
A Supplementary Material

Section A.1 and A.2 provide in depth explanation and all information necessary for reproducing our experiments.
Section A.3 contains information about the algorithms and the suboptimal observer analysis. Section A.4 and
following show additional figures.

A.1 Generation of time series

We constructed time series with different noise types. Table 1 lists all distributions used in constructing our time
series. Figure A.1 shows the distributions’ densities and the dependence of residuals in forward and backward
direction for a fourth-order time series. This independence is used by the algorithm proposed by Peters et al.
[37].

The (forward) time series are constructed by the following rule

xt = 0.05 · xt−4 + 0.1 · xt−3 + 0.2 · xt−2 + 0.4 · xt−1 + εt. (1)
The first four values of xt were set to zero and the consecutive 400 time points are drooped in order to make
time series stationary. The mean of all noise distributions was set to 0 and the standard deviation to 44.72 pixels
on screen (1,13 cm). These values ensure that the time series is bounded to the range of possible coordinates of
the monitor used in our experiment. Backward time series were constructed in the way that we first constructed
new forward time series and then flipped the series along the time axis

In the Super-Gaussian and Bimodal case the noise was created according to the following rule:
εt = sgn(Y ) · |Y |r, (2)

while Y ∼ N (µ, σ2).We calculate, with the change of variable technique, the density of the noise as
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This variance of the noise depends only on σ and the exponent r. While fixing the exponent, the free parameters
σ can be used to set the variance of the noise distribution to 2000.

Please note that the above distribution is not well defined for εt = 0 if r > 1. However one can still show that
the area under the distribution is still defined for r > 1
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Table 1: Noise distributions used for constructing time series and the corresponding exponents.

Distribution Parameter (r)
Super-Gaussian 6
Super-Gaussian 4
Super-Gaussian 2
Super-Gaussian 1.8
Super-Gaussian 1.6
Super-Gaussian 1.41
Super-Gaussian 1.3

Bimodal 0.1
Bimodal 0.3
Bimodal 0.5
Bimodal 0.6
Bimodal 0.7
Bimodal 0.76
Bimodal 0.8
Gaussian 1

smoothed Uniform -
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Figure A.1: Noise distributions (left panel) used in our experiments and for generated time series
plots of fitted residuals εt over variables xt−1 in causal direction (middle panel) and anti causal
direction (right panel). The independence in middle panel and the dependence in the right panel is
used by the ResDep algorithm to determine the direction of the time series [37].
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A similar approach was chosen for the smoothed Uniform distribution. The smoothed Uniform distribution has
the following form

p(z|w, c) =
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The constant k is a normalization term
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the term c determines the steepness of the tails and the w variable controls the width of the distribution. We
choose to fix the constant c to 6.
One can show that for c = 6
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We solve this equation again for the width parameter and in the next step for the normalization parameter to
equalize the variance to 2000. Values for random noises were generated with the build-in Matlab generator for
the Bimodal, Super-Gaussian and Gaussian distribution. Rejection sampling was used for the smoothed Uniform
distribution.

A.2 Psychophysical Experiment

A.2.1 Paradigm and procedure

Figure A.2 shows a static stimulus from our experiment (animated stimuli are available in the supplementary
material). The position of the moving disk was directly obtained from the time series. A constant was added to
centre the time series. The moving disk had a diameter of 1.5 cm, corresponding to 0.6 degrees of visual angle
for the 70 cm distance between observers and display; the disk was slightly blurred with a centered Gaussian
distribution of standard deviation of 0.252 cm. Vertical bars show the centre of the screen to help participants in
judging the position of the dot. Stimuli were presented against a black background. The colour in normalized
values for green dots was (0,1,0), for red dots was (1,0,0) during training and the bars were again (1,1,1). In
“proper” experimental trials the dot colour was a neutral white (1,1,1).

Figure A.2: Static stimuli for the psychophysical experiment. In the learning trials, participants saw
the moving dot with the corresponding color. In experimental trials, the color was changed to white
and subjects had to press a button for the corresponding color.

