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Abstract

We consider the problem of multi-objective (MO) blackbox optimization using
expensive function evaluations, where the goal is to approximate the true pareto-set
of solutions by minimizing the number of function evaluations. For example, in
hardware design optimization, we need to find the designs that trade-off perfor-
mance, energy, and area overhead using expensive computational simulations. In
this paper, we propose a novel approach referred as Max-value Entropy Search for
Multi-objective Optimization (MESMO) to solve this problem. MESMO employs
an output-space entropy based acquisition function to efficiently select the sequence
of inputs for evaluation to quickly uncover high-quality pareto-set solutions. We
also provide theoretical analysis to characterize the efficacy of MESMO. Our
experiments on several synthetic and real-world benchmark problems show that
MESMO consistently outperforms the state-of-the-art algorithms.

1 Introduction

Many engineering and scientific applications involve making design choices to optimize multiple
objectives. Some examples include tuning the knobs of a compiler to optimize performance and
efficiency of a set of software programs; and designing new materials to optimize strength, elasticity,
and durability. There are two common challenges in solving this kind of optimization problems: 1)
The objective functions are unknown and we need to perform expensive experiments to evaluate
each candidate design choice. For example, performing computational simulations and physical
lab experiments for compiler optimization and material design applications respectively. 2) The
objectives are conflicting in nature and all of them cannot be optimized simultaneously. Therefore,
we need to find the Pareto optimal set of solutions. A solution is called Pareto optimal if it cannot be
improved in any of the objectives without compromising some other objective. The overall goal is to
approximate the optimal Pareto set by minimizing the number of function evaluations.

Bayesian Optimization (BO) [22] is an effective framework to solve blackbox optimization problems
with expensive function evaluations. The key idea behind BO is to build a cheap surrogate model
(e.g., Gaussian Process [28]) using the real experimental evaluations; and employ it to intelligently
select the sequence of function evaluations using an acquisition function, e.g., expected improvement
(EI). There is a large body of literature on single-objective BO algorithms [22] and their applications
including hyper-parameter tuning of machine learning methods [24, 12]. However, there is relatively
less work on the more challenging problem of BO for multiple objective functions [7] as discussed in
the related work section.

Prior work on multi-objective BO is lacking in the following ways. Many algorithms reduce
the problem to single-objective optimization by designing appropriate acquisition functions, e.g.,
expected improvement in Pareto hypervolume [11, 5]. Unfortunately, this choice is sub-optimal
as it can potentially lead to aggressive exploitation behavior. Additionally, algorithms to optimize
Pareto Hypervolume (PHV) based acquisition functions scale poorly as the number of objectives and
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dimensionality of input space grows. Other method relies on input space entropy based acquisition
function [7] to select the candidate inputs for evaluation. However, it is computationally expensive to
approximate and optimize this acquisition function.

In this paper, we propose a novel and principled approach referred as Max-value Entropy Search for
Multi-objective Optimization (MESMO) to overcome the drawbacks of prior work. MESMO employs
an output space entropy based acquisition function to select the candidate inputs for evaluation. The
key idea is to evaluate the input that maximizes the information gain about the optimal Pareto front
in each iteration. Output space entropy search has many advantages over algorithms based on input
space entropy search: a) allows much tighter approximation; b) significantly cheaper to compute; and
c) naturally lends itself to robust optimization. Indeed, our experiments demonstrate these advantages
of MESMO. Our work is inspired by the recent success of single-objective BO algorithms based on
the idea of optimizing output-space information gain [26, 9], which are shown to be most efficient
and robust among a family of information-theoretic acquisition functions [6, 8]. Specifically, we
extend the max-value entropy search approach [26] to the challenging multi-objective setting.

Contributions. The main contributions of this paper are:

• Developing a principled approach referred as MESMO to solve multi-objective blackbox
optimization problems. MESMO employs an output space entropy based acquisition function
to efficiently select the sequence of candidate inputs for evaluation.

• Theoretical analysis of the MESMO algorithm in terms of asymptotic regret bounds.

• Comprehensive experiments over diverse synthetic and real-world benchmark problems to
show accuracy and efficiency improvements over existing methods.

