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Abstract

Communication overhead is a major bottleneck hampering the scalability of dis-
tributed machine learning systems. Recently, there has been a surge of interest in
using gradient compression to improve the communication efficiency of distributed
neural network training. Using 1-bit quantization, signSGD with majority vote
achieves a 32x reduction on communication cost. However, its convergence is based
on unrealistic assumptions and can diverge in practice. In this paper, we propose
a general distributed compressed SGD with Nesterov’s momentum. We consider
two-way compression, which compresses the gradients both to and from workers.
Convergence analysis on nonconvex problems for general gradient compressors
is provided. By partitioning the gradient into blocks, a blockwise compressor is
introduced such that each gradient block is compressed and transmitted in 1-bit
format with a scaling factor, leading to a nearly 32x reduction on communica-
tion. Experimental results show that the proposed method converges as fast as
full-precision distributed momentum SGD and achieves the same testing accuracy.
In particular, on distributed ResNet training with 7 workers on the ImageNet, the
proposed algorithm achieves the same testing accuracy as momentum SGD using
full-precision gradients, but with 46% less wall clock time.

1 Introduction

Deep neural networks have been highly successful in recent years [9, 10, 17, 22, 27]. To achieve
state-of-the-art performance, they often have to leverage the computing power of multiple machines
during training [8, 26, 28, 6]. Popular approaches include distributed synchronous SGD and its
momentum variant SGDM, in which the computational load for evaluating a mini-batch gradient is
distributed among the workers. Each worker performs local computation, and these local informations
are then merged by the server for final update on the model parameters. However, its scalability is
limited by the possibly overwhelming cost due to communication of the gradient and model parameter
[12]. Let d be the gradient/parameter dimensionality, and M be the number of workers. 64Md bits
need to be transferred between the workers and server in each iteration.

To mitigate this communication bottleneck, the two common approaches are gradient sparsification
and gradient quantization. Gradient sparsification only sends the most significant, information-
preserving gradient entries. A heuristic algorithm is first introduced in [16], in which only the large
entries are transmitted. On training a neural machine translation model with 4 GPUs, this greatly
reduces the communication overhead and achieves 22% speedup [1]. Deep gradient compression
[13] is another heuristic method that combines gradient sparsification with other techniques such as
momentum correction, local gradient clipping, and momentum factor masking, achieving significant
∗The work was done before Shuai Zheng joined Amazon Web Services.
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reduction on communication cost. Recently, a stochastic sparsification method was proposed in [23]
that balances sparsity and variance by solving a constrained linear programming. MEM-SGD [18]
combines top-k sparsification with error correction. By keeping track of the accumulated errors,
these can be added back to the gradient estimator before each transmission. MEM-SGD converges at
the same rate as SGD on convex problems, whilst reducing the communication overhead by a factor
equal to the problem dimensionality.

On the other hand, gradient quantization mitigates the communication bottleneck by lowering the
gradient’s floating-point precision with a smaller bit width. 1-bit SGD achieves state-of-the-art
results on acoustic modeling while dramatically reducing the communication cost [16, 19]. TernGrad
[24] quantizes the gradients to ternary levels {−1, 0, 1}. QSGD [2] employs stochastic randomized
rounding to ensure unbiasedness of the estimator. Error-compensated quantized SGD (ECQ-SGD) was
proposed in [25], wherein a similar stochastic quantization function used in QSGD is employed, and
an error bound is obtained for quadratic loss functions. Different from the error-feedback mechanism
proposed in MEM-SGD, ECQ-SGD requires two more hyper-parameters and its quantization errors
are decayed exponentially. Thus, error feedback is limited to a small number of iterations. Also,
ECQ-SGD uses all-to-all broadcast (which may involve large network traffic and idle time), while we
consider parameter-server architecture. Recently, Bernstein et al. proposed signSGD with majority
vote [3], which only transmits the 1-bit gradient sign between workers and server. A variant using
momentum, called signum with majority vote, is also introduced though without convergence analysis
[4] . Using the majority vote, signSGD achieves a notion of Byzantine fault tolerance [4]. Moreover,
it converges at the same rate as distributed SGD, though it has to rely on the unrealistic assumptions
of having a large mini-batch and unimodal symmetric gradient noise. Indeed, signSGD can diverge
in some simple cases when these assumptions are violated [11]. With only a single worker, this
divergence issue can be fixed by using the error correction technique in MEM-SGD, leading to SGD
with error-feedback (EF-SGD) [11].