Prior to the experiment written consensus was collected from all participants. Observers were told a cover story
that they should imagine working as doctors and that they view bacteria through a microscope. They were told to
classify the bacteria in harmless bacteria (green during the short training, [causal, term not used for participants])
and dangerous bacteria (red during the short training, [anti-causal, term not used for participants]). Neither the
noise distributions nor anything about time-reversal, the arrow-of-time or causal or anti-causal directions were
communicated to the participants nor any other information about the underlying scope of the experiment.
For each noise distribution (Super-Gaussian, Bimodal, smoothed Uniform, Gaussian) they saw 10 learning
trials in the beginning where the dots were already colored. In case of Super-Gaussian and Bimodal, where
we could change the difficulty with the exponent, the training trials were the easiest condition (r = 0.1 and r
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Table 2: Ordering for stimulus presentation for the first experiment for each subject.

Observer Day 1 Day 2
1. 2. 1. 2.

1 Bimodal Gauss Su-Gauss sUnif
2 sUnif. Bimod. Su-Gauss. Gauss
3 Su-Gauss. Gauss Bimod. sUnif.
4 Bimod. sUnif Su-Gauss Gauss
5 Su-Gauss Gauss Bimod. sUnif.
6 sUnif. Su-Gauss. Bimod. Gauss
7 Bimod. sUnif Su-Gauss Gauss
8 Su-Gauss. Gauss Bimod. sUnif.
9 Bimodal Gauss Su-Gauss sUnif

10 Su-Gauss Gauss Bimod. sUnif.

= 6). In training trials dots were already colored and observers could only passively watch the movement, no
responses were collected. It usually took participants only a few trials until they reported that they were able to
discriminate the dots. The ordering of conditions within the Super-Gaussian and Bimodal conditions was the
same as in Table 1.

In one session we presented stimuli from the long lasting distributions (Super-Gaussian, Bimodal) and one of the
short lasting distributions (Gaussian, smoothed Uniform); we never started with a Gaussian noise distribution,
Gaussian noise is not identifiable and we did not want to demotivate observers, see table 2.

One trial consisted of a stimulus presentation time of maximally 25 seconds (250ms per position) and an
additional response time of 1.2 seconds. The experiment was self-paced, thus participants could indicate their
choice with a button press at any time during stimulus presentation; stimulus presentation stopped as soon as
a button was pressed. Participants were not allowed to change their choice. Trials with no response were not
counted as an answer. After each trial feedback was provided by colouring the dot at the last position either
green or red for causal or anti-causal time series. Feedback was provided for one second. Afterwards, we showed
a 120ms black screen as inter-stimulus interval.

We calculated the number of trials according to the following rule of thumb. In psychophysical trials the
binomial distribution of correct responses is often approximated with a Gaussian distribution. The one-sided
95% confidence interval for a Gaussian distribution with probability p0 is:

p0 + 1.96 ·
√
p0(1− p0)

N
(9)

We decided that we wanted to be able discriminate chance probability p0 = 50% from 65% with 95% confidence.
This yields a sample size of 42 and we finally settled on 40 trials in our experiment per noise distribution,
parameter and observer.

Every trial was randomly chosen with a probability of 50% to be a causal or an anti-causal trial. For each noise
distribution and each exponent, subjects classified 40 Trials in 2 blocks of 20 trials. At the end of each block, the
overall accuracy and response time was displayed. The complete experiment took 3 hours, conducted on 2 days
with 1.5 hours experimentation each. After finishing the experiment participants received a debriefing.

The paradigm for experiment 2 was slightly changed. We were interested in the effect of shorter viewing times.
We used Bimodal noise with exponent r = 0.5 since we noticed that participants could classify these time series
well. On the other hand, we expected that the accuracy drops fast enough to a range where subjects showed a
performance above chance level but below ceiling performance. This helped us to investigate the relationship
between humans and algorithms in more detail.
At first, we familiarized subjects again with the task. Subjects observed ten times series with Bimodal noise and
exponent r = 0.1. Afterwards, Subjects rated 10 time series with increasing difficult Bimodal noise (r = 0.1,0.3
0.5). All participants reported that they were able to classify the time series. Then we fixed the exponent r to 0.5
and reduced the maximum viewing time by reducing the number of time points as indicated in table 3. For a
fairer comparison between algorithms and observers, the subjects were explicitly instructed to observe the time
series as long as possible unless they were really sure about the trial, see figure A.2.1.
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Figure A.3: Boxplots of the reaction times for the four observers in Experiment 2, from left to right
observer 11, 12, 10, 2. The dashed line shows the maximum possible reaction time.