2 Background and Problem Setup

Bayesian Optimization (BO) Framework. BO is a very efficient framework to solve global opti-
mization problems using black-box evaluations of expensive objective functions. Let X ⊆ <d be an
input space. In single-objective BO formulation, we are given an unknown real-valued objective
function f : X 7→ <, which can evaluate each input x ∈ X to produce an evaluation y = f(x). Each
evaluation f(x) is expensive in terms of the consumed resources. The main goal is to find an input
x∗ ∈ X that approximately optimizes f by performing a limited number of function evaluations. BO
algorithms learn a cheap surrogate model from training data obtained from past function evaluations.
They intelligently select the next input for evaluation by trading-off exploration and exploitation to
quickly direct the search towards optimal inputs. The three key elements of BO framework are:

1) Statistical Model of the true function f(x). Gaussian Process (GP) [28] is the most commonly
used model. A GP over a space X is a random process from X to <. It is characterized by a mean
function µ : X 7→ < and a covariance or kernel function κ : X× X 7→ <. If a function f is sampled
from GP(µ, κ), then f(x) is distributed normally N (µ(x), κ(x, x)) for a finite set of inputs from
x ∈ X .

2) Acquisition Function (α) to score the utility of evaluating a candidate input x ∈ X based on
the statistical model. Some popular acquisition functions in the single-objective literature include
expected improvement (EI), upper confidence bound (UCB), predictive entropy search (PES) [8], and
max-value entropy search (MES) [26].

3) Optimization Procedure to select the best scoring candidate input according to α depending
on statistical model. DIRECT [10] is a very popular approach for acquisition function optimization.

Multi-Objective Optimization (MOO) Problem. Without loss of generality, our goal is to minimize
real-valued objective functions f1(x), f2(x), · · · , fK(x), with K ≥ 2, over continuous space X ⊆
<d. Each evaluation of an input x ∈ X produces a vector of objective values y = (y1, y2, · · · , yK)
where yi = fi(x) for all i ∈ {1, 2, · · · ,K}. We say that a point x Pareto-dominates another point x′

if fi(x) ≤ fi(x′) ∀i and there exists some j ∈ {1, 2, · · · ,K} such that fj(x) < fj(x
′). The optimal

solution of MOO problem is a set of points X ∗ ⊂ X such that no point x′ ∈ X\X ∗ Pareto-dominates
a point x ∈ X ∗. The solution set X ∗ is called the optimal Pareto set and the corresponding set of
function values Y∗ is called the optimal Pareto front. Our goal is to approximate X ∗ by minimizing
the number of function evaluations.
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3 Related work

There is a family of model based multi-objective BO algorithms that reduce the problem to single-
objective optimization. ParEGO method [11] employs random scalarization for this purpose: scalar
weights of K objective functions are sampled from a uniform distribution to construct a single-
objective function and expected improvement is employed as the acquisition function to select the
next input for evaluation. ParEGO is simple and fast, but more advanced approaches often outperform
it. Many methods optimize the Pareto hypervolume (PHV) metric [5] that captures the quality of a
candidate Pareto set. This is done by extending the standard acquisition functions to PHV objective,
e.g., expected improvement in PHV (EHI) [5] and probability of improvement in PHV (SUR)[17].
Unfortunately, algorithms to optimize PHV based acquisition functions scale very poorly and are
not feasible for more than two objectives. SMSego is a relatively faster method [19]. To improve
scalability, the gain in hypervolume is computed over a limited set of points: SMSego finds those
set of points by optimizing the posterior means of the GPs. A common drawback of this family of
algorithms is that reduction to single-objective optimization can potentially lead to more exploitation
behavior resulting in sub-optimal solutions.

