
A Missing details in Section 4436

A.1 Proof of Theorem 4.2437

Proof. Consider the case that Γ = 1 in which all Pxs are the same. Hence, this case can be438

degenerated to l = 1 and has an ε-coreset of size t by assumption. Divide the point set X into439

X(1), . . . , X(Γ) by Px, i.e., for each i ∈ [Γ], all collections Px (x ∈ X(i)) are the same, denoted by440

Pi. For each i ∈ [Γ], suppose S(i) is an ε-coreset for the fair (k, z)-clustering problem of X(i) where441

each point in S(i) belongs to all groups in Pi. Let S :=
⋃
i∈[l] S

(i). It is sufficient to prove S is an442

ε-coreset for the fair (k, z)-clustering problem of X .443

Given a k-subset C ⊆ Rd and an assignment constraint F , let C?1 , . . . , C
?
k be the optimal fair444

clustering of the instance (X,F,C). Then for each collection X(i) (i ∈ [Γ]), we construct an445

assignment constraint F (i) ∈ Zk×l as follows: for each j1 ∈ [k] and j2 ∈ [l], let F (i)
j1,j2

= 0 if446

j2 /∈ Pi and
∣∣C?j1 ∩X(i)

∣∣ if j2 ∈ Pi, i.e., F (i)
j1,j2

is the number of points within X(i) that belong to447

Cj1 ∩ Pj2 . By definition, we have that for each j1 ∈ [k] and j2 ∈ [l],448

Fj1,j2 =
∑
i∈[Γ]

F
(i)
j1,j2

. (1)

Then449

Kz(X,F,C) =
∑
i∈[l]

Kz(X(i), F (i), C) (Defns. of Kz and F (i))

≥(1− ε) ·
∑
i∈[l]

Kz(S(i), F (i), C) (Defn. of S(i))

≥(1− ε) · Kz(S, F,C) (Optimality and Eq. (1)).

Similarly, we can prove that Kz(S, F,C) ≥ (1− ε)Kz(X,F,C). It completes the proof.450

A.2 Proof of Claim 4.1451

Proof. We first prove the following fact for preparation.452

Fact A.1. Suppose p, q ∈ Rd. Define f : R → R as f(x) := d(x, p)− d(x, q) (here we abuse the453

notation by treating x as a point in the x-axis of Rd). Then f is either ID or DI.3454

Proof. Let hp and hq be the distance from p and q to the x-axis respectively, and let up and uq be the455

corresponding x-coordinate of p and q. We have456

f(x) =
√

(x− up)2 + h2
p −

√
(x− uq)2 + h2

q.

Then we can regard p, q as two points in R2 by letting p = (up, hp) and q = (uq, hq). Also we have457

f ′(x) =
x− up√

(x− up)2 + h2
p

− x− uq√
(x− uq)2 + h2

q

=
x− up
d(x, p)

− x− uq
d(x, q)

.

W.l.o.g. assume that up ≤ uq . Next, we rewrite f ′(x) with respect to cos(∠pxup) and cos(∠qxuq).458

1. If x ≤ up. Then f ′(x) =
d(x,uq)
d(x,q) −

d(x,up)
d(x,p) = cos(∠qxuq)− cos(∠pxup).459

2. If up < x ≤ uq . Then f ′(x) =
d(x,up)
d(x,p) +

d(x,uq)
d(x,q) = cos(∠pxup) + cos(∠qxuq).460

3. If x > uq . Then f ′(x) =
d(x,up)
d(x,p) −

d(x,uq)
d(x,q) = cos(∠pxup)− cos(∠qxuq).461

3ID means that the function f first (non-strictly) increases and then (non-strictly) decreases. DI means the
other way round.
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Denote the intersecting point of line pq and the x-axis to be y. Specificially, if hp = hq, we denote462

y = −∞. Note that f ′(x) = 0 if and only if x = y. Now we analyze f ′(x) in two cases (whether or463