Table 3: Ordering for stimulus presentation for second experiment where the viewing time was
reduced subsequently. The seed was used to freeze the noise for all subjects. However additionally
we checked that all subjects really saw the same time series.

Number of time points 100 50 25 20 16 12 8 4 2
Seed 1001 1002 1003 1004 1005 1006 1007 1008 1009

We encouraged the subject to observe the time series as long as possible to prevent that subjects always answered
after a short viewing period. All other parameters were constant and not changed compared to experiment 1.
This second experiment lasted 1.5 hours.

A.2.2 Observers

The first experiment was piloted with two naive observers (1 male, 1 female). They showed good performance
for all noise distributions. 17 naive observers participated in the first experiment (9 female, 8 male, mean age =
26y, stdev= 6.4y). The experiment is rather demanding—attention or “concentration” or willingness to perform
maximally well—and we screened participants based on their performance in what we considered an “easy
condition” r = 6, 4, 2 (Super-Gaussian) and r = 0, 1, 0.3, 0.5 (Bimodal). We excluded 7 of the 17 observers
after the first blocks since they did not get above 67.5% performance which was needed to be significantly
different from chance level. (A post-hoc and somewhat fuzzy explanation might be that for Super-Gaussian noise
with large exponents “a cue event” rarely happens. Most of the time noise with small values around 0 is sampled.
Thus, it was difficult for them to determine the direction. If they were not concentrating they easily missed
a cue event. Thus we think that excluded observers were not in general unable to detect the causal direction
(successful observers get easily >90% in these conditions) but that the seven excluded observers were not fully
focusing or concentrating on the experiment.) All observers reported normal or corrected-to-normal vision and
received monetary compensation and a bonus if they got an accuracy larger than 65% at Super-Gaussian (r =
1.41), Bimodal (r=0.76) and smoothed Uniform noise. The second experiment was performed by the same two
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pilots (Observer 11 and 12) and 2 good observers from the first experiments, Observer 2 and 10 (2 male, 2
female, mean age = 23y, stdev =2.4y). We did not use naive observers for experiment two since we expected no
effects of the debriefing in the current experiment.

A.2.3 Apparatus

Stimuli were presented on a 22′′ VIEWPIxx LCD monitor (VPixx Technologies, Saint-Bruno, Canada) in
a dark room. The monitor had a spatial resolution of 1920 × 1200 pixel (484 × 302mm) and a refresh
rate of 100 Hz. A chinrest and a headrest were used to keep the position of the head constant during the
experiment. Response collecting was done with the RESPONSEPixx (VPixx Technologies, Saint-Bruno,
Canada) controller. Stimulus presentation and response recordings were controlled using Psychtoolbox 3.0.12
[59, 60] in MATLAB (Release 2016a, The MathWorks, Inc., Natick, Massachusetts, U.S) along with the
iShow-library (https://zenodo.org/record/34217) on a desktop computer (12 core CPU i7-3930K, AMD
HD7970 graphics card “Tahiti” by AMD, Sunnyvale, California, United States) running Debian 9.

A.3 Analysis

A.3.1 Algorithms

We describe briefly our way to fit psychometric functions to the data in experiment 1 and experiment 2.
Afterwards we describe in depth the 3 algorithms (Dependence, DNN and Bayes) used in comparison to human
data.

In general, all analyses are done in MATLAB R2018b, most of the plots were done in R (version 3.4.2).
Psychometric functions were fitted with the psychometric toolbox [54] with a fixed guessing rate of 0.5. For
experiment 1 a cumulative Gaussian function was used. We fitted a logistic function to the data of Experiment 2.
No further changes to the default options were applied.

