The choice of N implies that
∣∣E [H̄]−H (p)

∣∣ ≤ ε/2, and by choosing µ = ε/2, and R =

4 log2(1 + 2k/ε)/ε2 implies that H̄ is within H(p) ± ε with probability at least 2/3. The total
sample complexity of Algorithm 1 is (N + 1)R = O

(
k log2 (k/ε)/ε3

)
.

3 Interval-based Algorithms

In the previous section, the simple algorithm treats each symbol equally and uses the same N and
R. To reduce the sample complexity, we express H(p) as an expectation of various conditional
expectations depending on the symbol probability values. For larger probability values we use smaller
N and for small probabilities we use smaller R. We then estimate the terms separately to obtain the
final estimate.

Entropy as a Weighted Sum of Conditional Expectations. Let T ∈ N (decided later), and 0 =
a0 < a1 < . . . < aT = 1. Let I := {I1, I2, ..., IT }, where Ij = [aT−j , aT−j+1) be a partition of
[0, 1] into T intervals.

Consider a randomized algorithm A : [k]→ {I1, . . . , IT } that takes as input x ∈ [k], and outputs an
interval in I. Let pA (Ij |x) = Pr (A(x) = Ij). For a distribution p ∈ ∆k, let

pA(Ij) :=
∑
x∈[k]

p(x) · pA (Ij |x) , pA (x|Ij) :=
p(x) · pA (Ij |x)

pA (Ij)
. (6)

Then pA(Ij) is the probability thatA(X) = Ij , whenX ∼ p. pA (x|Ij) is the conditional distribution
over [k] given A(X) = Ij . Then we have the following lemma:

Lemma 7. Let Hj := EX∼pA(x|Ij) [− log p (X)] then, H (p) =
∑T
j=1 pA (Ij)Hj .

Proof.

H (p) =
∑
x

p(x)

∑
j

pA (Ij |x)

 log
1

p(x)
=
∑
x

∑
j

(
pA (Ij) pA (x|Ij) log

1

p(x)

)
(7)
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=
∑
j

pA(Ij)
(
EX∼pA(x|Ij) [− log p (X)]

)
.

where (7) follows from (6).

We will choose the intervals and algorithmA appropriately. By estimating each term in the summation
above, we will design an algorithm with T intervals that uses O

(
k(log(T ) k+log(1/ε))2

ε3

)
samples and a

constant words of space, and estimates H(p) to ±ε.
In Section 3.1, we provide the details with T = 2. This section will flesh out the key arguments, and
finally in Section 3.2, we extend this to T = log∗ k where log∗ k = mini{log(i) k ≤ 1} intervals to
further reduce the sample complexity to O(k(log(1/ε))2/ε3).

3.1 Two Intervals Algorithm

We propose Algorithm 5 with T = 2 and the following guarantee.

Theorem 8. Algorithm 5 uses O(NR+N1R1 +N2R2) = O
(
k(log(log(k)/ε))2

ε3

)
samples, 20 words

and outputs an ±ε estimate of H(p) with probability at least 2/3.

3.1.1 Description of the Algorithm

Let T = 2, and β > 16 be a constant. Consider the following partition of [0, 1]:

I2 = [0, `) , I1 = [`, 1] where ` = (log k)
β
/k. (8)

We now specify the algorithm A : [k]→ {I1, I2} to be used in Lemma 7. A is denoted by ESTINT
(Algorithm 2). For x ∈ [k], it takes N samples from p, and outputs the interval where the empirical
fraction of occurrences of x lies. ESTINT tries to predict the interval in which p(x) lies.

Algorithm 2 A : ESTINT (N, x)

1: Obtain N samples from p
2: if x appears ≥ N` times, output I1
3: else output I2

Algorithm 3 ESTPROBINT (N,R)

1: p̂A (I1) = 0
2: for t = 1 to R do
3: Sample x ∼ p.
4: if ESTINT (N, x) = I1 then
5: p̂A (I1) = p̂A (I1) + 1/R

By Lemma 7, H (p) = pA (I1)H1 + pA (I2)H2. We estimate the terms in this expression as follows.

Estimating pA(Ij)’s. We run ESTINT multiple times on samples generated from p, and output
the fraction of times the output is Ij as an estimate of pA(Ij). We only estimate pA(I1), since
pA(I1) + pA(I2) = 1. The complete procedure is specified in Algorithm 3.

Estimating Hj’s. Recall that Hj’s are the expectations of − log (p(x)) under different distributions
given in (6). Since the expectations are with respect to the conditional distributions, we first sample
a symbol from p and then conditioned on the event that ESTINT outputs Ij , we use an algorithm
similar to Algorithm 1 to estimate log(1/p(x)). The full algorithm is in Algorithm 4. Notice that
when computing Ĥ2 in Step 8, we clip the Ĥ2’s to log 1

4` if Nx,2 > 4`N2− 1. This is done to restrict
each Ĥ2 to be in the range of [log 1

4` , logN2], which helps when proving concentration.