While only a single worker is considered in EF-SGD, we study in this paper the more interesting
distributed setting. An extension of MEM-SGD and EF-SGD with parallel computing was proposed in
[7] for all-to-all broadcast. Another related architecture is allreduce. Compression at the server can be
implemented between the reduce and broadcast steps in tree allreduce, or between the reduce-scatter
and allgather steps in ring allreduce. However, allreduce requires repeated gradient aggregations,
and the compressed gradients need to be first decompressed before they are summed. Hence, heavy
overheads may be incurred.

In this paper, we study the distributed setting with a parameter server architecture. To ensure efficient
communication, we consider two-way gradient compression, in which gradients in both directions
(server to/from workers) are compressed. Note that existing works (except signSGD/signum with
majority vote [3, 4]) do not compress the aggregated gradients before sending back to workers.
Moreover, as gradients in a deep network typically have similar magnitudes in each layer, each
layer-wise gradient can be sufficiently represented using a sign vector and its average `1-norm. This
layer-wise (or blockwise in general) compressor achieves nearly 32x reduction in communication cost.
The resulant procedure is called communication-efficient distributed SGD with error-feedback (dist-
EF-SGD). Analogous to SGDM, we also propose a stochastic variant dist-EF-SGDM with Nesterov’s
momentum [14]. The convergence properties of dist-EF-SGD(M) are studied theoretically.

Our contributions are: (i) We provide a bound on dist-EF-SGD with general stepsize schedule for
a class of compressors (including the commonly used sign-operator and top-k sparsification). In
particular, without relying on the unrealistic assumptions in [3, 4], we show that dist-EF-SGD with
constant/decreasing/increasing stepsize converges at an O(1/

√
MT ) rate, which matches that of

distributed synchronous SGD; (ii) We study gradient compression with Nesterov’s momentum in a
parameter server. For dist-EF-SGDM with constant stepsize, we obtain an O(1/

√
MT ) rate. To the

best of our knowledge, these are the first convergence results on two-way gradient compression with
Nesterov’s momentum; (iii) We propose a general blockwise compressor and show its theoretical
properties. Experimental results show that the proposed algorithms are efficient without losing
prediction accuracy. After our paper has appeared, we note a similar idea was independently proposed
in [21]. Different from ours, they do not consider changing stepsize, blockwise compressor and
Nesterov’s momentum.
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Notations. For a vector x, ‖x‖1 and ‖x‖2 are its `1- and `2-norms, respectively. sign(x) outputs a
vector in which each element is the sign of the corresponding entry of x. For two vectors x, y, 〈x, y〉
denotes the dot product. For a function f , its gradient is∇f .

2 Related Work: SGD with Error-Feedback

In machine learning, one is often interested in minimizing the expected risk F (x) = Eξ[f(x, ξ)].
which directly measures the generalization error [5]. Here, x ∈ Rd is the model parameter, ξ is drawn
from some unknown distribution, and f(x, ξ) is the possibly nonconvex risk due to x. When the
expectation is taken over a training set of size n, the expected risk reduces to empirical risk.

Recently, Karimireddy et al. [11] introduced SGD with error-feedback (EF-SGD), which combines
gradient compression with error correction (Algorithm 1). A single machine is considered, which
keeps the gradient difference that is not used for parameter update in the current iteration. In the next
iteration t, the accumulated residual et is added to the current gradient. The corrected gradient pt is
then fed into an δ-approximate compressor.

Definition 1. [11] An operator C : Rd → Rd is an δ-approximate compressor for δ ∈ (0, 1] if
‖C(x)− x‖22 ≤ (1− δ)‖x‖22.

