
Adaptive Temporal-Difference Learning for Policy
Evaluation with Per-State Uncertainty Estimates

Hugo Penedones ∗
DeepMind

Carlos Riquelme ∗
Google Brain

Damien Vincent
Google Brain

Hartmut Maennel
Google Brain

Timothy Mann
DeepMind

André Barreto
DeepMind

Sylvain Gelly
Google Brain

Gergely Neu
Universitat Pompeu Fabra

Abstract

We consider the core reinforcement-learning problem of on-policy value function
approximation from a batch of trajectory data, and focus on various issues of Tem-
poral Difference (TD) learning and Monte Carlo (MC) policy evaluation. The two
methods are known to achieve complementary bias-variance trade-off properties,
with TD tending to achieve lower variance but potentially higher bias. In this paper,
we argue that the larger bias of TD can be a result of the amplification of local
approximation errors. We address this by proposing an algorithm that adaptively
switches between TD and MC in each state, thus mitigating the propagation of
errors. Our method is based on learned confidence intervals that detect biases of TD
estimates. We demonstrate in a variety of policy evaluation tasks that this simple
adaptive algorithm performs competitively with the best approach in hindsight,
suggesting that learned confidence intervals are a powerful technique for adapting
policy evaluation to use TD or MC returns in a data-driven way.

1 Introduction

In reinforcement learning (RL) an agent must learn how to behave while interacting with an envi-
ronment. This challenging problem is usually formalized as the search for a decision policy—i.e., a
mapping from states to actions—that maximizes the amount of reward received in the long run [24].
Clearly, in order to carry out such a search we must be able to assess the quality of a given policy.
This process, known as policy evaluation, is the focus of the current paper.

A common way to evaluate a policy is to resort to the concept of value function. Simply put, the value
function of a policy associates with each state the expected sum of rewards, possibly discounted over
time, that an agent following the policy from that state onwards would obtain. Thus, in this context
the policy evaluation problem comes down to computing a policy’s value function.

Perhaps the simplest way to estimate the value of a policy in a given state is to use Monte Carlo (MC)
returns: the policy is executed multiple times from the state of interest and the resulting outcomes are
averaged [23]. Despite their apparent naivety, MC estimates enjoy some nice properties and have
been advocated as an effective solution to the policy evaluation problem [1]. Another way to address
the policy evaluation problem is to resort to temporal-difference (TD) learning [22]. TD is based
on the insight that the value of a state can be recursively defined based on other states’ values [4].
Roughly speaking, this means that, when estimating the value of a state, instead of using an entire
trajectory one uses the immediate reward plus the value of the next state. This idea of updating an
estimate from another estimate allows the agent to learn online and incrementally.

∗These two authors contributed equally. Correspondence to rikel@google.com

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Both MC and TD have advantages and disadvantages. From a statistical point of view, the estimates
provided by MC are unbiased but may have high variance, while TD estimates show the opposite
properties [24]. As a consequence, the relative performance of the two methods depends on the
amount of data available: while TD tends to give better estimates in small data regimes, MC often
performs better with a large amount of data. Since the amount of data that leads to MC outperforming
TD varies from problem to problem, it is difficult to make an informed decision on which method to
use in advance. It is also unlikely that the best choice will be the same for all states, not only because
the number of samples associated with each state may vary but also because the characteristics of the
value function itself may change across the state space.

Ideally, we would have a method that adjusts the balance between bias and variance per state based
on the progress of the learning process. In this paper we propose an algorithm that accomplishes that
by dynamically choosing between TD and MC before each value-function update. Adaptive TD is
based on a simple idea: if we have confidence intervals associated with states’ values, we can decide
whether or not to apply TD updates by checking if the resulting targets fall within these intervals. If
the targets are outside of the confidence intervals we assume that the bias in the TD update is too
high, and just apply an MC update instead.

Although this idea certainly allows for many possible instantiations, in this work we focus on simple
design choices. Our experimental results cover a wide range of scenarios, from toy problems to Atari
games, and they highlight the robustness of the method, whose performance is competitive with the
best of both worlds in most cases. We hope this work opens the door to further developments in
policy evaluation with function approximation in complex environments.

2 The Problem

This section formally introduces the problem of policy evaluation in Markov decision processes,
as well as the two most basic approaches for tackling this fundamental problem: Monte-Carlo
and Temporal-Difference learning. After the main definitions, we discuss the key advantages and
disadvantages of these methods, which will enable us to state the main goals of our work.

2.1 Policy Evaluation in Reinforcement Learning

Let M = 〈S,A, P, r, γ, µ0〉 denote a Markov decision process (MDP) where S is the set of states, A
is the set of actions, and P is the transition function so that, for all s, s′ ∈ S and a ∈ A, P (s′|s, a)
denotes the probability of transitioning to s′ from state s after taking action a. Also, r : S ×A → R
maps each pair (state, action) to its expected reward, γ ∈ (0, 1] is the discount factor, and µ0 is the
probability distribution over initial states.

Let π : S → D(A) be a policy, where D(·) is the set of distributions over its argument set. Assume
at each state s we sample a ∼ π(s). The value function of M at s ∈ S under policy π is defined by

vπ(s) = E

[∞∑
t=0

γt r(St, π(St))

∣∣∣∣∣S0 = s

]
, (1)

where St+1 ∼ P (·|St, At) and At ∼ π(s). We will drop the dependence of r on a for simplicity.