We used the ResDep algorithm proposed and offered by Bauer et al. [38] to detect the time series based on
independence relationships between data and (fitted) residuals. We modified the original algorithm to run in
Matlab 2018 since the vgxset and vgxvarx functions are not supported in the newest MATLAB version. To
compare the algorithm to the human performance, we also used a forced-choice paradigm, thus we always force
the algorithm to choose the direction in which the residuals are more independent. The algorithm outputs 0 if
it fails to fit a time series. We subtracted the mean and divided by the standard deviation each time series as
preprocessing step since MATLAB fittings have problems with time series of large variance. We made sure that
centering the time series does not change the relationship of the residuals to the data.
For the second experiment, we slightly further modified the original algorithm. In the original algorithm, the
order of the fitted time series is chosen with the Akaike Information Criterion [61] between 1 and 10. Instead
of the original implementation, we fit only up to order 1 and 5. We changed the maximum fitted order since
the Matlab routine has a problem to fit a short time series with long lags. The algorithm starts guessing for
time series shorter or equal than 8 time steps because fitting series is not possible and additionally also the
independence test does not work anymore.

The neural network was implemented in Matlab with the Deep Learning Toolbox (Version 12.0). Each Network
was trained separately for each noise distribution. We generated 30,000-time series, half of it causal ones, the
other half anti-causal ones. We used 75% as training data and 25% for validation. The first layer consisted of
a convolutional layer of kernel size 1 × 10 and 10 kernels in total, followed by a batch-Normalization layer,
a relu-layer, a fully connected layer and finally a softmax layer for classification. The initial learning rate
was set to 0.01 together with the Adam-solver of MATLAB. We limited learning to a maximum of 30 epochs
(approximately 3 minutes) and set the ”Validation Patience” to 5 epochs. All other values remained to the default
values. For every noise, we trained the network 3 times and chose the one with the best performance. This had
only very small effects on performance.
For experiment 2 minor modifications were necessary. We reduced the number of time points n until subjects
only saw two points in total. Thus we had to change the architecture for the convolutional layer and changed the
size of the first convolutional layer to min(10, n).

The last algorithm described is the ideal observer algorithm. We calculated the probability that the time series is
in causal direction (d = 1) or in anti causal direction (d = 0) given the data Xt={1,...,N}

p(d = 1|Xt={1,...,N}) =
p(Xt={1,...,N}|d = 1) · p(d = 1)

p(Xt={1,...,N})
=

ΠN
t=1p(xt|xt−1, ..., x1) · p(d = 1)

p(Xt={1,...,N})
. (10)
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since we only use time series of order p = 4 we could limit this to

p(d = 1|Xt={1,...,N}) =
p(Xt=1,...,N |d = 1) · p(d = 1)

p(Xt={1,...,N})
(11)

=
ΠN
t=1p(xt|xt−1, xt−2, xt−3, xt−4) · p(d = 1)

p(Xt={1,...,N})
(12)

=ΠN
t=5p(xt|xt−1, xt−2, xt−3, xt−4)·
p(x4|x3, x2, x1) · p(x3|x2, x1) · p(x2|x1) · p(x1) · p(d = 1)

p(Xt={1,...,N})
(13)

In the anti-causal direction we get

p(d = 0|Xt={1,...,N}) =ΠN−4
t=1 p(xt|xt+1, xt+2, xt+3, xt+4)·
p(xN−3|xN−2, xN−1, xN ) · p(xN−2|xN−1, xN ) · p(xN−1|xN ) · p(xN ) · p(d = 0)

p(Xt={1,...,N})
(14)

It follows that under assumption of equal probability of forward and backward time series that

p(d = 1|Xt={1,...,N})
p(d = 0|Xt={1,...,N}

) ≈ ΠN
t=5p(xt|xt−1, xt−2, xt−3, xt−4) · p(x1)

ΠN−4
t=1 p(xt|xt+1, xt+2, xt+3, xt+4) · p(xn)

. (15)

This equation holds only approximately since we skipped the terms after the first expression in eq. (13) and eq.
(14). For long time series we omit these terms since they only influence the final ratio marginally. However, this
could explain why the Bayes ideal observer algorithms performs worse than a Neural Network in experiment 2
for very small numbers of time points, because for short time series the approximation does not hold anymore.
The Bayesian ideal observer algorithm always outputs 0 for time series smaller than 5 data points.