Examples of δ-approximate compressors include the scaled sign operator C(v) = ‖v‖1/d · sign(v)
[11] and top-k operator (which only preserves the k coordinates with the largest absolute values) [18].
One can also have randomized compressors that only satisfy Definition 1 in expectation. Obviously,
it is desirable to have a large δ while achieving low communication cost.

Algorithm 1 SGD with Error-Feedback (EF-SGD) [11]

1: Input: stepsize η; compressor C(·).
2: Initialize: x0 ∈ Rd; e0 = 0 ∈ Rd
3: for t = 0, . . . , T − 1 do
4: pt = ηgt + et {stochastic gradient gt = ∇f(xt, ξt)}
5: ∆t = C(pt) {compressed value output}
6: xt+1 = xt −∆t

7: et+1 = pt −∆t

8: end for

EF-SGD achieves the same O(1/
√
T )) rate as SGD. To obtain this convergence guarantee, an

important observation is that the error-corrected iterate x̃t = xt − et satisfies the recurrence: x̃t+1 =
x̃t − ηgt, which is similar to that of SGD. This allows utilizing the convergence proof of SGD to
bound the gradient difference ‖∇F (x̃t)−∇F (xt)‖2.

3 Distributed Blockwise Momentum SGD with Error-Feedback

3.1 Distributed SGD with Error-Feedback

The proposed procedure, which extends EF-SGD to the distributed setting. is shown in Algorithm 2.
The computational workload is distributed over M workers. A local accumulated error vector et,i and
a local corrected gradient vector pt,i are stored in the memory of worker i. At iteration t, worker i
pushes the compressed signal ∆t,i = C(pt,i) to the parameter server. On the server side, all workers’
∆t,i’s are aggregated and used to update its global error-corrected vector p̃t. Before sending back the
final update direction p̃t to each worker, compression is performed to ensure a comparable amount
of communication costs between the push and pull operations. Due to gradient compression on the
server, we also employ a global accumulated error vector ẽt. Unlike EF-SGD in Algorithm 1, we do
not multiply gradient gt,i by the stepsize ηt before compression. The two cases make no difference
when ηt is constant. However, when the stepsize is changing over time, this would affect convergence.
We also rescale the local accumulated error et,i by ηt−1/ηt. This modification, together with the
use of error correction on both workers and server, allows us to obtain Lemma 1. Because of these
differences, note that dist-EF-SGD does not reduce to EF-SGD when M = 1. When C(·) is the
identity mapping, dist-EF-SGD reduces to full-precision distributed SGD.
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Algorithm 2 Distributed SGD with Error-Feedback (dist-EF-SGD)

1: Input: stepsize sequence {ηt} with η−1 = 0; number of workers M ; compressor C(·).
2: Initialize: x0 ∈ Rd; e0,i = 0 ∈ Rd on each worker i; ẽ0 = 0 ∈ Rd on server
3: for t = 0, . . . , T − 1 do
4: on each worker i
5: pt,i = gt,i + ηt−1

ηt
et,i {stochastic gradient gt,i = ∇f(xt, ξt,i)}

6: push ∆t,i = C(pt,i) to server
7: xt+1 = xt − ηt∆̃t {∆̃t is pulled from server}
8: et+1,i = pt,i −∆t,i

9: on server
10: pull ∆t,i from each worker i and p̃t = 1

M

∑M
i=1 ∆t,i + ηt−1

ηt
ẽt

11: push ∆̃t = C(p̃t) to each worker
12: ẽt+1 = p̃t − ∆̃t

13: end for

In the following, we investigate the convergence of dist-EF-SGD. We make the following assumptions,
which are common in the stochastic approximation literature.
Assumption 1. F is lower-bounded (i.e., F∗ = infx∈Rd F (x) > −∞) and L-smooth (i.e., F (x) ≤
F (y) + 〈∇F (y), x− y〉+ L

2 ‖x− y‖
2
2 for x, y ∈ Rd).

Assumption 2. The stochastic gradient gt,i has bounded variance: Et
[
‖gt,i −∇F (xt)‖22

]
≤ σ2.

Assumption 3. The full gradient∇F is uniformly bounded: ‖∇F (xt)‖22 ≤ ω2.