Our goal is to recover value function vπ from samples collected by running policy π in the MDP.
As π is fixed, we will simply use the notation v = vπ below. We consider trajectories collected
on M by applying π: τ = 〈(s0, a0, r0), (s1, a1, r1), . . . 〉. Given a collection of n such trajectories
Dn = {τi}ni=1, a policy evaluation algorithm outputs a function V̂ : S → R. We are interested in
designing algorithms that minimize the Mean Squared Value Error of V̂ defined as

MSVE(V̂) = E
S0∼µ0

[(
v(S0)− V̂ (S0)

)2]
. (2)

More specifically, we will search for an appropriate value estimate V̂ within a fixed hypothesis
set of functions H = {h : S → R}, attempting to find an element with error comparable to
minh∈HMSVE(h). We mainly consider the setH of neural networks with a fixed architecture.

The key challenge posed by the policy evaluation problem is that the regression target v(s) in (2)
is not directly observable. The algorithms we consider deal with this challenge by computing an

2

s1

low reward

high reward

.
.

.
.

s3
s2

s4

Figure 1: Left. Bootstrapping approximation errors. Center and Right. MC (center) versus
TD (right) on a simple environment with 2 rooms completely separated by a wall (see Map 2 in
Figure 11). For each state s, the heatmaps show: V̂ (s) − V (s). The true value on the upper half
of the plane is zero. MC overestimates the values of a narrow region right above the wall, due to
function approximation limitations. With TD, these unavoidable approximation errors also occur, but
things get worse when bootstrap updates propagate them to much larger regions (see right).

appropriate regression target T (s) and, instead, attempt to minimize (T (s)− V̂ (s))2 as a function of
V̂ , usually via stochastic optimization.

2.2 Monte Carlo for Policy Evaluation

The Monte-Carlo approach is based on the intuitive observation that the infinite discounted sum of
rewards realized by running the policy from a state s is an unbiased estimator of v(s). This suggests
that a reasonably good regression target can be constructed for all st ∈ τi as

TMC

(
s
(i)
t

)
:=

ni−t−1∑
k=0

γk r
(
s
(i)
t+k

)
, (3)

where ni is the length of trajectory τi. Thus, one viable approach for policy evaluation is to
compute the minimizer within h ∈ H of

∑n
i=1

∑ni

t=1(TMC(s
(i)
t)− h(s

(i)
t))2. Risking some minor

inconsistency2 with the literature, we refer to this method as Monte Carlo policy evaluation.

2.3 Temporal-Difference for Policy Evaluation

Temporal-Difference algorithms are based on the fact that the value function should satisfy Bellman
equations: v(s) = r(s) + γ

∑
s′ P (s′|s, a) v(s′) for all s, which suggests that a good estimate of the

value function should minimize the squared error between the two sides of the above equation. In our
framework, this can be formulated as using the regression target

TTD(0)

(
s
(i)
t

)
:= r

(
s
(i)
t

)
+ γ V̂

(
s
(i)
t+1

)
(4)

to replace v(s) in the objective of Equation (2). The practice of using the estimate V̂ as part of the
target is commonly referred to as “bootstrapping” within the RL literature. Again with a slight abuse
of common terminology3, we will refer to this algorithm as TD(0), or just TD.

TD and Monte Carlo provide different target functions and, depending on the problem instance, each
of them may offer some benefits. In the tabular case, it is easy to see that Monte Carlo converges
to the optimal solution with an infinite amount of data, since the targets concentrate around their
true mean, the value function. However, the Monte Carlo targets can also suffer from large variance
due to the excessive randomness of the cumulative rewards. On the other hand, TD can be shown
to converge to the true value function in the same setting too [22], with the additional potential to

2[23, 24] exclusively refer to the tabular version of the above method as Monte Carlo; this method is a natural
generalization to general value-function classes.

3This algorithm would be more appropriately called “least squares TD” or LSTD, following [6], with the
understanding that our method considers general (rather than linear) value-function classes.

3

converge faster due to the potential variance reduction in the updates. Indeed, when considering a
fixed value function, the only randomness in the TD target is due to the immediate next state, whereas
the MC target is impacted by the randomness of the entire trajectory. Thus, the advantage of TD is
more pronounced in low data regimes, or when the return distribution from a state has large variance.

The story may be different with function approximation: even in the limit of infinite data, both MC
and TD are going to lead to biased estimates of the value function, due to the approximation error
introduced by the function class H. In the case of linear function classes, the biases of the two
algorithms are well-understood; the errors in estimating the value functions can be upper-bounded
in terms of the distance between the value function and the span of the features, with MC enjoying
tighter upper bounds than TD [26, 18]. These results, however, do not provide a full characterization
of the errors: even when considering linear function approximation, there are several known examples
in the literature where TD provably outperforms MC and vice versa [18]. Thus, the winner between
the two algorithms will be generally determined by the particular problem instance we are tackling.

To see the intuitive difference between the behavior of the two algorithms, consider a situation where
the true underlying value function V has some sharp discontinuities that the class of functions at hand
is not flexible enough to capture. In these cases, both methods suffer to fit the value function in some
regions of the state space, even when we have lots of data. The errors, however, behave differently for
the two methods: while the errors of Monte Carlo are localized to the regions with discontinuities due
to directly fitting the data, TD bootstraps values from this problematic region, and thus propagates
the errors even further. We refer to such errors arising due to discontinuities as leakage.