3.1.2 Performance Guarantees

Memory Requirements. We reserve 5 words to store parameters R1, R2, N1, N2 and `. ESTINT
uses one word to keep track of the number of occurrences of x. For ESTPROBINT, we use one word
to store x and one word to keep track of the final sum p̂A (I1). We execute CONDEXP for each
interval separately and use one word each to store x and keep track of Si and Ĥi. We use two words
to store the outputs H̄1 and H̄2 and store the final output ĤII in one of those. Hence, at most 20
words of memory are sufficient.
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Algorithm 4 Estimating H1 and H2 : CONDEXP (N1, N2, R1, R2)

1: for i = 1, 2, set Ĥi = 0, Si = 0, do
2: for t = 1 to Ri do
3: Sample x ∼ p
4: if ESTINT (N, x) = Ii then
5: Si = Si + 1
6: Let Nx,i ← # occurrences of x in the next Ni samples
7: Ĥi = Ĥi + log (Ni/(Nx,i + 1)) if i = 1

8: Ĥi = Ĥi + max {log (Ni/(Nx,i + 1)) , log (1/4`)} if i = 2

9: H̄i = Ĥi/Si

Algorithm 5 Entropy Estimation with constant space: Two Intervals Algorithm
Require: Accuracy parameter ε > 0, γ = β/2, a data stream X1, X2, . . . ∼ p

1: Set
N = N1 =

C1k

ε (log k)
γ , R = R1 = C2

log(k/ε)2

ε2
, N2 = C1 ·

k

ε
, R2 = C2 ·

(log((log k)/ε))
2

ε2

2: p̂A (I1) = ESTPROBINT (N,R)
3: H̄1, H̄2 = CONDEXP (N1, N2, R1, R2)

4: ĤII = p̂A (I1) H̄1 + (1− p̂A (I1))H̄2

Sample Guarantees. Let Ĥ∗II be the unclipped version of the estimator where we don’t use clipping
in Step 8 in Algorithm 4 (all other steps remain the same). Then we can bound the estimation error
by the following three terms and we will bound each of them separately,∣∣∣H (p)− ĤII

∣∣∣ ≤ ∣∣∣H (p)− E
[
Ĥ∗II

]∣∣∣︸ ︷︷ ︸
Unclipped Bias

+
∣∣∣E [ĤII

]
− E

[
Ĥ∗II

]∣∣∣︸ ︷︷ ︸
Clipping Error

+
∣∣∣ĤII − E

[
ĤII

]∣∣∣ .︸ ︷︷ ︸
Concentration

Clipping Error. By the design of CONDEXP, Ĥ2 is clipped only when the event Ex =
{ESTINT(N, x) = I2, Nx,2 > 4N2` − 1} occurs for some x ∈ X . We bound the clipping er-
ror in the following lemma (proof in Section D.3) by showing that Pr (Ex) is small.

Lemma 9. (Clipping Error Bound) Let ĤII be the entropy estimate of Algorithm 5 and let Ĥ∗II be

the entropy estimate of the unclipped version of Algorithm 5. Then
∣∣∣E [ĤII

]
− E

[
Ĥ∗II

]∣∣∣ ≤ ε/3.
Concentration Bound. To prove the concentration bound, we use Lemma 10 to decompose it into
three terms each of which can be viewed as the difference between some empirical mean and its true
expectation which can be bounded using concentration inequalities. (proof in Section D.4)

Lemma 10. (Concentration Bound) Let ĤII be the entropy estimate of Algorithm 5 and let H̄i be
as defined in Algorithm 5. Let pA (Ii) be the distribution defined in (6) where A is ESTINT.∣∣∣E [ĤII

]
− ĤII

∣∣∣ ≤ 2∑
i=1

pA (Ii)
∣∣H̄i − E

[
H̄i

]∣∣+ |pA (I1)− p̂A (I1) ||H̄1 − H̄2| ≤ ε/3.

We provide a brief outline of the proof below. By union bound, in order to show that with probability
at least 2/3 the sum is less than ε/3, it is sufficient to show that with probability at most 1

9 , each of
the terms is greater than ε/9.

To bound |pA (I1) − p̂A (I1) ||H̄1 − H̄2|, we first bound the range of |H̄1 − H̄2| and then use
Hoeffding’s inequality (Lemma 2) to obtain concentration of p̂A (I1). To bound

∣∣H̄i − E
[
H̄i

]∣∣, note
that we cannot obtain concentration using Hoeffding’s inequality because Ri (the number of samples
that we average over) is a random variable. Therefore we apply Random Hoeffding Inequality
(Lemma 3) to H̄i. Since Ri depends on the range of the random variables being averaged over,
we obtain a reduction in the sample complexity for i = 2 because of clipping the estimate below
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to log 1
4` . Therefore the range for the second interval is log(N2) − log 1

4` = O (log ((log k) /ε))

implying R2 = O
(
(log ((log k)/ε))2/ε2

)
suffices for the desired probability. For i = 1, since the

range is the same as the one interval case, we use the same R1 as in the one interval case. Note
R2 < R1.

Bias Bound. We bound the bias of the unclipped version, Ĥ∗II using the following lemma:

Lemma 11. (Unclipped Bias Bound) Let Ĥ∗II be the unclipped estimate of Algorithm 5 and let
pA (Ii|x) be the conditional distribution defined in (6) where A is ESTPROBINT. Then,∣∣∣H (p)− E

[
Ĥ∗II

]∣∣∣ ≤ 2∑
i=1

(∑
x∈X

pA (Ii|x)/Ni

)
≤ ε/3. (9)

(Proof in Section D.2) Lemma 11 allows us to choose N1 and N2 separately to bound the bias.
Interval I2’s contribution is at most k

N2
. For interval I1, we improve upon k

N1
by partitioning X

into sets X1 = {x ∈ X |p(x) < `/2} and X2 = {x ∈ X |p(x) ≥ `/2}. For X1, pA (I1|x) is small
by Chernoff bound. For X2, since p(x) ≥ `/2, |X2| ≤ 2/` which is smaller than k. Hence we can
choose N2 < N1.

In the sample complexity of the two interval algorithm, observe that the term N2R2 dominates.
Reducing N2 is hard because it is independent of the interval length. Therefore we hope to reduce
R2 by partitioning into intervals with smaller lengths. In the smallest interval, if we reduce the range
of each estimate to be within a constant, then O( 1

ε2 ) samples would suffice for concentration. In the
next section, we make this concrete by considering an algorithm that uses multiple intervals.

3.2 General Intervals Algorithm

The general algorithm follows the same principles as the previous section with a larger number of
intervals, decreasing the sample requirements at each step, as discussed in Section 1.3. However, the
proofs are much more involved, particularly in order to obtain an O(k) upper bound on the sample
complexity. We will sketch some of the key points and move a bulk of the algorithm and details to
the appendix due to lack of space.