This implies the second moment is bounded, i.e., Et
[
‖gt,i‖22

]
≤ G2 ≡ σ2 + ω2.

Lemma 1. Consider the error-corrected iterate x̃t = xt − ηt−1
(
ẽt + 1

M

∑M
i=1 et,i

)
, where xt, ẽt,

and et,i’s are generated from Algorithm 2. It satisfies the recurrence: x̃t+1 = x̃t − ηt 1
M

∑M
i=1 gt,i.

The above Lemma shows that x̃t is very similar to the distributed SGD iterate except that the
stochastic gradients are evaluated at xt instead of x̃t. This connection allows us to utilize the analysis
of full-precision distributed SGD. In particular, we have the following Lemma.

Lemma 2. E
[∥∥∥ẽt + 1

M

∑M
i=1 et,i

∥∥∥2
2

]
≤ 8(1−δ)G2

δ2

[
1 + 16

δ2

]
for any t ≥ 0.

This implies that ∇F (x̃t) ≈ ∇F (xt) by Assumption 1. Given the above results, we can prove
convergence of the proposed method by utilizing tools used on the full-precision distributed SGD.
Theorem 1. Suppose that Assumptions 1-3 hold. Assume that 0 < ηt < 3/(2L) for all t. For the
{xt} sequence generated from Algorithm 2, we have

E
[
‖∇F (xo)‖22

]
≤ 4∑T−1

k=0 ηk (3− 2Lηk)
[F (x0)− F∗] +

2Lσ2

M

T−1∑
t=0

η2t∑T−1
k=0 ηk (3− 2Lηk)

+
32L2(1− δ)G2

δ2

[
1 +

16

δ2

] T−1∑
t=0

ηtη
2
t−1∑T−1

k=0 ηk (3− 2Lηk)
,

where o ∈ {0, . . . , T − 1} is an index such that P (o = k) = ηk(3−2Lηk)∑T−1
t=0 ηt(3−2Lηt)

, ∀k = 0, . . . , T − 1.

The first term on the RHS shows decay of the initial value. The second term is related to the variance,
and the proposed algorithm enjoys variance reduction with more workers. The last term is due
to gradient compression. A large δ (less compression) makes this term smaller and thus faster
convergence. Similar to the results in [11], our bound also holds for unbiased compressors (e.g.,
QSGD [2]) of the form C(·) = cU(·), where E[U(x)] = x and E[‖U(x)‖22] ≤ 1

c‖x‖
2
2 for some

0 < c < 1. Then, cU(·) is a c-approximate compressor in expectation.

The following Corollary shows that dist-EF-SGD has a convergence rate of O(1/
√
MT ), leading to

a O(1/(Mε4)) iteration complexity for satisfying E[‖∇F (xo)‖22] ≤ ε2.
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Algorithm 3 Distributed Blockwise SGD with Error-Feedback (dist-EF-blockSGD)

1: Input: stepsize sequence {ηt} with η−1 = 0; number of workers M ; block partition
{G1, . . . ,GB}.

2: Initialize: x0 ∈ Rd; e0,i = 0 ∈ Rd on each worker i; ẽ0 = 0 ∈ Rd on server
3: for t = 0, . . . , T − 1 do
4: on each worker i
5: pt,i = gt,i + ηt−1

ηt
et,i {stochastic gradient gt,i = ∇f(xt, ξt,i)}

6: push ∆t,i =
[
‖pt,i,G1‖1

d1
sign(pt,i,G1), . . . ,

‖pt,i,GB ‖1
dB

sign(pt,i,GB )
]

to server

7: xt+1 = xt − ηt∆̃t {∆̃t is pulled from server}
8: et+1,i = pt,i −∆t,i

9: on server
10: pull ∆t,i from each worker i and p̃t = 1

M

∑M
i=1 ∆t,i + ηt−1

ηt
ẽt

11: push ∆̃t =
[
‖p̃t,G1‖1

d1
sign(p̃t,G1), . . . ,

‖p̃t,GB ‖1
dB

sign(p̃t,GB )
]

to each worker

12: ẽt+1 = p̃t − ∆̃t

13: end for

Corollary 1. Let stepsize η = min( 1
2L ,

γ√
T/
√
M+(1−δ)1/3(1/δ2+16/δ4)1/3T 1/3

) for some γ > 0. Then,

E[‖∇F (xo)‖22] ≤ 4L

T
[F (x0)− F∗] +

[
2

γ
[F (x0)− F∗] + Lγσ2

]
1√
MT

+
2(1− δ)1/3

[
1
γ [F (x0)− F∗] + 8L2γ2G2

]
δ2/3T 2/3

[
1 +

16

δ2

]1/3
.