As earlier noted we have fitted an (ecological valid) heuristic to the data in spirit similar to heuristic presented by
Stengård and Berg [53]. The heuristics were developed after we had evaluated the feedback from our subjects
and the analyse of the noise structure. We found two different principles for Bimodal and Super-Gaussian noise.
Informal speaking for Super-Gaussian noise, noise values are often sampled around 0. Therefore in the forward
direction, the dot often jumps around the centre and rarely makes a big jump outwards. After such a big jump,
the point slowly sprints back to the centre. This means that in the forward direction there are big jumps to the
outside, in the backward direction there are big jumps to the centre. The Bimodal condition behaves the other
way around. Often larger values are sampled and only rarely smaller ones.

We used a few lines of code to implement this heuristic. The heuristic searches for the maximum displacement
and takes the maximum jump distance n steps before and after the maximum. For Super-Gaussian noise
we say that the time series in the forward direction if maxbefore > maxafter and for Bimodal noise if
maxbefore < maxafter . (If one wouldn’t know the noise distribution one could use the kurtosis of fitted
residuals to determine which rule to use). The number of steps n is hyperparameter which can be tuned. In
general, we did not find a very strong performance dependence on this parameter. In experiment 1 and experiment
2 a value of n = 4 was used.

Finally, we show that our heuristic also works on real data. We used the same data as [37] and determined if we
should use the Super-Gaussian or Bimodal heuristic by the kurtosis of the fitted residuals. We get with a stepsize
of 12 an accuracy of 60.4%(p < 10−10)for 1180 time series.

Please note that the kurtosis for all time series was larger than 3 such that we decided to use the Super-Gaussian
rule. However, with this rule we only get an accuracy of 39.57%. But if we force the residual dependence
algorithm to classify the exact same time series (something [37] did not do in their paper) we yield an accuracy
of 42%. These EEG time series seem to some intrinsic properties which make it difficult to use these for an
arrow of time detection. Thus, we report 1 minus the accuracy for our heuristic.

A.3.2 Suboptimal Algorithms

Thanks to the suggestion of our reviewers we also tried to use suboptimal algorithms [53] to make the algorithms
more similar to human performance. We used two approaches to make the Bayesian observer and the Neural
Network suboptimal in experiment 2. First, we fitted a noise term additive to the decision variable (Model 2 in
Stengård and Berg). This corresponds to very late (decision) noise in the visual pathway.

For this purpose we sampled 10000 time series for each length of the time series. Then we added Gaussian noise
with zero mean and a specific standard deviation to the decision variable des

des =
p(d = 1|X)

p(d = 0|X)
+ η, η ∼ N (µ, σ2

l ). (16)

19



Afterwards we computed the accuracy for the different length of the time series and calculated the deviance
between human data and the accuracy of the suboptimal algorithm [62]. A grid search between standard
deviations of 0 and 20 was performed to search for the variance which yielded closes human performance. For
the ideal observer a standard deviation of 2.5 was selected and for the neural network a standard deviation of 5.5
Finally we calculated performance for the data used in experiment 2 by sampling noise with the above variance
and add these to the decision variables. Figure A.4 and A.5 shows the psychometric function and the correlation
analysis. As expected, the psychometric functions of the ideal observer and neural network become more similar
to human psychometric functions. However, the correlation analysis shows that they still classify the time series
differently (non significant consistency on a single trial basis).

Second, we fitted an additive noise term to the individual time series before calculating the decision of the ideal
observer.

xt = xt + η, η ∼ N (µ, σ2
e). (17)

This corresponds to noise in the early visual pathway (uncertainty about the exact location of the disk e.g. due to
micro-saccadic eye movements). The procedure equals the procedure for late noise, with the exception that the
grid search was done in the range of 0 to 40. Standard deviations of 21 and 19 were selected. Figure A.6 and
A.7 plots the psychometric function and the correlation analysis for early noise. The results are similar to the
late noise case. Although psychometric functions become more similar we do not see a lot of agreement in the
consistency analysis.

It is worth to note, that the exact curve of the psychometric function depends on the samples noise variables. We
repeated this step several times to check the implications. However the overall trend and the non-consistency
was in a very similar range.

Figure A.4: Psychometric functions for non optimal late noise algorithms in experiment 2. Plot
conventions as in Figure 1.
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Figure A.5: Consistency analysis for late noise algorithms in experiment 2. Plot conventions as in
Figure 3. Black Boxes indicate the use of suboptimal algorithms
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Figure A.6: Psychometric functions for non optimal early noise algorithms in experiment 2. Plot
conventions as in Figure 1.