Intervals. Let T = log∗ k, where log∗ k := mini{log(i) k ≤ 1}. Consider the following partition

of [0, 1]: {Ii}Ti=1 where I1 = [l1, h1] and for i = 2, ..., T , Ii = [li, hi), hi = (log(i−1)(k))β

k (β > 16)
and `i−1 = hi. Define lT = 0 and h1 = 1, then we have for i = 2, ..., T − 1 :

I1 =

[
(log(1)(k))β

k
, 1

]
, IT =

[
0,

(log(T−1)(k))β

k

)
, Ii =

[
(log(i)(k))β

k
,

(log(i−1)(k))β

k

)
.

We divide the bottleneck of the two intervals algorithm I2, into further intervals until the width of
the smallest interval is a constant over k (eβ/k) which implies concentration with lesser samples
than before. Using Lemma 7, similar to the two intervals case, we will estimate each of the pA (Ii)
and Hi’s independently in Algorithm 8 (GENESTPROBINT) and Algorithm 9 (GENCONDEXP),
presented in Appendix E.1. Complete algorithm for T = log∗ k is presented in Algorithm 6.

Memory Requirements. The analysis of memory requirement is similar to that of the two interval
case. To store parameters `i, Ni, Ri’s, we only store k, ε, γ, CN and CR and compute the parameters
on the fly. Notice that for each interval, the execution of GENESTINT, GENESTPROBINT and
GENCONDEXP require same memory as that of their two interval counterparts. The trick here is
that we don’t need to store p̂A (Ii)’s and H̄i’s since we can perform each of GENESTPROBINT and
GENCONDEXP for one interval and maintain a running sum of p̂A (Ii) H̄i’s. Therefore, Algorithm 6
uses at most 20 words of space.

Sample complexity. Algorithm 6 proves the main claim of our paper in Theorem 1. The key idea to
remove the extra loglog factor in Theorem 8 is to progressively make the error requirements stricter
for the larger probability intervals. We denote the final estimate without the clipping step (Step 8) by
Ĥ∗I (all other steps remaining the same). Then the error can be bounded by the following three terms:

|H (p)− ĤI | ≤ |H (p)− E
[
Ĥ∗I

]
|︸ ︷︷ ︸

Unclipped Bias

+ |E
[
ĤI

]
− E

[
Ĥ∗I

]
|︸ ︷︷ ︸

Clipping Error

+ |ĤI − E
[
ĤI

]
|︸ ︷︷ ︸

Concentration

. (10)
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Algorithm 6 Entropy Estimation with constant space: General Intervals Algorithm
Require: Accuracy parameter ε > 0, γ = β/2, a data stream X1, X2, . . . ∼ p.

1: Set
Ni = CN ·

k

ε(log(i)(k))γ
, Ri = CR ·

(log(log(i−1)(k)/ε))2

ε2
1 ≤ i ≤ T − 1

NT = CN ·
k

ε
, RT = CR ·

(log(log(T−1)(k)/ε))2

ε2

2: {p̂A (Ii)}T−1i=1 = GENESTPROBINT
(
{Ni}T−1i=1 , {Ri}T−1i=1

)
3:
{
H̄i

}T
i=1

= GENCONDEXP
(
{Ni}Ti=1 , {Ri}

T
i=1

)
4: ĤI =

∑T−1
i=1 p̂A (Ii) H̄i + (1−

∑T−1
i=1 p̂A (Ii))H̄T

With the parameters defined in Algorithm 6, we can bound the unclipped bias and clipping error
in (10) by ε

3 each and show that the concentration part is also bounded by ε
3 with probability at least

2/3. The details are given in Lemma 13, 14, and 15 in Appendix E.

4 Open Problems

There are several interesting questions that arise from our work. While our algorithms require only
a constant memory words of space, they require a log k multiplicative factor more samples (as a
function of k) than the optimal sample complexity (in (3)).

• Does there exist an algorithm for entropy estimation that has the optimal sample complexity
and space requirement that is at most poly(log k)?

We are unaware of any implementation that requires sub-linear space in k. Designing a strictly
sublinear-space (space requirement kα for some α < 1) sample-optimal algorithm could be a first
step toward solving the question above. At the same time, there might not exist an algorithm with a
small sample complexity. This leads to the following complementary question.

• Prove a lower bound on the space requirement of a sample-optimal algorithm for entropy
estimation.

Beyond these, obtaining sample-space trade-offs for distribution testing, and property estimation
tasks is an exciting future direction.
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A A Bound on Expression of Binomial Random Variables

Lemma 12. Let X ∼ Bin (m, r), then E
[

1
X+1

]
≤ 1

r(m+1) .

Proof.

E
[

1

X + 1

]
=

1

m+ 1

m∑
l=0

m+ 1

l + 1

(
m

l

)
rl (1− r)m−l =

1− (1− r)m+1

r (m+ 1)
≤ 1

r (m+ 1)
.

B Proof of Random Hoeffding Inequality (Lemma 3)

First, observe that |X − E [X]| ≤ b − a. Hence if t > p(b − a), the left hand side is zero and the
inequality naturally holds. Next, we assume t ≤ p(b− a), which is equivalent to p ≥ t2

p(b−a)2 .

Pr

(
|X − E [X]| ≥ t

p

)
=

m∑
r=0

Pr

(
|X − E [X]| ≥ t

p

∣∣∣∣M = r

)
Pr (M = r) .

We can divide the above into two parts, r ≤
⌊
mp
2

⌋
and r ≥

⌈
mp
2

⌉
. For the first part, by Chernoff

bound, we get

bmp2 c∑
r=0

Pr

(
|X − E [X]| ≥ t

p

∣∣∣∣M = r

)
Pr (M = r) ≤ Pr

(
M ≤ mp

2

)
≤ exp

(
−mp

8

)
.