In comparison, under the same assumptions, distributed synchronous SGD achieves

E[‖∇F (xo)‖22] ≤ 8L

3T
[F (x0)− F∗] +

[
2

γ
[F (x0)− F∗] + Lγσ2

]
2

3
√
MT

.

Thus, the convergence rate of dist-EF-SGD matches that of distributed synchronous SGD (with
full-precision gradients) after T ≥ O(1/δ2) iterations, even though gradient compression is used.
Moreover, more workers (larger M ) leads to faster convergence. Note that the bound above does
not reduce to that of EF-SGD when M = 1, as we have two-way compression. When M = 1, our
bound also differs from Remark 4 in [11] in that our last term is O((1− δ)1/3/(δ4/3T 2/3)), while
theirs is O((1− δ)/(δ2T )) (which is for single machine with one-way compression). Ours is worse
by a factor of O(T 1/3δ2/3/(1 − δ)2/3), which is the price to pay for two-way compression and a
linear speedup of using M workers. Moreover, unlike signSGD with majority vote [3], we achieve
a convergence rate of O(1/

√
MT ) without assuming a large mini-batch size (= T ) and unimodal

symmetric gradient noise.

Theorem 1 only requires 0 < ηt < 3/(2L) for all t. This thus allows the use of any decreasing,
increasing, or hybrid stepsize schedule. In particular, we have the following Corollary.
Corollary 2. Let ηt = γ

((t+1)T )1/4/(
√
M)+(1−δ)1/3(1/δ2+16/δ4)1/3T 1/3

(decreasing stepsize) with T ≥

16L4γ4M2 or ηt = γ
√
t+1

T/
√
M+(1−δ)1/3(1/δ2+16/δ4)1/3T 5/6

(increasing stepsize) with T ≥ 4L2γ2M .

Then, dist-EF-SGD converges to a stationary point at a rate of O(1/
√
MT ).

To the best of our knowledge, this is the first such result for distributed compressed SGD with
decreasing/increasing stepsize on nonconvex problems. These two stepsize schedules can also be
used together. For example, one can use an increasing stepsize at the beginning of training as
warm-up, and then a decreasing stepsize afterwards.

3.2 Blockwise Compressor

A commonly used compressor is [11]:

C(v) = ‖v‖1/d · sign(v). (1)
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Compared to using only the sign operator as in signSGD, the factor ‖v‖1/d can preserve the gradient’s
magnitude. However, as shown in [11], its δ in Definition 1 is ‖v‖21/(d‖v‖22), and can be particularly
small when v is sparse. When δ is closer to 1, the bound in Corollary 1 becomes smaller and thus
convergence is faster. In this section, we achieve this by proposing a blockwise extension of (1).

Specifically, we partition the compressor input v into B blocks, where each block b has db elements
indexed by Gb. Block b is then compressed with scaling factor ‖vGb‖1/db (where vGb is the subvector
of v with elements in block b), leading to: CB(v) = [‖vG1‖1/d1 · sign(vG1), . . . , ‖vGB‖1/dB ·
sign(vGB )]. A similar compression scheme, with each layer being a block, is considered in the
experiments of [11]. However, they provide no theoretical justifications. The following Proposition
first shows that CB(·) is also an approximate compressor.
Proposition 1. Let [B] = {1, 2, . . . , B}. CB is a φ(v)-approximate compressor, where φ(v) =

minb∈[B]
‖vGb‖

2
1

db‖vGb‖22
≥ minb∈[B]

1
db

.

