
Appendix: End to end learning and optimization on graphs

1 Proofs

1.1 Exact expression for gradients

Define Ri =
∑n
j=1 rji and Ci =

∑n
j=1 rjixj . We will work with Ci ∈ Rp×1 as a column vector. For

a fixed i, j, we have

∂fi,·
∂xj

= −
Rixj

[
∂rji
∂xj

]>
− Ci

[
∂rji
∂xj

]>
R2
i

− rji
Ri
I

where I denotes the p-dimensional identity matrix. Similarly, fixing i, k gives

∂fi,·
∂µk

= δikI −
Ri
∑n
j=1 xj

[
∂rji
∂µk

]>
− Ci

[∑n
j=1

∂rji
∂µk

]>
R2
i

1.2 Guarantee for approximate gradients

Proposition 1. Suppose that for all points j, ||xj − µi|| − ||xj − µc(j)|| ≥ δ for all i 6= c(j) and

that for all clusters i,
∑n
j=1 rji ≥ αn. Moreover, suppose that βδ > log 2βK2

α . Then,
∣∣∣∣∣∣ ∂f∂µ − I∣∣∣∣∣∣

1
≤

exp(−δβ)
(

K2β
1
2α−K2β exp(−δβ)

)
where || · ||1 is the operator 1-norm.

We focus on the off-diagonal component of ∂fim
∂µk`

, given by

A(i,m),(k,`) = −
Ri
∑n
j=1 x

m
j

[
∂rji
∂µ`k

]
− Cmi

[∑n
j=1

∂rji
∂µ`k

]
R2
i

The key term here is
∂rji
∂µ`k

. Let sji = −β||xj − µi|| Since r is defined via the softmax function,

we have

∂rji
∂µ`k

=
∂rji
∂sjk

∂sjk
∂µ`k

where

1

∂rji
∂sjk

=

{
rji(1− rji) if i = k

−rjirjk otherwise.

Note now via Lemma 1, in both cases we have that

∣∣∣∣ ∂rji∂sjk

∣∣∣∣ ≤ K exp(−βδ)

Define ε = K exp(−βδ) and note that we have that
∣∣∣∂sjk∂µ`k

∣∣∣ ≤ β, since we defined s in terms of

cosine similarity and have assumed that the input is normalized. Putting this together, we have

∣∣A(i,m),(k,`)

∣∣ ≤ ∑n
j=1 x

m
j εβ

Ri
+
Cmi nεβ

R2
i

≤
εβ
∑n
j=1 x

m
j

αn
+
µmi nεβ

Ri

≤
εβ
∑n
j=1 x

m
j

αn
+
µmi εβ

α

and so

||A||1 = max
(k,`)

∑
(i,m)

A(i,m),(k,`)

≤ max
(k,`)

∑
(i,m)

εβ
∑n
j=1 x

m
j

αn
+
µmi εβ

α

≤ max
(k,`)

∑
i

εβn

αn
+
εβ

α
(since ||xj ||1, ||µi||1 ≤ 1)

≤ 2Kεβ

α

=
2K2β exp(−βδ)

α
.

Since by assumption βδ > log 2βK2

α , we know that ||A||1 < 1 and applying Lemma 2 competes
the proof.

Lemma 1. Consider a point j and let i = arg maxk rjk. Then, rji ≥ 1
1+K exp(−βδ) , and correspond-

ingly,
∑
k 6=i rjk ≤

K exp(−βδ)
K exp(−βδ)+1 ≤ K exp(−βδ).

Proof. Equation 4 of [2] gives that

rij ≥
∏
k 6=i

1

1 + exp(−(si − sk))
.

2

Since by assumption we have −||xj − µi|| ≥ δ||xj − µk||, we obtain

rij ≥
∏
k 6=i

1

1 + exp(−δβ)

≥ 1

1 +K exp(−δβ)
(using that exp(−δβ) ≤ 1).

which proves the lemma.

Lemma 2. Suppose that for a matrix A, ||A− I|| ≤ δ for some δ < 1 and an operator norm || · ||.
Then, ||A−1 − I|| ≤ δ

1−δ .

Proof. Let B = I −A. We have

A−1 = (I −B)−1

=

∞∑
i=0

Bi (using the Neumann series representation)

= I +

∞∑
i=1

Bi

and so ||A−1 − I||∞ =
∣∣∣∣∑∞

i=1B
i
∣∣∣∣
∞. We have∣∣∣∣∣

∣∣∣∣∣
∞∑
i=1

Bi

∣∣∣∣∣
∣∣∣∣∣
∞

≤
∞∑
i=1

||Bi||∞

≤
∞∑
i=1

||B||i∞ (since operator norms are submultiplicative)

=
δ

1− δ
(geometric series).