For the second part, by Hoeffding Inequality (Lemma 2), we have:

m∑
r=dmp2 e

2 exp

(
−2rt2

p2 (b− a)
2

)
Pr (M = r) ≤ 2 exp

(
−2t2

p2 (b− a)
2

mp

2

)
≤ 2 exp

(
−mt2

p (b− a)
2

)
.

Combining the two, we get:

Pr

(
|X − E [X]| ≥ t

p

)
≤ exp

(
−mp

8

)
+ 2 exp

(
−mt2

p (b− a)
2

)
≤ 3 exp

(
−mt2

8p (b− a)
2

)
.

C Proofs from Section 2

C.1 Proof of Lemma 5 : Bias Bound

From Algorithm 1, we can express H̄ as

H̄ =
1

R

R∑
t=1

∑
x∈X

1 {x = xt} log

(
N

Nxt + 1

)
.

=
∑
x∈X

1

R

R∑
t=1

1 {x = xt} log

(
N

Nxt + 1

)
.

The above formulation can be thought of as an empirical average of log
(

N
NX+1

)
, where X ∼ p.

Therefore,

E
[
H̄
]

=
∑
x∈X

p (x)E
[
log

(
N

Nx + 1

)]
. (11)
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H (p)− E
[
H̄
]

=
∑
x∈X

p (x) log
1

p (x)
−
∑
x∈X

p (x)E
[
log

(
N

Nx + 1

)]
=
∑
x∈X

p (x)E
[
log

(
Nx + 1

Np (x)

)]
≤
∑
x∈X

p (x) log

(
E
[
Nx + 1

Np (x)

])
(12)

=
∑
x∈X

p (x) log

(
1 +

1

Np (x)

)
≤ k

N
. (13)

where we obtain (12) using Jensen’s inequality and (13) follows from log (1 + x) ≤ x. We now
bound E

[
H̄
]
−H (p).

E
[
H̄
]
−H (p) =

∑
x∈X

p (x)E
[
log

(
Np (x)

Nx + 1

)]
≤
∑
x∈X

p (x) log

(
E
[
Np (x)

Nx + 1

])
(14)

≤
∑
x∈X

p (x) log

(
N

N + 1

)
< 0. (15)

where (14) is obtained using Jensen’s inequality and (15) follows from Lemma 12. Therefore,

|E
[
H̄
]
−H (p)| ≤ k

N
. (16)

C.2 Proof of Lemma 6 : Concentration Bound

Note that H̄ is an average of R i.i.d random variables

Zt =
∑
x∈X

1 {x = xt} log

(
N

Nxt + 1

)
.

where t ∈ [R]. Each of the R random variables can take values from
[
log
(

N
N+1

)
, logN

]
. Applying

Hoeffding’s inequality (Lemma 2),

Pr
(
|H̄ − E

[
H̄
]
| ≥ ε

2

)
≤ exp

(
− Rε2

2 log2 (N + 1)

)
. (17)

D Two interval Algorithm Proofs

D.1 Expectation of Unclipped Version Estimates

Let Si be the number of times ESTINT = Ii during the Ri iterations for interval Ii in CONDEXP.
Let Sx,i be the number of times symbol x is the first sampled element among these. Note that

Si ∼ Bin (Ri, pA(Ii)) and Sx,i ∼ Bin (Si, pA (x | Ii)) where pA (x | Ii) =
p (x) pA (Ii | x)

pA (Ii)
. Let

Nx,i,v be Nx,i (defined in CONDEXP) when x is sampled and ESTINT(N, x) = Ii for the vth time.
Denote the unclipped version of H̄i by H̄∗i . We can write H̄∗i as follows

H̄∗i =
1

Si

∑
x∈X

Sx,i∑
v=1

log

(
Ni

Nx,i,v + 1

)
. (18)
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The above equation implies that H̄∗i is an empirical mean of log
(

Ni
NX,i+1

)
where X ∼ pA (x | Ii).

Note that for a fixed x, Sx,i ∼ Bin (Si, pA(x|Ii)). Therefore, the expectation is

E
[
H̄∗i
]

=
∑
x∈X

p (x) pA (Ii|x)

pA (Ii)
E
[
log

(
Ni

Nx,i + 1

)]
. (19)

D.2 Proof of Lemma 11 : Unclipped Bias Bound

Define H̄∗1 and H̄∗2 to be the analog of H̄1 and H̄2 in the unclipped version of Algorithm 5. We first
note that

E
[
Ĥ∗II

]
= pA(I1)E

[
H̄∗1
]

+ (1− pA(I1))E
[
H̄∗2
]
. (20)

The above is true since, E [p̂A(I1)] = pA(I1) and Algorithm 4 estimates p̂A (I1) and H̄∗1 , H̄
∗
2

independently.

We use the following result from equation 19 in Section D.1

E
[
H̄∗i
]

=
∑
x∈X

p (x) pA (Ii|x)

pA (Ii)
E
[
log

(
Ni

Nx,i + 1

)]
. (21)

Using Lemma (7) and Jensen’s inequality, we have

E
[
Ĥ∗II

]
−H (p) ≤

2∑
i=1

pA (Ii)

(∑
x∈X

p (x) pA (Ii|x)

pA (Ii)
E
[
log

(
Nip (x)

Nx,i + 1

)])

≤
2∑
i=1

pA (Ii)

(∑
x∈X

p (x) pA (Ii|x)

pA (Ii)
log

(
E
[
Nip (x)

Nx,i + 1

]))

≤
2∑
i=1

pA (Ii)

(∑
x∈X

p (x) pA (Ii|x)

pA (Ii)
log

(
Ni

Ni + 1

))
≤ 0. (22)

where (22) follows from Lemma 12. To bound the reverse, using Lemma (7), Jensen’s inequality and
the fact that log(1 + x) ≤ x„ we have