22



Figure A.7: Consistency analysis for early noise algorithms in experiment 2. Plot conventions as in
Figure 3. Black Boxes indicate the use of suboptimal algorithms.
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A.4 Individual Results for Observers in Experiment 1

Figure A.8: Accuracy of the ten single observers in experiment 1 across all noise distributions and
pooled accuracy for all humans and the algorithms. From left to right we show performance for
increasing difficult Bimodal noise(b), Super-Gaussian noise(sg), Gaussian noise(g) and smoothed
Uniform(su) noise. The number corresponds to the exponent of the distribution. The horizontal line
shows the chance performance of 50%.
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Figure A.9: Psychometric Functions of the ten single observers in experiment 1 for time series with
Bimodal noise. Blacks dot represent human mean performance. Vertical lines represent the 75%
threshold. Whisker represent the 95% Credible Interval.
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Figure A.10: Psychometric Functions of the ten single observers in experiment 1 for time series with
Super-Gaussian noise. Blacks dot represent human mean performance. Vertical lines represent the
75% threshold. Whisker represent the 95% Credible Interval.
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Table 4: Thresholds and 95% Credible Interval for the 10 individual observers in experiment 1 from
psychometric functions fitted by Psignifit 4[54]

Observer Threshold Bimodal Threshold Super-Gaussian
1 0.60 [0.53,0.69] 1.66 [1.38,2.27]
2 0.56 [0.41,0.77] 2.19 [1.70,2.74]
3 0.69 [0.61,0.84] 1.36 [0.04,3.24]
4 0.64 [0.55,0.74] 1.68 [1.48,2.01]
5 0.72 [0.65,0.86] 1.58 [0.81,2.66]
6 0.74 [0.63,0.86] 1.32 [0.35,1.90]
7 0.41 [0.29,0.66] 2.41 [1.88,4.83]
8 0.65 [0.57,0.90] 1.70 [1.16,2.27]
9 0.73 [0.67,0.83] 1.74 [1.40,3.03]

10 0.73 [0.61,0.86] 1.38 [0.77,1.55]
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A.5 Analysis of the neural network

Figure A.5 shows a further performance investigation of the neural network. Learned weights are shown in
figure A.12 and figure A.13. We use the trained networks and tested the accuracy on all other noise distributions.
The neural network generalizes better from difficult noise (r =0.8 or r=1.3) to easy noise (r=0.1 or r=6) than in
the other direction. Furthermore, the network trained on Super-Gaussian noise or Bimodal noise interchange the
label if we test for the other noise distribution. This effect is indicated by a performance below chance level
and in extreme cases even accuracy of 0%. Bimodal noise and smoothed Uniform noise seem to show similar
performance as expected from the residual distribution, see discussion in the previous section. Remarkably,
some subjects told us after the experiment that when we switched the noise distributions from day 1 to day 2
they also thought that we interchanged the labels of the time series. Additionally, the network is able to capture
the noise distributions when trained on Super-Gaussian and Bimodal noise simultaneously. The Super-Gaussian
and Bimodal distribution had the same KL-Divergence to a Gaussian with same mean and variance.

Figure A.11: Generalization of the Neural Network across different noise distributions. We trained
the network on one noise distribution(rows) and tested against all other distributions (columns). The
mixed condition consists of a dataset where half of the time series have Bimodal noise and the other
Super-Gaussian noise with equal KL divergence compared to Gaussian distribution with same mean
and variance.

29



Figure A.12: Weights of the first convolutional layer of the neural network across all noise distribu-
tions. We used 10 kernels of length 10. The weights for the easier tasks are (exponents away from 1)
are in general smaller than weights for more difficult cases (weights close to 1).
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Figure A.13: Weights of the first convolutional layer of the neural network across all noise distribu-
tions. Black lines show the weights for output units in causal direction and grey lines the weights for
output units in anti-causal direction.
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A.6 Performance of human observers in other distance spaces