2 Experimental setup details

2.1 Hyperparameters

All methods were trained with the Adam optimizer. For the single-graph experiments, we tested
the following settings on the pubmed graph (which was not used in our single-graph experiments):

• β = 1, 10, 30, 50

• learning rate = 0.01, 0.001

• training iterations = 100, 200, ..., 1000

3

• Number of forward pass k-means updates: 1, 3

• Whether to increase the number of k-means updates to 5 after 500 training iterations.

• GCN hidden layer size: 20, 50, 100

• Embedding dimension: 20, 50, 100

For all single-graph experiments, we used β = 30, γ = 100, GCN hidden layer = embedding
dimension = 50, 1 k-means update in the forward pass, learning rate = 0.01, and 1000 training
iterations, with the number of k-means updates increasing to 5 after 500 iterations.

We tested the following set of hyperparameters on the validation set for each graph distribution

• β = 30, 50, 70, 100

• learning rate = 0.01, 0.001

• dropout = 0.5, 0.2

• training iterations = 10, 20...300

• Number of forward pass k-means updates: 1, 5, 10, 15

• Hidden layer size: 20, 50, 100

• Embedding dimension: 20, 50, 100

We selected β = 70, learning rate = 0.001, dropout = 0.2, and hidden layer = embedding
dimension = 50 for all experiments. On the synthetic graphs we used 70 training iterations and 10
forward-pass k-means updates. For pubmed, we used 220 and 1, respectively.

2.2 Synthetic graph generation

Each node has a set of attributes yi (in this case, demographic features simulated from real popu-

lation data); node i forms a connection to node j with probability proportional to e−
1
ρ ||yi−yj ||d(j)

where d(j) is the degree of node j. This models both the homophily and heavy-tailed degree dis-
tribution seen in real world networks. We took ρ = 0.025 to obtain a high degree of homophily,
so that there is meaningful community structure. In order to make the problem more difficult, our
method does not observe the features y; instead, we generate unsupervised features from the graph
structure alone using role2vec [1] (which generates inductive representations based on motif counts
that are meaningful across graphs). Each graph has 500 nodes.

2.3 Code

The code used for the experiments is included in the supplemental material. Due to file size limita-
tions, the data can be found at https://www.dropbox.com/s/5ru0xyzojdk7wn8/data_graphopt.
zip?dl=0. The files “singlegraph linkpred.py” and “distributional linkpred.py” run the experi-
ments or the single graph and inductive settings, respectively. We use PyTorch version 1.1.0. All
GCNs are implemented using the pygcn package (https://github.com/tkipf/pygcn). Networkx
version 2.3 is used for many graph operations, along with igraph 0.7.1 to accelerate shortest path
computations. The included Dockerfile builds the environment we used for the experiments, with
the exception of pygcn, which must be downloaded from github and installed separately.

4

https://www.dropbox.com/s/5ru0xyzojdk7wn8/data_graphopt.zip?dl=0
https://www.dropbox.com/s/5ru0xyzojdk7wn8/data_graphopt.zip?dl=0
https://github.com/tkipf/pygcn

2.4 Hardware

All methods were run on a machine with 14 i9 3.1 GHz cores and 128 GB of RAM. For fair runtime
comparisons with the baselines, all methods were run on CPU.

3 Results for K = 10

Table 1: Results for community detection. “-” for GCN-2Stage-Newman in the Learning + opti-
mization section denotes that the method could not be run due to numerical issues.

Learning + optimization Optimization

cora cite. prot. adol fb cora cite. prot. adol fb

ClusterNet 0.56 0.53 0.28 0.47 0.28 0.71 0.76 0.52 0.55 0.80
GCN-e2e 0.01 0.01 0.06 0.08 0.00 0.07 0.08 0.14 0.15 0.15
Train-CNM 0.20 0.44 0.09 0.01 0.17 0.08 0.34 0.05 0.60 0.80
Train-Newman 0.08 0.15 0.15 0.14 0.07 0.20 0.22 0.29 0.30 0.47
Train-SC 0.06 0.04 0.05 0.22 0.21 0.15 0.08 0.07 0.46 0.79
GCN-2stage-CNM 0.20 0.23 0.18 0.32 0.08 - - - - -
GCN-2stage-Newman 0.01 0.00 0.00 - 0.00 - - - - -
GCN-2stage-SC 0.13 0.18 0.10 0.29 0.18 - - - - -