PAL [31] and PESMO [7] are principled algorithms based on information theory. PAL tries to
classify the input points based on the learned models into three categories: Pareto optimal, non-Pareto
optimal, and uncertain. In each iteration, it selects the candidate input for evaluation towards the
goal of minimizing the size of uncertain set. PAL provides theoretical guarantees, but it is only
applicable for input space X with finite set of discrete points. PESMO [7] relies on input space
entropy based acquisition function and iteratively selects the input that maximizes the information
gained about the optimal Pareto set X ∗. Unfortunately, optimizing this acquisition function poses
significant challenges: a) requires a series of approximations, which can be potentially sub-optimal;
and b) optimization, even after approximations, is expensive c) performance is strongly dependent
on the number of Monte-Carlo samples. In comparison, our proposed output space entropy based
acquisition function overcomes the above challenges, and allows efficient and robust optimization.
More specifically, the time complexities of acquisition function computation in PESMO and MESMO
ignoring the time to solve cheap MO problem that is common for both algorithms are O(SKm3)
and O(SK) respectively, where S is the number of Monte-Carlo samples, K is the number of
objectives, and m is the size of the sample Pareto set in PESMO. Additionally, as demonstrated in
our experiments, MESMO is very robust and performs very well even with one sample.

4 MESMO Algorithm for Multi-Objective Optimization

In this section, we explain the technical details of our proposed MESMO algorithm. We first mathe-
matically describe the output space entropy based acquisition function and provide an algorithmic
approach to efficiently compute it. Subsequently, we theoretically analyze MESMO in terms of
asymptotic regret bounds.

Surrogate models. Gaussian processes (GPs) are shown to be effective surrogate models in prior
work on single and multi-objective BO [8, 27, 26, 25, 7]. Similar to prior work [7], we model the
objective functions f1, f2, · · · , fK using K independent GP modelsM1,M2, · · · ,MK with zero
mean and i.i.d. observation noise. Let D = {(xi,yi)}t−1

i=1 be the training data from past t−1 function
evaluations, where xi ∈ X is an input and yi = {y1

i , y
2
i , · · · , yKi } is the output vector resulting from

evaluating functions f1, f2, · · · , fK at xi. We learn surrogate modelsM1,M2, · · · ,MK from D.

Output space entropy based acquisition function. Input space entropy based methods like PESMO
[7] selects the next candidate input xt (for ease of notation, we drop the subscript in below discussion)
by maximizing the information gain about the optimal Pareto set X ∗. The acquisition function based
on input space entropy is given as follows:

α(x) = I({x,y},X ∗ | D) (4.1)
= H(X ∗ | D)− Ey[H(X ∗ | D ∪ {x,y})] (4.2)
= H(y | D,x)− EX∗ [H(y | D,x,X ∗)] (4.3)

Information gain is defined as the expected reduction in entropy H(.) of the posterior distribution
P (X ∗ | D) over the optimal Pareto set X ∗ as given in Equations 4.2 and 4.3 (resulting from
symmetric property of information gain). This mathematical formulation relies on a very expensive
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and high-dimensional (m · d dimensions) distribution P (X ∗ | D), where m is size of the optimal
Pareto set X ∗. Furthermore, optimizing the second term in r.h.s poses significant challenges: a)
requires a series of approximations [7] which can be potentially sub-optimal; and b) optimization,
even after approximations, is expensive c) performance is strongly dependent on the number of
Monte-Carlo samples.

To overcome the above challenges of computing input space entropy based acquisition function, we
take an alternative route and propose to maximize the information gain about the optimal Pareto
front Y∗. This is equivalent to expected reduction in entropy over the Pareto front Y∗, which relies
on a computationally cheap and low-dimensional (m ·K dimensions, which is significantly less than
m · d as K � d in practice) distribution P (Y∗ | D). Our acquisition function that maximizes the
information gain between the next candidate input for evaluation x and Pareto front Y∗ is given as:

α(x) = I({x,y},Y∗ | D) (4.4)
= H(Y∗ | D)− Ey[H(Y∗ | D ∪ {x,y})] (4.5)
= H(y | D,x)− EY∗ [H(y | D,x,Y∗)] (4.6)

The first term in the r.h.s of equation 4.6 (entropy of a factorizable K-dimensional gaussian distribution
P (y | D,x)) can be computed in closed form as shown below:

H(y | D,x) =
K(1 + ln(2π))

2
+

K∑
i=1

ln(σi(x)) (4.7)

where σ2
i (x) is the predictive variance of ith GP at input x. The second term in the r.h.s of equation 4.6

is an expectation over the Pareto front Y∗. We can approximately compute this term via Monte-Carlo
sampling as shown below:

EY∗ [H(y | D,x,Y∗)] ' 1

S

S∑
s=1

[H(y | D,x,Y∗s )] (4.8)

where S is the number of samples and Y∗s denote a sample Pareto front. The main advantages of our
acquisition function are: computational efficiency and robustness to the number of samples. Our
experiments demonstrate these advantages over input space entropy based acquisition function.