To illustrate the leakage phenomenon, consider the toy example in the left side of Figure 2.3. There
is a wall separating the green region (high reward), and the red region (low reward). Assume that a
function approximator f will need to make a compromise to fit both s1 and s3 as they are close in the
state space, even though no trajectory goes through both of them due to the wall. For example, we
can assume f will over-estimate the true value of s3. Let us now examine a third state, s2, that is in
the red region, and such that there is a trajectory that goes from s2 to s3. The distance in state-space
between s2 and s3 could be, in principle, arbitrarily large. If we apply Monte Carlo updates, then the
impact of the s1 → s3 leakage on s2 will be minimal. Instead, the TD update for the value of s2 will
explicitly depend on the estimate for s3, which is overestimated due to function approximation near
a wall. In the center and right side of Figure 2.3, we show the actual outcome of running TD and
MC in such a setting. TD dramatically propagates estimation errors far into the low-reward region as
expected, while MC is way more robust and errors stay located very close to the wall. Alternatively,
in a smoother scenario, however, bootstrapping function approximation estimates can still be certainly
beneficial and speed up learning. We present and analyze a toy MDP in the appendix, Section A.

The key observation of our work is that different regions of the state space may be best suited for
either TD or MC updates, amending the existing folk wisdom that TD and MC may “globally”
outperform each other in different MDPs. Accordingly, we set our goal as designing a method that
adaptively chooses a target depending on the properties of the value function around the specific state.

3 The Adaptive-TD Algorithm

In the previous sections, we saw that whether MC or TD is a better choice heavily depends on the
specific scenario we are tackling, and on the family of functions we choose to fit the value function.
While in hindsight we may be able to declare a winner, in practice the algorithmic decision needs to
be made at the beginning of the process. Also, running both and picking the best-performing one
in training time can be challenging, as the compound variance of the return distribution over long
trajectories may require extremely large validation sets to test the methods and choose, while this
then limits the amount of available training data. We aim to design a robust algorithm which does not
require any knowledge of the environment, and that dynamically adapts to both the geometry of the
true value and transition functions, and to the function approximator it has at its disposal.

In this section, we propose an algorithmic approach that aims to achieve the best of both the MC
and TD worlds. The core idea is to limit the bootstrapping power of TD to respect some hard
limits imposed by an MC confidence interval. The main driver of the algorithm is TD, since it can
significantly speed up learning in the absence of obstacles. However, in regions of the state space
where we somehow suspect that our estimates may be poor (e.g., near walls, close to big rewards,
non-markovianity, partial observability, or after irrecoverable actions) we would like to be more

4

Input: Confidence level α ∈ (0, 1). Trajectories τ1, . . . , τn generated by policy π.

Let S be the set of visited states in τ1, . . . , τn. Initialize V̂ (s) = 0, for all s.
Compute Monte-Carlo returns dataset as in (3): DMC = {(s, TMC(s))s∈S}.
Fit confidence function to DMC: CIαMC(s) := (LαMC(s), UαMC(s)).
repeat

for i = 1 to n do
for t = 1 to |τi| − 1 do
s
(i)
t is the t-th state of τi.
TTD(0) = r(s

(i)
t) + γ V̂ (s

(i)
t+1)

if TTD(0) ∈ (LαMC(s
(i)
t), UαMC(s

(i)
t)) then

Ti,t ← TTD(0)

else
Ti,t ← (LMC(s

(i)
t) + UMC(s

(i)
t)/2

end if
Use target Ti,t to fit V̂ (s

(i)
t).

end for
end for

until epochs exceeded

Algorithm 1: Adaptive TD

conservative, and rely mostly on targets purely based on data. We explicitly control how conservative
we would like to be by tuning the confidence level α of the intervals: by letting α go to 1, the intervals
become trivially wide, and we recover TD. Similarly, if we let α go to 0, we end up with MC.

It is easy to design toy environments where none of the obstacles described above apply, and where
TD is the optimal choice (see Map 0 in Figure 11). As a consequence of the switching and testing
cost, it is not reasonable to expect our algorithm to dominate both MC and TD in all environments.
Our goal is to design an algorithm that is not worse than the worst of MC and TD in any scenario,
and is close to the best one in most cases, or actually better. When data goes to infinity and the true
value function falls in our family of models, the MC intervals will converge to the true values and
Adaptive TD will be forced to converge too. However, these are asymptotic results.

3.1 Formal Description

Adaptive TD is presented as Algorithm 1. It has two components: confidence computation, and value
function fitting. First, we compute the MC target dataset DMC = {(s, TMC(s))s∈S} for all states
s in any input episode (we refer to S as the union of those). Then, we need to solve the regression
problem with a method that provides confidence intervals: with probability α the expected return
from s under π is in (LαMC(s), UαMC(s)). There are a variety of approximate methods we can use to
compute such confidence bounds; we discuss this in detail in the next subsection. Note, however, that
this can be regarded as an additional input or hyper-parameter to Adaptive TD.

In the second stage, after fixing a confidence function CIαMC(s), we apply a constrained version of
TD. We loop over all states s ∈ S (possibly, in a randomized way, as the main loop over data can be
replaced by a stochastic mini-batch), and we compute their TD target TTD(0)(s). If the TD target
falls within the confidence interval CIαMC(s), we simply use it to update V̂ (s). If it does not, i.e.
when TTD(0)(s) /∈ (LαMC(s), UαMC(s)), then we no longer trust the TD target, and use the mid-point
of the MC interval, (L+ U)/2. We can also use the closest endpoint to TTD(0)(s), either L or U .