H (p)− E
[
Ĥ∗II

]
=

2∑
i=1

pA (Ii)

(∑
x∈X

p (x) pA (Ii|x)

pA (Ii)
E
[
log

(
Nx,i + 1

Nip (x)

)])

≤
2∑
i=1

pA (Ii)

(∑
x∈X

p (x) pA (Ii|x)

pA (Ii)
log

(
E
[
Nx,i + 1

Nip (x)

]))

=

2∑
i=1

pA (Ii)

(∑
x∈X

p (x) pA (Ii|x)

pA (Ii)
log

(
Nip (x) + 1

Nip (x)

))

≤
2∑
i=1

pA (Ii)

(∑
x∈X

pA (Ii|x)

NipA (Ii)

)

=

2∑
i=1

(∑
x∈X

pA (Ii|x)

Ni

)
. (23)

For interval I1, we partition X into two sets X1 = {x ∈ X |p(x) < `/2} and X2 = {x ∈ X |p(x) ≥
`/2}. For x ∈ X1, the probability that algorithm ESTINT(N, x) = I1 is small. In particular, by
Chernoff bound,

pA (I1|x) = Pr (Nx > N1`) ≤ exp

(
−N1`

6

)
. (24)
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For x ∈ X2, since p (x) ≥ `/2, |X2| ≤ 2
` and each pA (I1|x) ≤ 1, we have∑

x∈X

pA (I1|x)

N1
=
∑
x∈X1

pA (I1|x)

N1
+
∑
x∈X2

pA (I1|x)

N1
≤ k

N1
exp

(
−N1`

6

)
+

2

N1`
. (25)

For interval I2, we simply bound each term by 1 and get∑
x∈X

pA (I2|x)

N2
≤ k

N2
. (26)

Plugging in the values of N1, N2 defined in Algorithm 5, it is easy to see there exists a constant C1

such that (26) and (25) are bounded above by ε
6 which completes the proof.

D.3 Proof of Lemma 9 : Clipping Error Bound

Define H̄∗1 and H̄∗2 to be the analog of H̄1 and H̄2 in the unclipped version of Algorithm 4. Using
(20) and the fact that the clipping step is applied only when computing H̄2, we have∣∣∣E [ĤII

]
− E

[
Ĥ∗II

]∣∣∣ ≤ pA (I2)
∣∣E [H̄2

]
− E

[
H̄∗2
]∣∣ . (27)

From Algorithm 5, we note that H̄2 is different from H̄∗2 only when Ex = {ESTINT(N, x) =
I2, Nx,2 > 4N2`− 1} occurs. Therefore from (19), we have the following∣∣E [H̄2

]
− E

[
H̄∗2
]∣∣ ≤∑

x∈X
Pr (Nx,2 > 4N2`− 1)

p (x) pA (I2|x)

pA (I2)

(
log

(
1

4`

)
− log

(
N2

N2 + 1

))
≤
∑
x∈X

Pr (Nx,2 > 4N2`− 1)
p (x) pA (I2|x)

pA (I2)
log k. (28)

By Chernoff bound, if p(x) > 2`

Pr (ESTINT(N, x) = I2) ≤ exp

(
−N`

3

)
.

And if p(x) < 2`,

Pr (Nx,2 > 4N2`− 1) = pA (I2|x) ≤ exp

(
−2N2`

3

)
.

Therefore, plugging in values of N and N2, we have

pA (I2)
∣∣E [H̄2

]
− E

[
H̄∗2
]∣∣ ≤ min

{
exp

(
−N`

3

)
, exp

(
−2N2`

3

)}
log k ≤ ε

3
. (29)

D.4 Proof of Lemma 10 : Concentration Bound

Using (20), we have∣∣∣E [ĤII

]
− ĤII

∣∣∣ =
∣∣pA (I1)E

[
H̄1

]
+ pA (I2)E

[
H̄2

]
− p̂A (I1) H̄1 − p̂A (I2) H̄2

∣∣
=
∣∣pA (I1)E

[
H̄1

]
+ pA (I2)E

[
H̄2

]
− pA (I1) H̄1 − pA (I2) H̄2

+pA (I1) H̄1 + pA (I2) H̄2 − p̂A (I1) H̄1 − p̂A (I2) H̄2

∣∣
≤

2∑
i=1

∣∣pA (Ii)
(
E
[
H̄i

]
− H̄i

)∣∣+
∣∣(pA (I1)− p̂A (I1))

(
H̄1 − H̄2

)∣∣ . (30)

(30) is true because by definition,

pA (I1)− p̂A (I1) = −(pA (I2)− p̂A (I2))
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We first bound |pA (I1) − p̂A (I1) ||H̄1 − H̄2|. Note that H̄1 ∈
[
log N1

N1+1 , logN1

]
. And because

of clipping, H̄2 ∈
[
log N2

4N2`+1 , logN2

]
. Since N2 > N1,

∣∣∣Ĥ1 − Ĥ2

∣∣∣ ≤ log N2(N1+1)
N1

. To bound
|pA (I1)− p̂A (I1) |, since p̂A (I1) is the average of R i.i.d binary random variables, by Hoeffding’s
inequality (Lemma 2) we have

Pr (|pA (I1)− p̂A (I1) | > t) ≤ 2 exp
(
−2Rt2

)
.

Take t = ε

9 log
N2(N1+1)

N1

. There exists constant C2 such that for the value of R1 from Algorithm 5,

with probability at least 8/9, we have:

|pA (I1)− p̂A (I1) ||H̄1 − H̄2| ≤ ε/9.