The resultant algorithm will be called dist-EF-blockSGD (Algorithm 3) in the sequel. As can be seen,
this is a special case of Algorithm 2. By replacing δ with φ(v) in Proposition 1, the convergence
results of dist-EF-SGD in Section 3.1 can be directly applied.

There are many ways to partition the gradient into blocks. In practice, one can simply consider each
parameter tensor/matrix/vector in the deep network as a block. The intuition is that (i) gradients in the
same parameter tensor/matrix/vector typically have similar magnitudes, and (ii) the corresponding
scaling factors can thus be tighter than the scaling factor obtained on the whole parameter, leading to
a larger δ. As an illustration of (i), Figure 1(a) shows the coefficient of variation (which is defined as
the ratio of the standard deviation to the mean) of {|gt,i|}i∈Gb averaged over all blocks and iterations
in an epoch, obtained from ResNet-20 on the CIFAR-100 dataset (with a mini-batch size of 16 per
worker).2 A value smaller than 1 indicates that the absolute gradient values in each block concentrate
around the mean. As for point (ii) above, consider the case where all the blocks are of the same
size (db = d̃,∀b), elements in the same block have the same magnitude (∀i ∈ Gb, |vi| = cb for some
cb), and the magnitude is increasing across blocks (cb/cb+1 = α for some α < 1). For the standard
compressor in (1), δ =

‖v‖21
d‖v‖22

= (1+α)(1−αB)
B(1−α)(1+αB)

≈ (1+α)
B(1−α) for a sufficiently large B; whereas for the

proposed blockwise compressor, φ(v) = 1� (1+α)
B(1−α) . Figure 1(b) shows the empirical estimates of

‖v‖21/(d‖v‖22) and φ(v) in the ResNet-20 experiment. As can be seen, φ(v)� ‖v‖21/(d‖v‖22).
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(a) Coefficient of variation of {|gt,i|}i∈Gb .
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Figure 1: Illustrations using the ResNet-20 in Section 4.1. Left: Averaged coefficient of variation of
{|gt,i|}i∈Gb . Right: Empirical estimates of δ for the blockwise (φ(v) in Proposition 1) and non-block
versions (‖v‖21/(d‖v‖22)). Each point is the minimum among all iterations in an epoch. The lower
bounds, minb∈[B] 1/db and 1/d, are also shown. Note that the ordinate is in log scale.

The per-iteration communication costs of the various distributed algorithms are shown in Table 1.
Compared to signSGD with majority vote [3], dist-EF-blockSGD requires an extra 64MB bits for
transmitting the blockwise scaling factors (each factor ‖vGb‖1/db is stored in float32 format and
transmitted twice in each iteration). By treating each vector/matrix/tensor parameter as a block, B
is typically in the order of hundreds. For most problems of interest, 64MB/(2Md) < 10−3. The
reduction in communication cost compared to full-precision distributed SGD is thus nearly 32x.

2The detailed experimental setup is in Section 4.1.

6



Table 1: Communication costs of the various distributed gradient compression algorithms and SGD.

algorithm #bits per iteration
full-precision SGD 64Md

signSGD with majority vote 2Md
dist-EF-blockSGD 2Md+ 64MB

3.3 Nesterov’s Momentum

Momentum has been widely used in deep networks [20]. Standard distributed SGD with Nesterov’s
momentum [14] and full-precision gradients uses the update: mt,i = µmt−1,i + gt,i,∀i ∈ [M ] and
xt+1 = xt − ηt 1

M

∑M
i=1(µmt,i + gt,i), where mt,i is a local momentum vector maintained by each

worker i at time t (with m0,i = 0), and µ ∈ [0, 1) is the momentum parameter. In this section, we
extend the proposed dist-EF-SGD with momentum. Instead of sending the compressed gt,i+

ηt−1

ηt
et,i

to the server, the compressed µmt,i + gt,i + ηt−1

ηt
et,i is sent. The server merges all the workers’s

results and sends it back to each worker. The resultant procedure with blockwise compressor is called
dist-EF-blockSGDM (Algorithm 4), and has the same communication cost as dist-EF-blockSGD.
The corresponding non-block variant is analogous.