3.2 Uncertainty Estimates

Poor quality uncertainty estimates may severely affect the performance of Adaptive TD. In particular,
in those states where the ground truth is not captured by the MC confidence intervals, the TD target
will be forced to bootstrap wrong values without any possibility of recovery. In the case of neural
networks, uncertainty estimation has been an active area of research in the last few years. In some

5

Figure 2: Average normalized MSVE for Lab2D and Atari environments in each data regime.
For each number of train rollouts and scenario, we normalize the MSVE of each algorithm A
by (MSVE(A)−minA′ MSVE(A′))/(maxA′ MSVE(A′)−minA′ MSVE(A′)). Equivalently, the
worst algorithm is assigned relative MSVE 1, and the best one is assigned relative MSVE 0. Then,
for each number of rollouts, we take the average across scenarios (i.e., all the 10 environments are
worth the same). This allows for a reasonably fair comparison of performance in different domains.

decision-making tasks, like exploration, all we need are samples from the output distribution, while
actual intervals are required for Adaptive TD. A simple fix for models that provide samples is to take
a number of them, and then construct an approximate interval.

Common approaches include variational inference [5], dropout [9], Monte Carlo methods [27, 12],
bootstrapped estimates [8, 15], Gaussian Processes [16], or Bayesian linear regression on learned
features [19, 17, 2]. While all the methods above could be used in combination with Adaptive TD,
for simplicity, we decided to use an ensemble of m MC networks [11]. The algorithm works as
follows. We fit m networks on the DMC = {(s, TMC(s))s∈S} dataset (we may or may not boostrap
the data at the episode level). Given a new state s, the networks provide value estimates v1, . . . , vm
at s. We then compute a predictive confidence interval, under the assumption that vi for i = 1, . . . ,m
are i.i.d. samples from some distribution F. Now, if vm+1 was sampled from the same distribution,
then we could expect vm+1 to fall in the predictive interval with probability α. The idea is that the
TD estimate should approximately correspond to another sample from the MC distribution. If the
deviation is too large, we will rely on the MC estimates instead.

In particular, we do assume F is Gaussian: v1, . . . , vm ∼ N (µ, σ2) for unknown µ, σ2. Let us define
v̄ =

∑
i vi/m, and σ̂2

m =
∑
i(vi − v̄)2/(m− 1). Finally, if the assumptions hold, we expect that

v̄ − zασ̂m
√

1 + 1/m ≤ vm+1 ≤ v̄ + zασ̂m
√

1 + 1/m (5)

with probability α, where zα is the 100(1− α/2) percentile of the Student’s distribution with m− 1
degrees of freedom. Then, we set LαMC(s) and UαMC(s) to the left and right-hand sides of (5) (note vi
depends on s). Of course, in practice the assumptions may not hold (for example, vi, vj for i 6= j will
not be independent unless we condition on the data), but we still hope to get a reasonable estimate.

4 Experimental Results

In this section we test the performance of Adaptive TD in a number of scenarios that we describe
below. The scenarios (for which we fix a specific policy) capture a diverse set of aspects that are
relevant to policy evaluation: low and high-dimensional state spaces, sharp value jumps or smoother
epsilon-greedy behaviors, near-optimal and uniformly random policies. We present here the results
for Labyrinth-2D and Atari environments, and Mountain Car is presented in the appendix, Section C.

We compare Adaptive TD with a few baselines: a single MC network, raw TD, and TD(λ). TD(λ) is
a temporal differences algorithm which computes an average of all n-step TD returns (an extension of
the 1-step target in (4)), [23]. For a clean comparison across algorithms in each scenario, we normalize
the MSVE of all algorithms (y-axis) by the worst performing one, and we do this independently for

6

each number of data rollouts (x-axis). In addition, the appendix contains the absolute values with
empirical confidence intervals for all cases. Our implementation details are presented in Section B of
the appendix. In general, we did not make any effort to optimize hyper-parameters, as the goal was to
come up with an algorithm that is robust and easy to tune across different scenarios. Accordingly, for
Adaptive TD, we use an ensemble of 3 networks trained with the MC target, and confidence intervals
at the 95% level. The data for each network in the ensemble is bootstrapped at the rollout level (i.e.,
we randomly pick rollouts with replacement). Plots also show the performance of the MC ensemble
with 3 networks, to illustrate the benefits of Adaptive TD compared to its auxiliary networks.

Labyrinth-2D. We first evaluate the performance of the algorithms in a toy scenario which represents
a 2-d map with some target regions we would like to reach. The state s = (x, y) are the coordinates
in the map, and the policy takes a uniformly random angle and then applies a fixed-size step. The
initial state s0 for each episode is selected uniformly at random inside the map, and the episode
ends after each step with probability p = 0.0005. Reward is r = 30 inside the green regions, r = 0
elsewhere. The maps layouts and their value functions are shown in Figure 11 in the appendix. The
simple different layouts cover a number of challenging features for policy evaluation: sharp jumps
in value near targets, several kind of walls, and locked areas with no reward (see maps 2 and 3).
Due to the randomized policy and initial state, we tend to uniformly cover the state space. We run
experiments with n = 5, 10, 20, 50, 75, 100 training episodes. We approximate the ground truth in a
grid by sampling and averaging a large number of test episodes from each state.