To bound
∣∣H̄i − E

[
H̄i

]∣∣ we cannot directly use Hoeffding’s inequality because the number of
samples that we are taking an average over is a random variable. We therefore apply the Random
Hoeffding Inequality (Lemma 3) to H̄1 to get:

Pr
(
pA (Ii) |H̄i − E

[
H̄i

]
| > ε/9

)
≤ 3 exp

(
−Riε2

72pA (Ii) (bi − ai)2

)
, (31)

where [ai, bi] is the possible range of each independent variables when estimating H̄i. Since
a1 = log

(
N1

N1+1

)
, b1 = log (N1), b1 − a1 = log(N1 + 1) = O(log k

ε ). Therefore, there exists a

constant C2 such that R1 = C2
log2(k/ε)

ε2 suffices to get a probability at least 8/9.

The reduction in sample complexity is obtained for i = 2. Here a2 = log 1
4` instead of log

(
N2

N2+1

)
because of the clipping step. Since b2 = log (N2), b2 − a2 = log(4N2`) = O (log ((log k) /ε)).
Therefore, ∃ constant C2, such that R2 = C2 · (log((log k)/ε))

2

ε2 would suffice to get a probability at
least 8/9.

E General Interval Algorithm

E.1 General Interval Algorithms

We provide the pseudocode of the various procedures for our main algorithms in this section.

Algorithm 7 is the interval estimation algorithm that tests from samples where a p(x) belongs to a
certain interval It.

Algorithm 7 Estimating intervals: General Case : GENESTINT({Ni}ti=1 , x)

Require: {Ni}ti=1 , x drawn from p
1: for i = 1 to t do
2: Generate Ni samples from p
3: if x appears more than Ni`i times then Output Ii
4: Output IT

Algorithm 8 describes the procedure to estimate pA(It)’s.

Algorithm 9 estimates the entropy contributions from the intervals.

E.2 Unclipped Bias Bound

In this part, we will bound the bias of the unclipped version of the entropy estimate. In particular, we
will prove the following lemma:

Lemma 13. (Unclipped Bias bound) Let Ĥ∗I be the entropy estimate given by Algorithm 6 without
the clipping step in Algorithm 9 , then∣∣∣E [Ĥ∗I]−H (p)

∣∣∣ ≤ ε

3
. (32)
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Algorithm 8 Estimating pA (Ii) , 1 ≤ i ≤ T − 1 : GENESTPROBINT({Ni}T−1i=1 , {Ri}T−1i=1 )

Require: {Ni}T−1i=1 , {Ri}T−1i=1
1: for i = 1, 2, ..., T − 1 do
2: p̂A (Ii) = 0
3: for t = 1 to Ri do
4: Sample x ∼ p.
5: if GENESTINT

(
{Nj}ij=1 , x

)
= Ii then p̂A (Ii) = p̂A (Ii) + 1

Ri

Algorithm 9 Estimating Hi’s : GENCONDEXP
(
{Ni}Ti=1 , {Ri}

T
i=1

)
Require: {Ni}Ti=1 , {Ri}

T
i=1

1: for i = 1 to T do
2: Ĥi = 0, Si = 0
3: for t = 1 to Ri do
4: Generate x ∼ p
5: if GENESTINT

(
{Nj}ij=1 , x

)
is Ii then

6: Si = Si + 1
7: Let Nx,i ← # occurrences of x in the next Ni samples

8: Ex,i = max{log
(

Ni
Nx,i+1

)
, log 1

4hi
}

9: Ĥi = Ĥi + Ex,i
10: H̄i = Ĥi

Si

Proof. Denote the unclipped versions of H̄i by H̄∗i . For interval Ii, let Si be the number of times

GENESTINT
(
{Nj}ij=1 , x

)
= Ii during Ri iterations in Algorithm 9. For x ∈ X , let Sx,i be the

number of times symbol x is the first sampled element among these. Note that Si ∼ Bin (Ri, pA (Ii))
and Sx,i ∼ Bin (Si, pA (x | Ii)). Let Nx,i,v be Nx,i (defined in GENCONDEXP) when x is first

sampled and GENESTINT
(
{Nj}ij=1 , x

)
= Ii for the vth time. We can write H̄∗i as follows.

H̄∗i =
1

Si

∑
x∈X

Sx,i∑
v=1

log

(
Ni

Nx,i,v + 1

)
. (33)

Since the computation of p̂A (Ii) and H̄∗i is independent, we have

E
[
Ĥ∗I

]
=

T∑
i=1

E [p̂A (Ii)]E
[
H̄∗i
]

=

T∑
i=1

pA (Ii)E
[
H̄∗i
]
. (34)

For the interval Ii, E
[
H̄∗i
]

can be written as (refer Section D.1 for detailed argument):

E
[
H̄∗i
]

=
∑
x∈X

p (x) pA (Ii|x)

pA (Ii)
E
[
log

(
Ni

Nx,i + 1

)]
.

Similar to Equations (22) and (23), we have

E
[
Ĥ∗I

]
−H (p) ≤

T∑
i=1

pA (Ii)

(∑
x∈X

p (x) pA (Ii|x)

pA (Ii)
log

(
Ni

Ni + 1

))
≤ 0.

H (p)− E
[
Ĥ∗I

]
≤

T∑
i=1

(∑
x∈X

pA (Ii|x)

Ni

)
.