not hp ≤ hq).464

• Case i): hp ≤ hq which implies that y < up. When x goes from −∞ to up, first f ′(x) ≤ 0465

and then f ′(x) ≥ 0. When x > up, f ′(x) ≥ 0.466

• Case ii): hp > hq which implies that y > uq . When x ≤ uq , f ′(x) ≥ 0. When x goes from467

uq to +∞, first f ′(x) ≥ 0 and then f ′(x) ≤ 0.468

Therefore, f(x) is either DI or ID.469

Suppose for the contrary that for any i ∈ [k], C?i consists of at least two contiguous intervals. Pick470

any i and suppose SL, SR ⊆ C?i are two contiguous intervals such that SL lies on the left of SR.471

Let yL denote the rightmost point of SL and yR denote the leftmost point of SR. Since SL and SR472

are two distinct contiguous intervals, there exists some point y ∈ X between yL and yR such that473

y ∈ C?j for some j 6= i. Define g : R → R as g(x) := d(x, cj) − d(x, ci). By Fact A.1, we know474

that g(x) is either ID or DI.475

If g is ID, we swap the assignment of y and ymin := arg minx∈{yL,yR} g(x) in the optimal fair476

k-median clustering. Since g is ID, for any interval P with endpoints p and q, minx∈P g(x) =477

minx∈{p,q} g(x). This fact together with yL ≤ y ≤ yR implies that g(ymin)− g(y) ≤ 0. Hence, the478

change of the objective is479

d(y, ci)− d(y, cj)− d(ymin, ci) + d(ymin, cj) = g(ymin)− g(y) ≤ 0.

This contradicts with the optimality of C? and hence g has to be DI.480

Next, we show that there is no y′ ∈ C?j such that y′ < yL or y′ > yR. We prove by contradiction and481

only focus on the case of y′ < yL, since the case of z > yR can be proved similarly by symmetry. We482

swap the assignment of yL and ymax := arg maxx∈{y,y′} g(x) in the optimal fair k-median clustering.483

The change of the objective is484

d(yL, cj)− d(yL, ci)− d(ymax, cj) + d(ymax, ci)

=g(yL)− g(ymax) ≤ 0,

where the last inequality is by the fact that g is DI. This contradicts the optimality of C?. Hence, we485

conclude such y′ does not exist.486

Therefore, ∀x ∈ C?j , yL < x < yR. By assumption, C?j consists of at least two contiguous intervals487

within (yL, yR). However, we can actually do exactly the same argument for C?j as in the i case,488

and eventually we would find a j′ such that C?j′ lies inside a strict smaller interval (y′L, y
′
R) of X ,489

where yL < y′L < y′R < yR. Since n is finite, we cannot do this procedure infinitely, which is a490

contradiction. This finishes the proof of Claim 4.1.491

A.3 Details of Section 4.2492

For completeness, we describe the detailed procedure for coresets for fair k-median.493

1. We start with computing an approximate k-subset C? = {c1, . . . , ck} ⊆ Rd such that494

OPT ≤ K2(X,C?) ≤ c · OPT for some constant c > 1.4495

2. Then we partition the point set X into sets X1, . . . , Xk satisfying that Xi is the collection496

of points closest to ci.497

3. For each center ci, we take a unit sphere centered at ci and construct an ε
3c -net Nci

5 on this498

sphere. By Lemma 2.6 in [25], |Nci | = O(ε−d+1) and may be computed in O(ε−d+1) time.499