Algorithm 4 Distributed Blockwise Momentum SGD with Error-Feedback (dist-EF-blockSGDM)

1: Input: stepsize sequence {ηt} with η−1 = 0; momentum parameter 0 ≤ µ < 1; number of
workers M ; block partition {G1, . . . ,GB}.

2: Initialize: x0 ∈ Rd; m−1,i = e0,i = 0 ∈ Rd on each worker i; ẽ0 = 0 ∈ Rd on server
3: for t = 0, . . . , T − 1 do
4: on each worker i
5: mt,i = µmt−1,i + gt,i {stochastic gradient gt,i = ∇f(xt, ξt,i)}
6: pt,i = µmt,i + gt,i + ηt−1

ηt
et,i

7: push ∆t,i =
[
‖pt,i,G1‖1

d1
sign(pt,i,G1), . . . ,

‖pt,i,GB ‖1
dB

sign(pt,i,GB )
]

to server

8: xt+1 = xt − ηt∆̃t {∆̃t is pulled from server}
9: et+1,i = pt,i −∆t,i

10: on server
11: pull ∆t,i from each worker i and p̃t = 1

M

∑M
i=1 ∆t,i + ηt−1

ηt
ẽt

12: push ∆̃t =
[
‖p̃t,G1‖1

d1
sign(p̃t,G1), . . . ,

‖p̃t,GB ‖1
dB

sign(p̃t,GB )
]

to each worker

13: ẽt+1 = p̃t − ∆̃t

14: end for

Similar to Lemma 1, the following Lemma shows that the error-corrected iterate x̃t is very similar to
Nesterov’s accelerated gradient iterate, except that the momentum is computed based on {xt}.
Lemma 3. The error-corrected iterate x̃t = xt − ηt−1(ẽt + 1

M

∑M
i=1 et,i), where xt, ẽt, and et,i’s

are generated from Algorithm 4, satisfies the recurrence: x̃t+1 = x̃t − ηt 1
M

∑M
i=1(µmt,i + gt,i).

As in Section 3.1, it can be shown that ‖ẽt + 1
M

∑M
i=1 et,i‖2 is bounded and ∇F (x̃t) ≈ ∇F (xt).

The following Theorem shows the convergence rate of the proposed dist-EF-blockSGDM.

Theorem 2. Suppose that Assumptions 1-3 hold. Let ηt = η for some η > 0. For any η ≤ (1−µ)2
2L ,

and the {xt} sequence generated from Algorithm 4, we have

E
[
‖∇F (xo)‖22

]
≤ 4(1− µ)

ηT
[F (x0)− F∗] +

2Lησ2

(1− µ)M

[
1 +

2Lηµ4

(1− µ)3

]
(2)

+
32L2η2(1− δ)G2

δ2(1− µ)2

[
1 +

16

δ2

]
.

Compared to Theorem 1, using a larger momentum parameter µ makes the first term (which depends
on the initial condition) smaller but a worse variance term (second term) and error term due to
gradient compression (last term). Similar to Theorem 1, a larger η makes the third term larger. The
following Corollary shows that the proposed dist-EF-blockSGDM achieves a convergence rate of
O(((1− µ)[F (x0)− F∗] + σ2/(1− µ))/

√
MT ).
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(a) Mini-batch size: 8 per worker.
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(b) Mini-batch size: 16 per worker.
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(c) Mini-batch size: 32 per worker.

Figure 2: Testing accuracy on CIFAR-100. Top: No momentum; Bottom: With momentum. The solid
curve is the mean accuracy over five repetitions. The shaded region spans one standard deviation.

Corollary 3. Let η = γ√
T/
√
M+(1−δ)1/3(1/δ2+16/δ4)1/3T 1/3

for some γ > 0. For any

T ≥ 4γ2L2M
(1−µ)4 , E

[
‖∇F (xo)‖22

]
≤

[
2(1−µ)
γ [F (x0)− F∗] + Lγσ2

1−µ

]
2√
MT

+ 4L2γ2µ4σ2

(1−µ)4T +

4(1−δ)1/3[ (1−µ)
γ [F (x0)−F∗]+8L2γ2G2/(1−µ)2]

δ2/3T 2/3

[
1 + 16

δ2

]1/3
.