There are two key algorithmic steps to compute Equation 4.8: 1) How to compute Pareto front
samples Y∗s ?; and 2) How to compute the entropy with respect to a given Pareto front sample Y∗s ?
We provide solutions for these two questions below.

1) Computing Pareto front samples via cheap multi-objective optimization. To compute a
Pareto front sample Y∗s , we first sample functions from the posterior GP models via random fourier
features [8, 20] and then solve a cheap multi-objective optimization over the K sampled functions.

Sampling functions from posterior GP. Similar to prior work [8, 7, 26], we employ random
fourier features based sampling procedure. We approximate each GP prior as f̃ = φ(x)T θ, where
θ ∼ N(0, I). The key idea behind random fourier features is to construct each function sample
f̃(x) as a finitely parametrized approximation: φ(x)T θ, where θ is sampled from its corresponding
posterior distribution conditioned on the data D obtained from past function evaluations: θ|D ∼
N(A−1ΦTyn, σ

2A−1), where A = ΦTΦ + σ2I and ΦT = [φ(x1), · · · , φ(xt−1)].

Cheap MO solver. We sample f̃i from GP modelMi for each of the K functions as described
above. A cheap multi-objective optimization problem over the K sampled functions f̃1, f̃2, · · · , f̃k
is solved to compute sample Pareto front Y∗s . This cheap multi-objective optimization also allows us
to capture the interactions between different objectives. We employ the popular NSGA-II algorithm
[3] to solve the MO problem with cheap objective functions noting that any other algorithm can be
used to similar effect.

2) Entropy computation with a sample Pareto front. Let Y∗s = {z1, · · · , zm} be the sample
Pareto front, where m is the size of the Pareto front and each zi = {z1

i , · · · , zKi } is a K-vector
evaluated at the K sampled functions. The following inequality holds for each component yj of the
K-vector y = {y1, · · · , yK} in the entropy term H(y | D,x,Y∗s ):

yj ≤ max{zj1, · · · zjm} ∀j ∈ {1, · · · ,K} (4.9)
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The inequality essentially says that the jth component of y (i.e., yj) is upper-bounded by a value
obtained by taking the maximum of jth components of all mK-vectors in the Pareto front Y∗s . This
inequality can be proven by a contradiction argument. Suppose there exists some component yj of
y such that yj > max{zj1, · · · zjm}. However, by definition, y is a non-dominated point because no
point dominates it in the jth dimension. This results in y ∈ Y∗s which is a contradiction. Therefore,
our hypothesis that yj > max{zj1, · · · zjm} is incorrect and inequality 4.9 holds.

By combining the inequality 4.9 and the fact that each function is modeled as a GP, we can model
each component yj as a truncated Gaussian distribution since the distribution of yj needs to satisfy
yj ≤ max{zj1, · · · zjm}. Furthermore, a common property of entropy measure allows us to decompose
the entropy of a set of independent variables into a sum over entropies of individual variables [2]:

H(y | D,x,Y∗s ) '
K∑
j=1

H(yj |D,x,max{zj1, · · · zjm}) (4.10)

Equation 4.10 and the fact that the entropy of a truncated Gaussian distribution[14] can be computed
in closed form gives the following mathematical expression for the entropy term H(y | D,x,Y∗s ).
We provide the complete details of the derivation in the Appendix.