The results are shown in Figure 3. As expected, in most of the maps we observe that MC outperforms
TD in high-data regimes, while MC consistently suffers when the number of available data rollouts is
limited. Adaptive TD shows a remarkably robust performance in all cases, being able to strongly
benefit from TD steps in the low-data regime (see, basically, all maps) while remaining very close to
MC’s performance when a large number of rollouts are available. In that regime, the improvement
with respect to TD is dramatic in maps that are prone to strong leakage effects, like maps 1, 2, 3, and
5. In Figure 14 in the appendix, we can also see the results for TD(λ). In this particular case, it seems
λ = 0.75 is a good choice, and it is competitive with Adaptive TD in challenging maps 1, 2, 3, and 5.
However, the remaining values of λ are mostly outperformed in these scenarios. Figure 17 shows the
regions of the maps state space where the TD target falls outside the MC interval for Adaptive TD.

Atari. The previous examples illustrate many of the practical issues that arise in policy evaluation.
In order to model those issues in a clean disentangled way, and provide some intuition, we focused
so far on lower-dimensional state spaces. In this section we evaluate all the methods in a few Atari
environments [3]: namely, Breakout, Space Invaders, Pong, and MsPacman. The state consists of
four stacked frames, each with (84, 84) pixels, and the initial one is fixed for each game. We would
like to focus on competitive policies for the games, while still offering some stochasticity to create
a diverse set of trajectories (as Atari environments are deterministic). We use soft Q policies that
sample from the action distribution to generate the training and test trajectories. The temperature of
the softmax layer was adjusted to keep a good trade-off between trajectory diversity and performance
of the policy. Directly computing the ground-truth value is not feasible this time, so we rely on a large
number of test rollouts to evaluate our predictions. This increases the variance of our MSVE results.

The results are shown in Figure 4. TD does a good job for all number of rollouts. This suggests
that in high-dimensional state spaces (like Atari frames) the required number of samples for MC to
dominate may be extremely large. In addition, a single MC network seems to struggle in all games,
while the prediction of the MC ensemble proves significantly more robust. Adaptive TD outperforms
MC, and its auxiliary MC ensemble. Moreover, it offers a performance close to that of TD, maybe
due to wide MC confidence intervals in high-dimensional states which reduce Adaptive TD to simply
TD in most of the states. We show the results for TD(λ) in Figure 18 in the appendix. In this case,
λ = 0.75 –which did a good job in Labyrinth-2D scenarios– is always the worst. In particular,
Adaptive TD improvements compared to TD(λ = 0.75) range from 30% in the low-data regimes of
Pong, to consistent 20% improvements across all data regimes of Space Invaders.

Summary. Figure 2 displays the overall results normalized and averaged over the 10 scenarios.
Adaptive TD strongly outperforms TD and MC, and offers significant benefits with respect to its
auxiliary ensemble, and TD(λ). This highlights the main feature of Adaptive TD: its robustness.
While TD and MC outperform each other often by a huge margin depending on the scenario and
data size, Adaptive TD tends to automatically mimic the behavior of the best-performing one. TD(λ)
methods offer a way to interpolate between TD and MC, but they require to know a good value of λ

7

Figure 3: Labyrinth-2D. For each number of train rollouts, we normalize the MSVE of each algo-
rithm A by MSVE(A)/maxA′ MSVE(A′). Absolute numbers and conf. intervals in the appendix.

in advance, and we have seen that this value can significantly change across problems. In most cases,
Adaptive TD was able to perform –at least– comparably to TD(λ) for the best problem-dependent λ.

Figure 4: Atari. For each number of train rollouts, we normalize the MSVE of each algorithm A by
MSVE(A)/maxA′ MSVE(A′). Absolute numbers and confidence intervals are in the appendix.

5 Related Work

Both n-step TD and TD(λ) offer practical mechanisms to control the balance between bias and
variance by tuning n and λ. However, these parameters are usually set a priori, without taking into
account the progress of the learning process, and are not state-dependant.

A number of works have addressed on-policy evaluation. In [13] the authors introduce an algorithm
for batch on-policy evaluation, which is capable of selecting the best λ parameter for LSTD by doing
efficient cross-validation. However, it only works for the case of linear function approximation,
and does not take per-state decisions. In the TD-BMA algorithm [7], decisions are taken by state,
like in ours, while TD-BMA is restricted to the tabular setting. We cover function approximation,
including deep neural networks, and large dimensional input spaces, where uncertainty estimates
require different techniques.

8

Per-state λ was used for the off-policy case in [20]. (For an overview of methods with fixed λ,
including the off-policy case, see [10].) This study is continued in [21] with methods that selectively
(de-)emphasize states. The motivation is that function approximation has to give a compromise
function (e.g. forcing similar values at nearby states, even if the observed values are not similar),
which should be guided by emphasizing the more important states. In off-policy evaluation (the
focus of their paper) there is more interest in states that will occur more frequently in our actual
policy. Similarly, when we switch to MC for some states in our approach, we may be less interested
to model their value correctly in the TD function approximation. This paper also hints that λ(s) may
be modified depending on the variance of the returns after s; this is then developed in [28].