Therefore, ∣∣∣H (p)− E
[
Ĥ∗I

]∣∣∣ ≤ T∑
i=1

(∑
x∈X

pA (Ii|x)

Ni

)
. (35)
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For interval Ii, 1 ≤ i ≤ T − 1, we divide the symbols into Xl =
{
x : px ≤ li

2

}
and Xm ={

x : px >
li
2

}
and get

∑
x∈X

pA (Ii|x)

Ni
≤
∑
x∈Xl

pA (Ii|x)

Ni
+
∑
x∈Xm

pA (Ii|x)

Ni

≤ 1

Ni

(∑
x∈Xl

exp

(
−Nili

6

))
+

2

Nili

≤ k

Ni
exp

(
−Nili

6

)
+

2

Nili
. (36)

Substituting the values of Ni, li, we get that

∑
x∈X

pA (Ii|x)

Ni
≤ ε

CN

(
log(i) k

)γ
exp

−CN
(

log(i) k
)β−γ

6ε

+ 2
ε

CN

(
log(i) k

)γ−β
≤ 3

CN

ε(
log(i) k

)γ .
The last inequality holds because β = 2γ and e−x ≤ 1

x2 for x > 0. Hence we have:

T−1∑
i=1

(∑
x∈X

pA (Ii|x)

Ni

)
≤ 3ε

CN

T−1∑
i=1

1(
log(i) k

)γ =
3ε

CN

T−1∑
i=1

1(
log(T−i) k

)γ . (37)

Let ai = log(T−i) k. Then ai+1 = eai . Since T = log∗ k, we have 1 ≤ a1 ≤ e. It can be shown that
ai+1

ai
= eai

ai
≥ e. Hence we get

∀i, ai = log(T−i) k ≥ ei−1. (38)

Therefore, we get:
T−1∑
i=1

1(
log(T−i) k

)γ =

T−1∑
i=1

1

aγi
≤
T−1∑
i=1

1

eγ(i−1)
≤ 2.

Plugging this in (37), we can see ∃ constant CN > 36, such that:
T−1∑
i=1

(∑
x∈X

pA (Ii|x)

Ni

)
≤ ε

6
.

For the T th interval, ∑
x∈X

pA (T |x)

NT
≤ k

NT
≤ ε

6
. (39)

Adding the contributions from all the intervals gives us the desired bound.

E.3 Clipping Error Bound

In this part, we will bound the additional bias induced by the clipping step (Step 8 of GENCONDEXP).
In particular, we will prove the following lemma:

Lemma 14. (Clipping Error bound) Let ĤI be the estimate given by Algorithm 6 and Ĥ∗I be the
entropy estimate without the clipping step in Algorithm 9 , then∣∣∣E [ĤI]− E

[
Ĥ∗I

]∣∣∣ ≤ ε

3
. (40)
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Proof. As before, H̄∗i is the unclipped version of H̄i. Hence we have

∣∣∣E [Ĥ∗I]− E
[
ĤI

]∣∣∣ =

∣∣∣∣∣
T∑
i=1

pA(Ii)E
[
H̄i

]
−

T∑
i=1

pA(Ii)E
[
H̄∗i
]∣∣∣∣∣

=

∣∣∣∣∣
T∑
i=1

pA(Ii)(E
[
H̄i

]
− E

[
H̄∗i
]
)

∣∣∣∣∣ ≤
T∑
i=1

pA(Ii)
∣∣E [H̄i

]
− E

[
H̄∗i
]∣∣ . (41)

Let’s first bound each term pA(Ii)
∣∣E [H̄i

]
− E

[
H̄∗i
]∣∣ separately. Let E∗X,i = log

(
Ni

NX,i + 1

)
be

the unclipped version of EX,i during each round when we are trying to estimate Hi. As we can see
from the algorithm, E∗X,i’s are independent and H̄∗i is the empirical average of E∗X,i’s in the same
batch. Hence we know:

E
[
H̄∗i
]

= E
[
E∗X,i

]
.

Similarly,

E
[
H̄i

]
= E [EX,i] .

Hence we have pA(Ii)|E
[
H̄i

]
− E

[
H̄∗i
]
| = pA(Ii)|E [EX,i]− E

[
E∗X,i

]
|.

When
Ni

NX,i + 1
≥ 1

4hi
, we know EX,i = max{log

(
Ni

NX,i + 1

)
, log 1

4hi
} = E∗X,i

Next, let’s consider the case when
Ni

Nx,i + 1
∈ [ Ni

Ni+1 ,
1

4hi
), which is NX,i ∈ (4hiNi − 1, Ni]. We

divide the interval into i− 1 intervals, which are

L1 = (4Nih2 − 1, Ni], L2 = (4Nih3 − 1, 4Nih2 − 1], ..., Li−1 = (4Nihi − 1, 4Nihi−1 − 1]

And the corresponding ranges of
Ni

NX,i + 1
are [ Ni

Ni+1 ,
1

4h2
), [ 1

4h2
, 1
4h3

), ..., [ 1
4hi−1

, 1
4hi

).

Since we are conditioning on GENESTINT({Ni}ii=1 , X) = Ii, X here is distributed according to
pA(X|Ii). Then we can rewrite the difference as:

pA(Ii)|E [EX,i]− E
[
E∗X,i

]
| = pA(Ii)E

[
EX,i − E∗X,i

]
=pA(Ii)

i−1∑
t=1

∑
s∈Lt

∑
x

Pr (NX,i = s|X = x)pA(x|Ii)(log
1

4hi
− log

Ni
s+ 1

)

≤
i−1∑
t=1

pA(Ii)
∑
s∈Lt

∑
x

Pr (NX,i = s|X = x)
p(x)pA(Ii|x)

pA(Ii)
(log

1

4hi
− log

1

4ht
)

≤
i−1∑
t=1

pA(Ii)
∑
x

Pr (NX,i ∈ Lt|X = x)
p(x)pA(Ii|x)

pA(Ii)
β log(t)(k)

=

i−1∑
t=1

∑
x

Pr (NX,i ∈ Lt|X = x)pA(Ii|x)p(x)β log(t)(k). (42)

By Chernoff bound, we can get if p(x) < 2ht+1,

Pr (NX,i ∈ Lt|X = x) ≤ exp

(
−Niht+1

3

)
.

If p(x) > 2ht+1,
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pA(Ii|x) ≤ exp

(
−Niht+1

6

)
.