H(y | D,x,Y∗s ) '
K∑
j=1

[
(1 + ln(2π))

2
+ ln(σj(x)) + ln Φ(γjs(x))− γjs(x)φ(γjs(x))

2Φ(γjs(x))

]
(4.11)

where γjs(x) =
yj∗s −µj(x)
σj(x) , yj∗s = max{zj1, · · · zjm}, and φ and Φ are the p.d.f and c.d.f of a standard

normal distribution respectively. By combining equations 4.7 and 4.11 with Equation 4.6, we get the
final form of our acquisition function as shown below:

α(x) ' 1

S

S∑
s=1

K∑
j=1

[
γjs(x)φ(γjs(x))

2Φ(γjs(x))
− ln Φ(γjs(x))

]
(4.12)

A complete description of the MESMO algorithm is given in Algorithm 1. The blue colored steps
correspond to computation of our output space entropy based acquisition function via sampling.

Algorithm 1 MESMO Algorithm
Input: input space X; K blackbox objective functions f1(x), f2(x), · · · , fK(x); and maximum no.
of iterations Tmax

1: Initialize Gaussian process modelsM1,M2, · · · ,MK by evaluating at N0 initial points
2: for each iteration t = N0 + 1 to Tmax do
3: Select xt ← argmaxx∈X αt(x), where αt(.) is computed as:
4: for each sample s ∈ 1, · · · , S:
5: Sample f̃i ∼Mi, ∀i ∈ {1, · · · ,K}
6: Y∗s ← Pareto front of cheap multi-objective optimization over (f̃1, · · · , f̃K)
7: Compute αt(.) based on the S samples of Y∗s as given in Equation 4.12
8: Evaluate xt: yt ← (f1(xt), · · · , fK(xt))
9: Aggregate data: D ← D ∪ {(xt,yt)}

10: Update modelsM1,M2, · · · ,MK

11: t← t+ 1
12: end for
13: return Pareto front of f1(x), f2(x), · · · , fK(x) based on D

4.1 Theoretical Analysis

In this section, we provide a theoretical analysis for the behavior of MESMO algorithm. Multi-
objective optimization literature has multiple metrics to assess the quality of Pareto front approxi-
mation. The two commonly employed metrics include Pareto Hypervolume indicator [29] and R2

indicator[18]. R2 indicator is a natural extension of the cumulative regret measure in single-objective
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BO as proposed in the well-known work by Srinivasan et al., [25] to prove convergence results. Prior
work [17] has shown that R2 and Pareto Hypervolume indicator show similar behavior. Indeed,
our experiments validate this claim for MESMO. Therefore, we present the theoretical analysis of
MESMO with respect to R2 indicator. Let x∗ be a point in the optimal Pareto set X ∗. Let xt be a
point selected for evaluation by MESMO at the tth iteration. Let R(x∗) = ‖R1, · · · , RK‖, where
Rj =

∑T ′

t=1(fj(x
∗)− fj(xt)) and ‖.‖ is the norm of the K-vector. We discuss asymptotic bounds

for this measure over the input set X.
Theorem 1. Let P be a distribution over vector [y1∗, · · · , yK∗], where each yj∗ is the maximum value
for function fj among the vectors in the Pareto front obtained by solving the cheap multi-objective op-
timization problem over sampled functions from the K Gaussian process models. Let the observation
noise for function evaluations be i.i.dN (0, σ) andw = Pr[

(
y1∗ > f1(x∗)

)
, · · · ,

(
yK∗ > fK(x∗)

)
].

If xt is the candidate input selected by MESMO at the tth iteration according to 4.12 and
[y1∗, · · · , yK∗] is drawn from P , then with probability atleast 1 − δ, in T ′ =

∑T
i=1 logw

δ
2πi

number of iterations

R(x∗) =

√√√√ K∑
j=1

((
vjt∗ + ζT

)2
(

2TγjT
log(1 + σ−2)

))
(4.13)

where ζT = (2 log(πT /δ))
1/2, πi > 0, and

∑T
i=1

1
πi
≤ 1, vjt∗ = maxt v

j
t with vjt =

minx∈X
yj∗−µj,t−1(x)
σj,t−1(x) , and γjT is the maximum information gain about function fj after T func-

tion evaluations.

We provide details of the proof in the Appendix. The key message of this result is that since each
term Rj in R(x∗) grows sub-linearly in the asymptotic sense, R(x∗) which is defined as the norm
also grows sub-linearly.

5 Experiments and Results

In this section, we describe our experimental setup, present results of MESMO on diverse synthetic
and real-world benchmarks, and compare MESMO with existing methods.