Table 2: Results for facility location

Learning + optimization Optimization

cora cite. prot. adol fb cora cite. prot. adol fb

ClusterNet 9 14 7 5 2 8 13 6 5 2
GCN-e2e 12 15 8 6 4 10 14 7 5 4
Train-greedy 14 16 8 8 6 9 14 7 6 5
Train-gonzalez 11 15 8 7 6 9 13 7 6 2
GCN-2Stage-greedy 14 16 8 7 6 - - - - -
GCN-2Stage-gonzalez 12 16 8 6 5 - - - - -

4 Timing Results

We run experiments on Intel i9 7940X @ 3.1 GHz with 128 GB of RAM. We report runtime in
seconds. For algorithms with learned models, we report both the training time and the time to
complete a single forward pass.

5

Table 3: Timing results for the community detection task (s)

cora cite. prot. adol fb

ClusterNet - Training Time 59.48 149.73 129.63 56.68 54.33
ClusterNet - Forward Pass 0.04 0.12 0.11 0.04 0.05
GCN-e2e - Training Time 36.83 54.99 34.60 29.04 28.17
GCN-e2e - Forward Pass 0.002 0.005 0.002 0.003 0.001
Train-CNM 1.31 1.28 1.02 1.03 2.94
Train-Newman 9.99 15.89 15.19 11.45 7.25
Train-SC 0.41 0.62 0.55 0.38 0.48
GCN-2Stage - Training Time 68.79 72.20 75.69 103.56 57.62
GCN-2Stage-CNM 119.34 178.39 159.64 101.64 142.02
GCN-2Stage-New. 37.96 58.26 51.70 33.14 43.88
GCN-2Stage-SC 0.40 0.61 0.50 0.33 0.36

Table 4: Timing results for the kcenter task (s)

cora cite. prot. adol fb

ClusterNet - Training Time 264.14 555.84 488.37 244.74 246.57
ClusterNet - Forward Pass 0.10 0.23 0.20 0.09 0.11
GCN-e2e - Training Time 237.68 511.23 446.76 229.49 221.28
GCN-e2e - Forward Pass 0.003 0.006 .005 0.004 .003
Train-Greedy 1029.18 2387 1966 619.06 1244.09
Train-Gonzalez 0.082 0.14 0.12 0.07 .066
GCN-2Stage - Training Time 73.82 70.21 103.98 75.48 104.66
GCN-2Stage-Greedy 1189.15 2367 2017 621.59 1237.871
GCN-2Stage-Gonzalez 0.18 0.28 0.25 0.13 0.13

Table 5: Timing results in the inductive setting for community detection task (s)

synthetic pubmed

ClusterNet - Training time 6.57 13.74
ClusterNet - Forward Pass 0.003 0.008
GCN-e2e - Training time 11.40 15.86
GCN-e2e - Forward Pass 0.04 0.03
Train-CNM 0.08 0.17
Train-Newman 0.65 1.83
Train-SC 0.03 0.04
2Stage - Train 10.98 15.86
2Stage-CNM 3.23 13.73
2Stage-New. 1.12 4.29
2Stage-SC 0.04 0.10

6

Table 6: Timing results in the inductive setting for the kcenter task (s)

synthetic pubmed

ClusterNet - Training Time 14.36 43.06
ClusterNet - Forward Pass 0.005 0.02
GCN-e2e - Training Time 9.49 33.73
GCN-e2e - Forward Pass 0.01 0.02
Train-Gonzalez 0.07 0.49
Train-Greedy 4.99 32.7
2Stage - Train 11.00 15.78
2Stage-Gonzalez 0.07 0.07
2Stage-Greedy 5.31 16.16

References

[1] Nesreen K Ahmed, Ryan Rossi, John Boaz Lee, Theodore L Willke, Rong Zhou, Xiangnan Kong,
and Hoda Eldardiry. Learning role-based graph embeddings. arXiv preprint arXiv:1802.02896,
2018.

[2] Michalis Titsias. One-vs-each approximation to softmax for scalable estimation of probabilities.
In NeurIPS, 2016.

7

	Proofs
	Exact expression for gradients
	Guarantee for approximate gradients

	Experimental setup details
	Hyperparameters
	Synthetic graph generation
	Code
	Hardware

	Results for K=10
	Timing Results