Then for every p ∈ Nci , we emit a ray from ci to p. Overall, there are at most O(kε−d+1)500

lines.501

4For example, we can set c = 10 by [29].
5An ε-net Q means that for any point p in the unit sphere, there exists a point q ∈ Q satisfying that

d(p, q) ≤ ε.
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4. For each i ∈ [k], we project all points ofXi onto the closest line around ci. Let π : X → Rd502

denote the projection function. By the definition of ε
3c -net, we have that

∑
x∈X d(x, π(x)) ≤503

ε · OPT/3 which indicates that the projection cost is negligible. Then for each line, we504

compute an ε/3-coreset of size O(kε−1) for fair k-median by Theorem 4.3. Let S denote505

the combination of coresets generated from all lines.506

B Full version of Section 5507

In this section, we provide the details of coreset construction for fair k-means clustering. Recall that508

the main theorem is as follows.509

Theorem B.1 (Coreset for fair k-means). There exists an algorithm that constructs ε-coreset for510

the fair k-means problem of size O(Γk3ε−d−1), in O(k2ε−d+1n+ T2(n, d, k)) time.511

Note that the above result improves the coreset size of [36] by a O( logn
εk2 ) factor. Similar to the fair512

k-median case, it suffices to prove for the case l = 1. Recall that an assignment constraint for l = 1513

can be described by a vector F ∈ Rk. Denote OPT to be the optimal k-means value without any514

assignment constraint.515

B.1 The line case516

Similar to [25], we first consider the case that X is a point set on the real line. For a weighted point517

set S with weight w : S → R≥0, we denote the mean of S by S := 1
|S|
∑
p∈S w(p) · p, and the error518

of S by ∆(S) :=
∑
p∈S w(p) · d2(p, S).519

Construction. Same to [25], we consider the points from left to right and group them into batches520

in a greedy way: each batch B is a maximal point set satisfying that ∆(B) ≤ ξ where ξ = ε2OPT
200k2 .521

Let I(B) denote the smallest closed segment containing all the points of a batch B. Let B(X) denote522

the collection of all batches. For each batch B, we construct a collection J (B) of two weighted523

points satisfying Lemma 5.1. The coreset is defined by S =
⋃
B∈B(X) J (B).524

Lemma B.1 (Lemmas 3.2 and 3.4 in [25]). The number of batches is O(k2/ε2). For each batch B,525

there exist two weighted points q1, q2 ∈ I(B) together with weight w1, w2 satisfying that526

• w1 + w2 = |B|.527

• Let J (B) denote the collection of two weighted points q1 and q2. Then we have J (B) = B528

and ∆(B) = ∆(J (B)).529

• Given any point q ∈ Rd, we have530

K2(B, q) = ∆(B) + |B| · d2(q,B) = K2(J (B), q).

Analysis. We argue that S is indeed an ε/3-coreset for the fair k-means clustering problem. By531

Theorem 3.5 in [25], S is an ε/3-coreset for k-means clustering of X . However, we need to handle532

additional assignment constraints. To address this, we introduce the following lemma showing that533

every optimal cluster satisfying the given assignment constraint is within a contiguous interval.534

Lemma B.2 (Clusters are contiguous for fair k-means). Suppose X = {x1, . . . , xn} where x1 ≤535

x2 ≤ . . . ≤ xn. Given an assignment constraint F ∈ Rk and a k-subset C = {c1, . . . , ck} ⊆ Rd.536

Then letting Ci :=
{
x1+

∑
j<i Fj

, . . . , x∑
j≤i Fj

}
(i ∈ [k]), we have537

K2(X,F,C) =
∑
i∈[k]

∑
x∈Ci

d2(x, ci).

Proof. Let c′i denote the projection of point ci to the real line and assume that c′1 ≤ c′2 ≤ . . . ≤ c′k. We538

slightly abuse the notation by regarding point c′i as a real value. We prove the lemma by contradiction.539

Let C1, . . . , Ck be the optimal fair clustering. By contradiction we assume that there exists i1 < i2540

and j1 < j2 such that xj1 ∈ Ci2 and xj2 ∈ Ci1 . By the definitions of c′i1 and c′i2 , we have that541

d(c′i1 , xj1) + d(c′i2 , xj2) ≤ d(c′i1 , xj2) + d(c′i2 , xj1), (2)
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and542

max
{
d(c′i1 , xj1), d(c′i2 , xj2)

}
≤ max

{
d(c′i1 , xj2), d(c′i2 , xj1)