5.1 Experimental Setup

Multi-objective BO algorithms. We compare MESMO with existing methods described in the
related work: ParEGO [11], PESMO [7], SMSego [19], EHI [5], and SUR [17]. We employ the
code for these methods from the BO library Spearmint1. For methods requiring PHV computation,
we employ the PyGMO library2. According to PyGMO documentation, the algorithm from [15]
is employed for PHV computation. We did not include PAL [31] as it is known to have similar
performance as SMSego [7] and works only for finite discrete input space.

Statistical models. We use a GP based statistical model with squared exponential (SE) kernel in
all our experiments. The hyper-parameters are estimated after every 5 function evaluations. We
initialize the GP models for all functions by sampling initial points at random from a Sobol grid. This
initialization procedure is same as the one in-built in the Spearmint library.

Synthetic benchmarks. We construct two synthetic multi-objective benchmark problems using a
combination of commonly employed benchmark functions for single-objective optimization3. We
also employ two benchmarks from the general multi-objective optimization literature [16, 4]. We
provide the complete details of these MO benchmarks below.

1) BC-2,2: We evaluate two benchmark functions Branin and Currin. The dimension of input
space d is 2.

2) PRDZPS-6,6: We evaluate six benchmark functions, namely, Powell, Rastrigin, Dixon, Za-
kharov, Perm, and SumSquares. The dimension of input space d is 6.

1https://github.com/HIPS/Spearmint/tree/PESM
2https://esa.github.io/pygmo/
3https://www.sfu.ca/ ssurjano/optimization.html

6



Figure 1: Results of different multi-objective BO algorithms including MESMO on synthetic bench-
marks. The log of the hypervolume difference and the R2 Indicator are shown with different number
of function evaluations. The mean and variance of 10 different runs are plotted. The title of each
figure refers to the name of benchmark. (Figures better seen in color.)

3) OKA2-2,3: We evaluate two functions defined in [16]. The dimension of input space d is 3.

4) DTLZ1-4,5: We evaluate four functions defined in [4]. The dimension of input space d is 5.

Real-world benchmarks. We employed four real-world benchmarks with data available at [31, 21].

1) Hyper-parameter tuning of neural networks. In this benchmark, our goal is to find a neural
network with high accuracy and low prediction time. We optimize a dense neural network over the
MNIST dataset [13]. Hyper-parameters include the number of hidden layers, the number of neurons
per layer, the dropout probability, the learning rate, and the regularization weight penalties l1 and l2.
We employ 10K instances for validation and 50K instances for training. We train the network for 100
epochs for evaluating each candidate hyper-parameter values on validation set. We apply a logarithm
function to error rates due to their very small values.

2) SW-LLVM compiler settings optimization. SW-LLVM is a data set with 1024 compiler
settings [23] determined by d=10 binary inputs. The goal of this experiment is to find a setting of the
LLVM compiler that optimizes the memory footprint and performance on a given set of software
programs. Evaluating these objectives is very costly and testing all the compiler settings takes days.

3) SNW sorting network optimization. The data set SNW was first introduced by [30]. The goal
is to optimize the area and throughput for the synthesis of a field-programmable gate array (FPGA)
platform. The input space consists of 206 different hardware design implementations of a sorting
network. Each design is defined by d = 4 input variables.

4) Network-on-chip (NOC) optimization. The design space of NoC dataset [1] consists of 259
implementations of a tree-based network-on-chip. Each configuration is defined by d = 4 variables:
width, complexity, FIFO, and multiplier. We optimize energy and runtime of application-specific
integrated circuits (ASICs) on the Coremark benchmark workload [1].

Evaluation metrics. We employ two common metrics used in practice.

1) The Pareto hypervolume (PHV) is commonly employed to measure the quality of a given
Pareto front [29]. PHV is defined as the volume between a reference point and the given Pareto front.
After each iteration t , we report the difference between the hypervolume of the ideal Pareto front
(Y∗) and hypervolume of the estimated Pareto front (Yt) by a given algorithm.