The algorithm of [28] estimates the variance of the λ–returns arising from the data by establishing
a Bellman operator for the squared return, for which they are looking for a fixed point. Then they
optimize “greedily” the λ(st) such that they get the optimal bias/variance trade-off for this state.
However, their variance of the returns is restricted to the uncertainty coming from the actions and
returns, but does not take into account the model uncertainty arising from the function approximation
(which we include here by evaluating an ensemble of networks). [25] introduced a different approach
to compute an optimized and state-dependent combination of n–step–returns. They ask what the
optimal combination of n–step returns would be if the estimates were unbiased and their variances
and covariances were known. This differs from our approach as we are also trying to minimize the
bias that is introduced by function approximation and that is amplified by TD’s bootstrapping.

6 Future Work

There are a number of avenues for future work. Adaptive TD can be easily extended to n-step TD or
TD(λ): at each transition, the agent checks whether the potential n-step or TD(λ) target is within the
associated confidence interval. If so, the agent applies the TD update; otherwise, it proceeds to the
next transition and carries over the unused target to compute the next TD target and repeat the process.
In addition, the proposed policy evaluation algorithm can be implicitly or explicitly incorporated into
a policy improvement one for control. Finally, we expect that constructing more sophisticated and
accurate confidence intervals based on MC returns will improve the performance of Adaptive TD.

References
[1] Artemij Amiranashvili, Alexey Dosovitskiy, Vladlen Koltun, and Thomas Brox. Analyzing the

role of temporal differencing in deep reinforcement learning. In International Conference on
Learning Representations, 2018.

[2] Kamyar Azizzadenesheli, Emma Brunskill, and Animashree Anandkumar. Efficient exploration
through bayesian deep q-networks. In 2018 Information Theory and Applications Workshop
(ITA), pages 1–9. IEEE, 2018.

[3] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

[4] Richard E. Bellman. Dynamic Programming. Princeton University Press, 1957.

[5] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty
in neural networks. arXiv preprint arXiv:1505.05424, 2015.

[6] Steven J Bradtke and Andrew G Barto. Linear least-squares algorithms for temporal difference
learning. Machine learning, 22(1-3):33–57, 1996.

[7] Carlton Downey, Scott Sanner, et al. Temporal difference bayesian model averaging: A bayesian
perspective on adapting lambda. In ICML, pages 311–318. Citeseer, 2010.

[8] Bradley Efron. The jackknife, the bootstrap, and other resampling plans, volume 38. Siam,
1982.

[9] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pages 1050–1059,
2016.

9

[10] Matthieu Geist and Bruno Scherrer. Off-policy learning with eligibility traces: A survey. J.
Mach. Learn. Res., 15(1):289–333, 2014.

[11] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. In Advances in Neural Information
Processing Systems, pages 6402–6413, 2017.

[12] Stephan Mandt, Matthew Hoffman, and David Blei. A variational analysis of stochastic gradient
algorithms. In International Conference on Machine Learning, pages 354–363, 2016.

[13] Timothy A Mann, Hugo Penedones, Shie Mannor, and Todd Hester. Adaptive lambda least-
squares temporal difference learning. arXiv preprint arXiv:1612.09465, 2016.

[14] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529, 2015.

[15] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. In Advances in neural information processing systems, pages 4026–4034,
2016.

[16] Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer School on
Machine Learning, pages 63–71. Springer, 2003.

[17] Carlos Riquelme, George Tucker, and Jasper Snoek. Deep bayesian bandits showdown: An
empirical comparison of bayesian deep networks for thompson sampling. arXiv preprint
arXiv:1802.09127, 2018.

[18] Bruno Scherrer. Should one compute the temporal difference fix point or minimize the Bellman
residual? The unified oblique projection view. In 27th International Conference on Machine
Learning-ICML 2010, 2010.

[19] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,
Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian optimization using deep
neural networks. In International conference on machine learning, pages 2171–2180, 2015.

[20] Rich Sutton, Ashique Rupam Mahmood, Doina Precup, and Hado Hasselt. A new Q(λ)
with interim forward view and Monte Carlo equivalence. In Eric P. Xing and Tony Jebara,
editors, Proceedings of the 31st International Conference on Machine Learning, volume 32 of
Proceedings of Machine Learning Research, pages 568–576, Bejing, China, 22–24 Jun 2014.
PMLR.

[21] Richard Sutton, Ashique Rupam Mahmood, and Martha White. An emphatic approach to the
problem of off-policy temporal-difference learning. Journal of Machine Learning Research, 17,
03 2015.

[22] Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3(1):9–44, 1988.

[23] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT press
Cambridge, 1998.

[24] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction - second
edition. MIT press Cambridge, 2018.

[25] Philip S. Thomas, Scott Niekum, Georgios Theocharous, and George Konidaris. Policy eval-
uation using the Ω-Return. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Processing Systems 28, pages 334–342.
Curran Associates, Inc., 2015.

[26] John N Tsitsiklis and Benjamin Van Roy. Analysis of temporal-diffference learning with function
approximation. In Advances in neural information processing systems, pages 1075–1081, 1997.

10

[27] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th international conference on machine learning (ICML-11), pages
681–688, 2011.

[28] Martha White and Adam M. White. A greedy approach to adapting the trace parameter for
temporal difference learning. In AAMAS, 2016.

A A simple example

In this section we illustrate the different bias-variance tradeoffs achieved by Monte Carlo and TD
through a simple example, particularly highlighting the leakage propagation effect of TD described
less formally in the previous section.