}
. (3)

Combining Inequalities (2) and (3), we argue that543

d2(c′i1 , xj1) + d2(c′i2 , xj2) ≤ d2(c′i1 , xj2) + d2(c′i2 , xj1) (4)

by proving the following claim.544

Claim B.1. Suppose a, b, c, d ≥ 0, a+ b ≤ c+ d and a, b, c ≤ d. Then a2 + b2 ≤ c2 + d2.545

Proof. If a+ b ≤ d, then we have a2 + b2 ≤ (a+ b)2 ≤ d2 ≤ c2 + d2. So we assume that a+ b > d.546

Let e = a + b − d > 0. Since a + b ≤ c + d, we have e2 ≤ c2. Hence, it suffices to prove that547

a2 + b2 ≤ e2 + d2. Note that548

e2 + d2 = (a+ b− d)2 + d2 = a2 + b2 + (d− a)(d− b) ≥ a2 + b2,

which completes the proof.549

Now we come back to prove Lemma B.1. We have the following inequality.550

d2(xj1 , ci1) + d2(xj2 , ci2)

=d2(xj1 , c
′
i1) + d2(c′i1 , ci1) + d2(xj2 , c

′
i2) + d2(c′i2 , ci2) (The Pythagorean theorem)

≤d2(xj1 , c
′
i2) + d2(c′i1 , ci1) + d2(xj2 , c

′
i1) + d2(c′i2 , ci2) (Ineq. (4))

=d2(xj1 , ci2) + d2(xj2 , ci1). (The Pythagorean theorem)

It contradicts with the assumption that xj1 ∈ Ci2 and xj2 ∈ Ci1 . Hence, we complete the proof.551

Now we are ready to give the following theorem.552

Theorem B.2 (Coreset for fair k-means when X lies on a line). Let X be a set of n points lying553

on a line in Rd. Let S =
⋃
B∈B(X) J (B) be the coreset constructed as in Lemma B.1. Then S is an554

ε/3-coreset for fair k-means clustering of X .555

Proof. The proof is similar to that of Theorem 3.5 in [25]. The running time analysis is exactly the556

same. Hence, we only focus on the correctness analysis in the following. We first rotate space such557

that the line is on the x-axis and assume that x1 ≤ x2 ≤ . . . ≤ xn. Given an assignment constraint558

F ∈ Rk and a k-subset C = {c1, . . . , ck} ⊆ Rd, let c′i denote the projection of point ci to the real559

line and assume that c′1 ≤ c′2 ≤ . . . ≤ c′k. Our goal is to prove that560

|K2(S, F,C)−K2(X,F,C)| ≤ ε

3
· K2(X,F,C).

By Lemma B.2, we have that the optimal fair clustering of X should be Ci :=561 {
x1+

∑
j<i Fj

, . . . , x∑
j≤i Fj

}
for each i ∈ [k]. Hence, I(C1), . . . , I(Ck) are disjoint intervals.562

Similarly, the optimal fair clustering of X should be to scan weighted points in S from left to right563

and cluster points of total weight Fi to ci.6 If a batch B ∈ B(X) lies completely within some564

interval I(Ci), then it does not contribute to the overall difference |K2(S, F,C)−K2(X,F,C)| by565

Lemma B.1.566

Thus, the only problematic batches are those that contain an endpoint of I(C1), . . . , I(Ck). There567

are at most k − 1 such batches. Let B be one such batch and J (B) = {q1, q2} be constructed as in568

Lemma B.1. For i ∈ [k], let Vi := I(Ci) ∩B. Let T denote the collection of the w1 left side points569

within B and T ′ = B \ T . Note that w1 may be fractional and hence T may include a fractional570

point. Denote571

η :=
∑
i∈[k]

∑
x∈Vi∩T

d2(x, q1) +
∑
i∈[k]

∑
x∈Vi∩T ′

d2(x, q2).