PHVdiff = PHV (Y∗)− PHV (Yt) (5.1)

2) R2 Indicator is the average distance the ideal Pareto front (Y∗) and the estimated Pareto front
(Yt) by a given algorithm [18]. R2 is a distance based metric that degenerates to the regret metric
presented in the theoretical analysis.

5.2 Results and Discussion

We run all experiments 10 times. The mean and variance of the PHV and R2 metrics across different
runs are reported as a function of the number of iterations.
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Figure 2: Results of different multi-objective BO algorithms including MESMO on real-world
benchmarks. The log of the hypervolume difference and R2 Indicator are shown with different
number of function evaluations. The mean and variance of 10 different runs are plotted. The title of
each figure refers to the name of real-world benchmark. (Figures better seen in color.)

MESMO vs. State-of-the-art. We evaluate the performance of MESMO and PESMO with different
number of Monte-Carlo samples for acquisition function optimization. Figure 1 and Figure 2 show
the results of all multi-objective BO algorithms including MESMO for synthetic and real-world
benchmarks respectively. We present additional results of synthetic benchmarks in Figure 3 of
the Appendix. We make the following empirical observations: 1) MESMO consistently performs
better than all baselines and also converges much faster. For blackbox optimization problems with
expensive function evaluations, faster convergence has practical benefits as it allows the end-user or
decision-maker to stop early. 2) Rate of convergence of MESMO slighly varies with different number
of Monte-Carlo samples. However, in all cases, MESMO performs better than baseline methods. 3)
The convergence rate of PESMO is dramatically affected by the number of Monte-Carlo samples:
100 samples lead to better results than 10 and 1. In contrast, MESMO maintains a better performance
consistently even with a single sample!. The results strongly demonstrate that MESMO is much
more robust to the number of Monte-Carlo samples than PESMO. 4) Performance of ParEGO is very
inconsistent. In some cases, it is comparable to MESMO, but performs poorly on many other cases.
This is expected due to random scalarization.

Comparison of acquisition function optimization time. We compare the runtime of acquisition
function optimization for different multi-objective BO algorithms including MESMO and PESMO
(w/ different number of Monte-Carlo samples). We do not account for the time to fit GP models
since it is same for all the algorithms. We measure the average acquisition function optimization time
across all iterations. We run all experiments on a machine with the following configuration: Intel
i7-7700K CPU @ 4.20GHz with 8 cores and 32 GB memory. Table 1 shows the time in seconds two
for synthetic benchmarks. We present additional time comparison results in Figure 4 of the Appendix.
We fix the input space dimensions to d = 5 and vary the number of objective functions to show how
different algorithms scale with increasing number of objectives. We make the following observations:
1) The acquisition function optimization time of MESMO is significantly smaller than PESMO for
the same number of samples. The difference between corresponding times grow significantly as the
number of samples increase. 2) MESMO with one sample is comparable to ParEGO, which relies
on scalarization to reduce to acquisition function optimization in single-objective BO. 3) The time
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for PESMO and SMSego increases significantly as the number of objectives grow from two to six,
whereas the corresponding growth in time is relatively small for MESMO.

Table 1: Average acquisition function optimization time in seconds.

MO Algorithm BC-2,2 PRDZPS-6,6 MO Algorithm BC-2,2 PRDZPS-6,6

MESMO-1 3.5±0.34 4.56±0.71 PESMO-1 13.6±3.2 110.4±17.8

MESMO-10 24.4±5.75 38.65± 0.65 PESMO-10 115.23±17.1 614.27±44

MESMO-100 242.434± 8.9 377.53± 4.29 PESMO-100 1128.3±15.3 6092.96±53.1

ParEGO 3.2± 1.6 5.3 ± 2.3 SMSego 80.5± 2.1 300.43 ± 35.7

6 Summary and Future Work

We introduced a novel and principled approach referred as MESMO to solve multi-objective Bayesian
optimization problems. The key idea is to employ an output space entropy based acquisition function
to efficiently select inputs for evaluation. Our comprehensive experimental results on both synthetic
and real-world benchmarks showed that MESMO yields consistently better results than state-of-the-
art methods, and is more efficient and robust than methods based on input space entropy search.
Future work includes applying MESMO to solve novel engineering and scientific applications.
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