Consider the following MDP, with one initial state s0 where k > 1 actions are available. Each
action ai results in a deterministic transition to the corresponding state si. The first p of these states
s1, . . . , sp then transfer the agent deterministically to state b1, and the remaining states sp+1, . . . , sk
are deterministically followed by b2. States b1 and b2 are followed by another deterministic transition
to state q and then to a final state, emitting a random N (µ, σ2) reward. All other transitions lead to
no reward. The episode ends when the final state is reached.

s0start

sp· · ·s1 sp+1 · · · sk

b1 b2

q

R ∼ N (µ, σ2)

Figure 5: Simple episodic Markov Decision Process.

Let π be the uniform policy that, at s0, chooses actions a1:k leading to s1:k with equal probability.
We assume the discount factor is γ = 1. The true value function is vπ(s) = E [R] = µ for all s ∈ S .
Suppose we need to estimate the value function from a set of n episodes collected from π with final
rewards r1, . . . , rn.

Let us compare the performance of both the MC update (3) and the TD(0) target (4) when no function
approximation is used, that is, when V̂ can take any real value for any state. Note all n trajectories
pass through state q, but on average only n/k pass through each of the intermediate states s1, ..., sk.
The estimate for q will be equal for MC and TD: V̂ (q) =

∑
i ri/n. Its distribution has mean

E[V̂ (q)] = E[R] = µ and variance Var[V̂ (q)] = σ2/n.

On the other hand, the variance of V̂ for states s1:k does differ significantly for TD and MC. The
variance of the MC estimate has variance Var[V̂MC(si)] ≈ kσ2/n, due to approximately4 n/k

episodes going through each s1:k. However, the TD estimator correctly realizes that V̂ (si) = V̂ (q),
thus inheriting only the variance of the estimator in state q: Var[V̂MC(si)] = σ2/n. Thus, TD reduces
the variance of the estimates by a factor of k.

In the above setting with no function approximation, both methods are unbiased, and TD will dominate
over MC for any finite size amount of data due to its reduced variance, while both converge to the
same solution in the limit of infinite data. However, assume now we use a function approximator that
is not able to correctly represent the value µ for either state b1 or b2, as it could happen in a general
scenario with overly smooth function approximators. TD estimates will introduce and propagate
the bias to some of the states s1, ..., sk, while MC will not (noting though that for more general

4For clarity of exposition, we assume here that n is large enough so that the random fluctuations of the
number of visits around n/k is negligible.

11

Figure 6: Mean-squared Value Error (MSVE) for MC, TD, and Adaptive TD as a function of the data
size. The left plot shows the tabular setting; the right plot shows the function approximation case
with a fixed bias. Each point is run 20 times to smooth out estimates, and µ = 0.

Figure 7: MC and TD estimates for the example of Section A (µ = 0) with a biased function
approximator. Adaptive TD detects and corrects the mismatch between the TD updates and the MC
confidence intervals.

function approximators, MC estimates in some states may also influence estimates in others). In
this case, depending on the relative magnitude of TD’s bias and MC’s variance, and the amount of
available data, one or the other will offer better performance. Figure 6 shows the performance of the
two algorithms in the two settings, highlighting that the bias encoded in the function approximator
impacts TD more severely than MC due to leakage propagation, when the number of sample episodes
is high enough. We report the MSVE for the intermediate s1:k states. Notably, despite leakage, TD
still outperforms MC when less data is available, due to its reduced variance.

A.1 Results

We clearly see in Figure 6 that Adaptive TD is able to take advantage from TD when the MC
variance is too large (left), while avoiding bootstrapping erroneous values by detecting and correcting
suspicious TD-estimates in the function approximation case (right). Moreover, in Figure 7, we see
how in the latter case TD updates mostly fall outside the 95% Monte Carlo confidence intervals.

12

B Implementation Details and Neural Network Hyper-Parameters

Our experiments in the Labyrinth-2D and Mountain Car environments, which both have 2d state
spaces, were conducted using a multi-layer perceptron with exactly the same configuration. For
Atari, we followed the standard pre-processing from the DQN paper [14], where the inputs are
reduced to 84x84, and 4 consecutive frames are stacked. The architecture of the convnet used is
also standard, with the exception that instead of 18 outputs, we only have 1, as we are estimating
state-value functions, not action-value functions. Details are provided in Table 1 below.

The implementation of TD does not use a target network; we consider the current estimates for the
target (while we do not optimize with respect to the target, i.e., we apply a stop-gradient operation).
In general, we did not make any effort to optimize hyper-parameters.

Table 1 summarizes the parameters of the neural networks used as value function approximators
and the training hyper-parameters used in the experiments on the 2D environments and ATARI. The
parameters for ATARI are the same as the ones from the original DQN paper [14].

Neural network
2D Envs. Atari

Input dimensions 2 84 x 84 x 4
Convnet output channels - (32, 64, 64)
Convnet kernel shapes - (8, 4, 3)
Convnet strides - (4, 2, 1)
Linear layers hidden-units (50, 50) (512)
Non-linearities Relu Relu
Training hyper-parameters
Mini-batch size 512 32
Optimiser algorithm Adam Adam
Learning rate 0.001 0.0000625
Beta1 0.9 0.9
Beta2 0.999 0.999
Epsilon 1e-08 0.00015
Training batches 50000 250000

Table 1: Neural network architectures and hyper-parameter details.