6Recall that a weighted point can be partially assigned to more than one cluster.
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We have that572

η =
∑
i∈[k]

∑
x∈Vi∩T

(
d(x,B)− d(q1, B)

)2
+
∑
i∈[k]

∑
x∈Vi∩T ′

(
d(x,B)− d(q2, B)

)2
≤
∑
i∈[k]

∑
x∈Vi∩T

(
d2(x,B) + d2(q1, B)

)
+
∑
i∈[k]

∑
x∈Vi∩T ′

(
d2(x,B) + d2(q2, B)

)
=∆(B) + ∆(J (B)) = 2∆(B) (Lemma B.1)

≤ε
2OPT

100k
(Construction of B).

(5)

Then we can upper bound the contribution ofB to the overall difference |K2(S, F,C)−K2(X,F,C)|573

by574 ∣∣∣∣∣∣
∑
i∈[k]

∑
x∈Vi∩T

(
d2(x, ci)− d2(q1, ci)

)
+
∑
i∈[k]

∑
x∈Vi∩T ′

(
d2(x, ci)− d2(q2, ci)

)∣∣∣∣∣∣
≤
∑
i∈[k]

∑
x∈Vi∩T

∣∣d2(x, ci)− d2(q1, ci)
∣∣+

∑
i∈[k]

∑
x∈Vi∩T ′

∣∣d2(x, ci)− d2(q2, ci)
∣∣

=
∑
i∈[k]

∑
x∈Vi∩T

d(x, q1) (d(x, ci) + d(q1, ci)) +
∑
i∈[k]

∑
x∈Vi∩T ′

d(x, q2) (d(x, ci) + d(q2, ci))

≤
∑
i∈[k]

∑
x∈Vi∩T

d(x, q1) (2d(x, ci) + d(x, q1)) +
∑
i∈[k]

∑
x∈Vi∩T ′

d(x, q2) (2d(x, ci) + d(x, q2))

=
∑
i∈[k]

∑
x∈Vi∩T

d2(x, q1) +
∑
i∈[k]

∑
x∈Vi∩T ′

d2(x, q2)

+ 2
∑
i∈[k]

∑
x∈Vi∩T

d(x, q1)d(x, ci) + 2
∑
i∈[k]

∑
x∈Vi∩T ′

d(x, q2)d(x, ci)

≤η + 2
√
η

√∑
i∈[k]

∑
x∈Vi

d2(x, ci) (Defn. of η and Cauchy-Schwarz)

≤ε
2OPT

50k
+

2ε

7k

√
OPT · K2(X,F,C) (Ineq. (5))

≤ε
2OPT

100k
+

2ε

10k
·
OPT +

∑
i∈[k]

∑
x∈Vi

d2(x, ci)

2

≤εOPT
5k

+
ε
∑
i∈[k]

∑
x∈Vi

d2(x, ci)

10k
.

(6)

Since there are at most k − 1 such batches, we conclude that the their total contribution to the error575

|K2(S, F,C)−K2(X,F,C)| can be upper bounded by576

εOPT

5
+
εK2(X,F,C)

10k
≤ ε

3
· K2(X,F,C).

It completes the proof.577

B.2 Extending to higher dimension578

The extension is almost the same to fair k-median, except that we apply Theorem B.2 to construct the579

coreset on each line. Let S denote the combination of coresets generated from all lines.580

Proof of Theorem B.1. By the above construction, the coreset size is O(k3ε−d−1). For the correct-581

ness, Theorem 3.6 in [25] applies an important fact that for any k-subset C ⊆ Rd,582

K2(X,C?) ≤ c · K2(X,C).