The parameterization with exponent r is somewhat arbitrary and not directly linked to a parameterized difficulty-
scale. A more natural parameterization could be the distance between noise distribution and the non-identifiable
Gaussian distribution with the same mean and variance. We calculate the distance with two Information Theory-
based f-divergences (Kulback-Leiber Divergence and the symmetric Jensen-Shannon Divergence) as well as the
Kolmogorov–Smirnov statistic in figure A.14. Human psychometric functions overlap for the exponent in the
JS-space and overlap less in the KL-divergence or KS-distance space. Thus, the performance of humans seems
to be captured rather well if we express the distributional distances in the JS-divergence space. Furthermore, if
we plot the Bimodal psychometric function on a 1/r scale, the difficulty of the Bimodal and Super-Gaussian
conditions for human observers is roughly equal, indicating that in our parameterized difficulty for human
observers is reasonably well captured by the distance of 1/r for the Bimodal and r for the Super-Gaussian noise.
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Figure A.14: Psychometric functions of human observers in other distance spaces. The first plot
shows the psychometric function where we converted the exponents to a KL-divergence between the
noise distribution and a Gaussian distribution with the same mean and variance. The second plot the
conversion to the symmetric Jenson-Shanon divergence and the third plot the Kolmogorov-Smirnov
distance. The last plot show the psychometric function when we inverted all Bimodal exponents (r<1).
We scaled the x-axis for the JS-Divergence, KS-Divergence and Exponents such that all Bimodal
psychometric functions have the same slope, scale values are 3.5 (JS), 2.91 (KS), 0.296 (Exponents).
Thus we can compare the threshold distances graphically. Vertical lines show thresholds and whiskers
show the 95% Credible Interval for thresholds from Psignifit.
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A.7 Block by block comparison of experiment 1

The psychometric functions summarize performance as a function of a single independent variable. To understand
and compare human observers and the different algorithms it is sometimes instructive to compare the performance
of humans and algorithms on a block-by-block basis (40 trials per block), as shown in Figure A.15. Each data
point represents the performance of one of the 10 observers for one noise distribution on the x-axis plotted
against algorithmic performance for the same time series on the y-axis; in addition we compare the performance
of the algorithms to each other. The ResDep algorithm is a little better than humans (almost 60% of blocks
are above the diagonal). The ideal observer and the neural network are, not surprisingly given figure 1 better
for almost every block of 40 trials than the human observers and there is little correlation between human
observers and the two algorithms. Additionally, the heuristic has similar performance as humans and the residual
dependence algorithm.

Figure A.15: Performance comparison on a block basis between humans and ResDep, ideal observer
and neural network. Every single symbol corresponds to one block with 40 trials. Different symbols
correspond to different noise distributions.
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A.8 Individual Results for Observers in Experiment 2

Figure A.16: Individual performance of observers in experiment 4. The vertical line indicates chance
performance. All 4 observers show a similar performance even for very short time series. Individual
Thresholds are for Subject 11: 14.45, 95% CI [6.29 22.35], Subject 12: 14.33, 95% CI [7.53,20.86],
Subject 10: 19.04, 95% CI [10.58,30.07], Subject 2: 30.55.04, 95% CI [20.53,58.48].
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A.9 Results of experiment 2 for 3 Observers

Figure A.17: Human observer consistency and observer-algorithmic consistency for the frozen noise
paradigm. Plot conventions as in figure 3 but excluded poor performing subject BW.
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A.10 Consistency analysis for algorithms with more samples

Figure A.18: Revaluation of lower left part in Figure 3 with more trials. Expected consistency versus
observed consistency for algorithms for 1000 trials per time point condition. Lengths of time series
ranged from 5-31 time point with spacing 1 and 35-100 with spacing 5.
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A.11 Frozen noise analysis between ideal observer and network for difficult Super-Gaussian
noise

Figure A.19: Ideal observer and network consistency for the frozen noise paradigm. Similar to
figure A.18. But we avoid the intrinsic problems of the ideal observer algorithm 2.3 with shot time
series by using again time series with 100 time points and made the time series more difficult by
making the exponent closer to 1 (Gaussian noise). 1000 times series per exponent were used. The
x-axis shows the expected proportion of equally answered trials under the assumption of independent
observers or algorithms. The y-axis shows the actual observed number of equally answered trials in
the experiment. Shaded area shows a 95% confidence interval calculated based on the Wilson score
interval [55]. Color codes the Exponent. We used 30 exponents in the linear range between 1.1 and
1.4.
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