B.1 Online Scenarios

For policy evaluation, we assume all data is collected in advance. Sometimes this assumption may be
too strong, and we would also like to allow for updates in our confidence intervals based on a stream
of new data. When the data comes from the same policy, the extension should be straightforward. In
general, we can train both estimates in parallel (say, an MC ensemble, and a TD network), and freeze
both of them every fixed number of updates as it is nowadays standard in DQN (target network) to
keep training a copy of the TD network. We leave the exploration of these extensions as future work.

13

C Mountain Car Environment

We also test the algorithms in the popular Mountain Car environment, where the goal is to control a
car in order to climb a steep hill. The state has two coordinates, corresponding to the velocity and
position of the car, and there are three actions: move left, move right, and do nothing. We use a
near-optimal policy together with ε-greedy steps, for ε = 0.2. We compute the ground truth value
function as in the previous case, see Figure 8 below.

Figure 8: Mountain Car value function for near-optimal policy with epsilon greedy (ε = 0.2) actions.

The results are shown in Figure 9 (left). In this case MC seems to consistently outperform TD.
Adaptive TD offers strong performance in the low-data regime, and it mimics the behavior of MC
when more data is available (and, presumably, we have access to better confidence intervals). The
gains with respect to TD are significant. Figure 9 (right) shows TD(λ) methods with λ ≥ 0.5 are
competitive with the MC ensemble and with Adaptive TD.

Figure 9: Mountain Car. For each number of train rollouts, we normalize the MSVE of each
algorithm A by MSVE(A)/maxA′ MSVE(A′).

Finally, for completeness, we show in Figure 10 the unnormalized version of the plots in Figure 9.

14

Figure 10: MSVE for the Mountain Car environment. Confidence intervals over 20 seeds.

15

D Labyrinth-2D Environments

We created a set of six 2D maps used as toy environments in this paper. The layout of those
environments always includes at least one reward represented as a green disk on Figure 11. The
ground truth value function of a random policy navigating in those environments is shown on the
same Figure. This ground truth is used as a reference to compute the MSVE of the adaptive TD
algorithm as well as the other baselines (Figure 14). In Figure 17, we also present some insights on
the TD versus MC decisions of the adaptive TD algorithm. We can clearly see that TD is selected for
most of the states but the ones next to the wall where MC is preferred to prevent further leaking of
the approximation errors observed near the wall.

Figure 11: True value functions for the uniformly random policy in Labyrinth-2D: Maps 0, 1 and 2
(Left), Maps 3, 4, 5 (Right).

In addition, we solved the same set of scenarios with a different function approximator: a simple
piece-wise constant function on a 2D grid, where all the states within a cell are assigned the same
value. Every map layout has size 400 x 300 and the grid layout chosen was of cells of size 19 x 19.
This ensures that there was no easy coincidence with the grid layout and the position of the walls.

16

Figure 12: Labyrinth-2D. TD(λ) results. For each number of train rollouts, we normalize the
MSVE of each algorithm A by MSVE(A)/maxA′ MSVE(A′).

Figure 13: Labyrinth-2D. Unnormalized MSVE results. Confidence intervals over 20 seeds.

17

Figure 14: Labyrinth-2D. Unnormalized MSVE results for TD(λ). Confidence intervals over 20
seeds.

Figure 15: Labyrinth-2D. Algorithms use piece-wise constant approximation functions on a
2D grid. For each number of train rollouts, we normalize the MSVE of each algorithm A by
MSVE(A)/maxA′ MSVE(A′).

18

Figure 16: Visualization of the quality of the confidence intervals learned with the neural network
ensembles. We take the ground truth value function and check for every state whether it falls inside the
confidence interval (green color) or otherwise (red for over-estimation and blue for under-estimation).
This shows that overall, the confidence intervals are reasonable.

Figure 17: Adaptive TD confidence interval violations per state in the Labyrinth 2D map layouts,
after 300 iterations of training, in the regime with 50 training rollouts. Green means the TD estimate
is inside the MC confidence interval for that state. Red regions are over-estimations and blue regions
under-estimations. We see that corrections are needed in significant regions of the space at this stage.

19

E Atari Environments

For each of the 4 Atari games, we took a policy that was trained using DQN [14] on that game, and
generated data by running it and sampling actions according to the softmax distribution of the output
layer, with temperature = 0.02. Each episode was limited to a maximum of 4000 steps. Training was
done using varying amounts of episodes, from 5 to 200, as illustrated by the plots. For evaluation,
in all cases, we used a disjoint set of 100 episodes generated using the same procedure. We use a
discount factor of 0.99 in all experiments.

Figure 18: Atari. TD(λ) results. For each number of train rollouts, we normalize the MSVE of each
algorithm A by MSVE(A)/maxA′ MSVE(A′).

20

Figure 19: Atari. Unnormalized MSVE results for main baselines. Confidence intervals over 20
seeds.

Figure 20: Atari. Unnormalized MSVE results for TD(λ). Confidence intervals over 20 seeds.

21

	Introduction
	The Problem
	Policy Evaluation in Reinforcement Learning
	Monte Carlo for Policy Evaluation
	Temporal-Difference for Policy Evaluation

	The Adaptive-TD Algorithm
	Formal Description
	Uncertainty Estimates

	Experimental Results
	Related Work
	Future Work
	A simple example
	Results

	Implementation Details and Neural Network Hyper-Parameters
	Online Scenarios

	Mountain Car Environment
	Labyrinth-2D Environments
	Atari Environments