Hence

Pr (NX,i ∈ Lt|X = x)pA(Ii|x) ≤ max{Pr (NX,i ∈ Lt|X = x), pA(Ii|x)} ≤ exp(−Niht+1

6
)

Recall that Ni = CN · k
ε(log(i)(k))γ

, hi = (log(i−1)(k))β

k . Plugging in we get

Pr (NX,i ∈ Lt|X = x)pA(Ii|x) ≤ exp(−CN log(t)(k)β

6ε log(i)(k)γ
) ≤ 6ε log(i)(k)γ

CN log(t)(k)β
≤ 6ε

CN log(t)(k)γ
.

(43)

Plugging it into Equation 42, we get

pA(Ii)|E [Ex,i]− E
[
E∗x,i

]
| ≤

i−1∑
t=1

6ε

CN log(t)(k)γ
β log(t)(k) =

i−1∑
t=1

6βε

CN log(t)(k)γ−1
.

By (38), we get:

pA(Ii)|E [Ex,i]− E
[
E∗x,i

]
| ≤ 6βε

CN

i−1∑
t=1

et+1−T ≤ 18βε

CN
ei−T

Plugging this into (41), and summing over T intervals, we get:∣∣∣E [ĤI]− E
[
Ĥ∗I

]∣∣∣ ≤ 18βε

CN

T∑
i=1

ei−T ≤ 36βε

CN
.

Hence we get (40) is true with CN > 108β.

E.4 Concentration Bound

In this section, we will derive a high probability bound on
∣∣∣ĤI − E

[
ĤI

]∣∣∣. In particular, we will
prove the following lemma:

Lemma 15. (Concentration bound) Let ĤI be the estimate given by Algorithm 6 , then

Pr
(∣∣∣ĤI − E

[
ĤI

]∣∣∣ > ε

3

)
≤ 1

3
. (44)

Proof.∣∣∣ĤI − E
[
ĤI

]∣∣∣ =

∣∣∣∣∣
T∑
i=1

p̂A (Ii) H̄i −
T∑
t=1

pA (Ii)E
[
H̄i

]∣∣∣∣∣
=

∣∣∣∣∣
T∑
i=1

p̂A (Ii) H̄i −
T∑
t=1

pA (Ii) H̄i +

T∑
t=1

pA (Ii) H̄i −
T∑
t=1

pA (Ii)E
[
H̄i

]∣∣∣∣∣
≤
T−1∑
i=1

|p̂A (Ii)− pA (Ii)|
∣∣H̄i − H̄T

∣∣+

T∑
i=1

pA (Ii)
∣∣H̄i − E

[
H̄i

]∣∣ . (45)

Next, we will bound each of the term seperately. For the first T − 1 terms, note that, because of the

clipping step, H̄i ∈
[
log

(
1

4hi

)
, logNi

]
. Hence we have:

∣∣H̄i − H̄T

∣∣ ≤ log(4NThi) ≤ (β + 1) log
log(i−1)(k)

ε
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The estimation of p̂A (Ii) requires Ri independent executions of GENESTPROBINT. Therefore, by
Hoeffding’s inequality (Lemma 2), we have

Pr (|p̂A (Ii)− pA (Ii)| > ti) ≤ 2 exp
(
−Rit2i

)
.

Choosing ti =
ε

CT (log (4NThi))
5/4

(CT ≥ 30 and constant) for i = 1, . . . , T − 1 and the value of

Ri from Algorithm 6, the right hand expression can be bounded by:

2 exp
(
−Rit2i

)
≤ 2 exp

−CR
(

log
(

log(i−1)(k)/ε
))1/2

C2
T (β + 1)5/2

 ≤ 2C4
T (β + 1)5

C2
R log(i)(k)

. (46)

the last inequality follows from e−x ≤ 1
x2 for x > 0. Combing these for all T − 1 intervals, let

A = {
T−1∑
i=1

|p̂A (Ii)− pA (Ii)|
∣∣H̄i − H̄T

∣∣ ≥ T−1∑
i=1

ti
∣∣H̄i − H̄T

∣∣}.
Then by union bound and (38), we have:

Pr (A) ≤
T−1∑
i=1

2C4
T (β + 1)5

C2
R log(i)(k)

≤ 2C4
T (β + 1)5

C2
R

T−1∑
i=1

1

ei−1
≤ 4C4

T (β + 1)5

C2
R

.

Notice that:
T−1∑
i=1

ti
∣∣H̄i − H̄T

∣∣ ≤ T−1∑
i=1

ε

CT (log (4NThi))
5/4

log(4NThi) ≤
T−1∑
i=1

ε

CT

(
(β + 1) log(i)(k)

)1/4
≤
T−1∑
i=1

ε

CT e
i−1
4

≤ 5ε

CT
≤ ε

6
.

Hence we have for CR ≥ 6C2
T (β + 1)5/2, we have:

Pr

(
T−1∑
i=1

|p̂A (Ii)− pA (Ii)|
∣∣H̄i − H̄T

∣∣ ≥ ε

6

)
≤ Pr (A) ≤ 1

6

For the second term in Equation (45), we use Lemma 3 where p = pA (Ii), m = Ri, b = logNi,
a = log 1

hi
to get

Pr
(
pA (Ii)

∣∣H̄i − E
[
H̄i

]∣∣ > ci
)
≤ 3 exp

(
−Ric2i

8pA (Ii) (log 4Nihi)
2

)
.

Take ci =
ε

Cc(log (4NThi))
1/4

(CT ≥ 30 and constant) for i = 1, . . . , T . Using similar union

bound argument as the first part, we get:

Pr

(
T∑
i=1

pA (Ii)
∣∣H̄i − E

[
H̄i

]∣∣ ≥ ε

6

)
≤ 1

6
.

Hence, combining the two, we get:

Pr
(∣∣∣ĤI − E

[
ĤI

]∣∣∣ > ε

3

)
≤ 1

3
.
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