In our setting, we have a similar property. Note that for any given assignment constraint583

F ∈ Rk and any k-subset C ⊆ Rd, we have584

K2(X,C?) ≤ c · K2(X,F,C).
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Then combining this fact with Theorem B.2, we have that S is an ε-coreset for the fair k-means585

clustering problem, by the same argument as that of Theorem 3.6 in [25].586

B.3 Proof of Theorem 4.3587

Proof. The proof idea is similar to that of Lemma 2.8 in [25]. We first rotate space such that the line588

is on the x-axis and assume that x1 ≤ x2 ≤ . . . ≤ xn. Given an assignment constraint F ∈ Rk and a589

k-subset C = {c1, . . . , ck} ⊆ Rd, let c′i denote the projection of point ci to the real line and assume590

that c′1 ≤ c′2 ≤ . . . ≤ c′k. Our goal is to prove that591

|K1(S, F,C)−K1(X,F,C)| ≤ ε

3
· K1(X,F,C).

By the construction of S, we build up a mapping π : X → S by letting π(x) = B for any x ∈ B.592

For each i ∈ [k], let Ci denote the collection of points assigned to ci in the optimal fair k-median593

clustering of X . By Lemma 4.1, C1, . . . , Ck partition the line into at most 2k−1 intervals I1, . . . , It594

(t ≤ 2k − 1), such that all points of any interval Ii are assigned to the same center. Denote an595

assignment function f : X → C by f(x) = ci if x ∈ Ci. Let B̂ denote the set of all batches B,596

which intersects with more than one intervals Ii, or alternatively, the interval I(B) contains the597

projection of a center point of C to the x-axis. Clearly, |B̂| ≤ 2k − 2 + k = 3k − 2. For each batch598

B ∈ B̂, we have599 ∑
x∈B

d(π(x), f(x))− d(x, f(x))
triangle ineq.
≤

∑
x∈B
|d(x, π(x))| =

∑
x∈B
|d(x,B)|

Defn. ofB
≤ εOPT

30k
. (7)

Note that X \
⋃
B∈B̂ B can be partitioned into at most 3k − 1 contiguous intervals. Denote these600

intervals by I ′1, . . . , I ′t′ (t′ ≤ 3k − 1). By definition, all points of each interval I ′i are assigned to the601

same center whose projection is outside I ′i. Then by the proof of Lemma 2.8 in [25], we have that for602

each I ′i,603 ∑
x∈I′i

d(π(x), f(x))− d(x, f(x)) ≤ 2ξ =
εOPT

15k
. (8)

Combining Inequalities (7) and (8), we have604

K1(S, F,C)−K1(X,F,C) ≤
∑
x∈X

d(π(x), f(x))− d(x, f(x)) (Defn. of K1(S, F,C))

=
∑
B∈B̂

∑
x∈B

d(π(x), f(x))− d(x, f(x))

+
∑
i∈[t]

∑
x∈I′i

d(π(x), f(x))− d(x, f(x))

≤(3k − 2) · εOPT
30k

+ (3k − 1) · εOPT
15k

(Ineqs. (7) and (8))

≤εOPT
3
≤ ε

3
· K1(X,F,C).

(9)

To prove the other direction, we can regard S as a collection of n unweighted points and consider the605

optimal fair k-median clustering of S. Again, the optimal fair k-median clustering of S partitions606

the x-axis into at most 2k − 1 contiguous intervals, and can be described by an assignment function607

f ′ : S → C. Then we can build up a mapping π′ : S → X as the inverse function of π. For each608

batch B, let SB denote the collection of |B| unweighted points located at B. We have the following609

inequality that is similar to Inequality (7)610 ∑
x∈SB

d(π′(x), f ′(x))− d(x, f ′(x)) ≤ εOPT

30k
.

Suppose a contiguous interval I consists of several batches and satisfies that all points of I ∩ S are611

assigned to the same center by f ′ whose projection is outside I. Then by the proof of Lemma 2.8612

in [25], we have that613 ∑
B∈I

∑
x∈SB

d(π′(x), f ′(x))− d(x, f ′(x)) ≤ 0.
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Then by a similar argument as for Inequality (9), we can prove the other direction614

K1(X,F,C)−K1(S, F,C) ≤ ε

3
· K1(X,F,C),

which completes the proof.615
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