4 Experiments

4.1 Multi-GPU Experiment on CIFAR-100

In this experiment, we demonstrate that the proposed dist-EF-blockSGDM and dist-EF-blockSGD
(µ = 0 in Algorithm 4), though using fewer bits for gradient transmission, still has good convergence.
For faster experimentation, we use a single node with multiple GPUs (an AWS P3.16 instance with 8
Nvidia V100 GPUs, each GPU being a worker) instead of a distributed setting.

Experiment is performed on the CIFAR-100 dataset, with 50K training images and 10K test images.
We use a 20-layer ResNet [10]. Each parameter tensor/matrix/vector is treated as a block in dist-
EF-blockSGD(M). They are compared with (i) distributed synchronous SGD (with full-precision
gradient); (ii) distributed synchronous SGD (full-precision gradient) with momentum (SGDM); (iii)
signSGD with majority vote [3]; and (iv) signum with majority vote [4]. All the algorithms are
implemented in MXNet. We vary the mini-batch size per worker in {8, 16, 32}. Results are averaged
over 5 repetitions. More details of the experiments are shown in Appendix A.1.

Figure 2 shows convergence of the testing accuracy w.r.t. the number of epochs. As can be seen, dist-
EF-blockSGD converges as fast as SGD and has slightly better accuracy, while signSGD performs
poorly. In particular, dist-EF-blockSGD is robust to the mini-batch size, while the performance of
signSGD degrades with smaller mini-batch size (which agrees with the results in [3]). Momentum
makes SGD and dist-EF-blockSGD faster with mini-batch size of 16 or 32 per worker, particularly
before epoch 100. At epoch 100, the learning rate is reduced, and the difference is less obvious. This
is because a larger mini-batch means smaller variance σ2, so the initial optimality gap F (x0)− F∗ in
(2) is more dominant. Use of momentum (µ > 0) is then beneficial. On the other hand, momentum
significantly improves signSGD. However, signum is still much worse than dist-EF-blockSGDM.

4.2 Distributed Training on ImageNet

In this section, we perform distributed optimization on ImageNet [15] using a 50-layer ResNet. Each
worker is an AWS P3.2 instance with 1 GPU, and the parameter server is housed in one node. We
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(a) Test accuracy w.r.t. epoch.
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(b) Test accuracy w.r.t. time.
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(c) Workload breakdown.
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(d) Test accuracy w.r.t. epoch.
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(e) Test accuracy w.r.t. time.
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(f) Workload breakdown.

Figure 3: Distributed training results on the ImageNet dataset. Top: 7 workers; Bottom: 15 workers.

use the publicly available code3 in [4], and the default communication library Gloo communication
library in PyTorch. As in [4], we use its allreduce implementation for SGDM, which is faster.

As momentum accelerates the training for large mini-batch size in Section 4.1, we only compare
the momentum variants here. The proposed dist-EF-blockSGDM is compared with (i) distributed
synchronous SGD with momentum (SGDM); and (ii) signum with majority vote [4]. The number of
workers M is varied in {7, 15}. With an odd number of workers, a majority vote will not produce
zero, and so signum does not lose accuracy by using 1-bit compression. More details of the setup are
in Appendix A.2.

Figure 3 shows the testing accuracy w.r.t. the number of epochs and wall clock time. As in Section 4.1,
SGDM and dist-EF-blockSGDM have comparable accuracies, while signum is inferior. When 7
workers are used, dist-EF-blockSGDM has higher accuracy than SGDM (76.77% vs 76.27%). dist-
EF-blockSGDM reaches SGDM’s highest accuracy in around 13 hours, while SGDM takes 24 hours
(Figure 3(b)), leading to a 46% speedup. With 15 machines, the improvement is smaller (Figure 3(e)).
This is because the burden on the parameter server is heavier. We expect comparable speedup with the
7-worker setting can be obtained by using more parameter servers. In both cases, signum converges
fast but the test accuracies are about 4% worse.

Figures 3(c) and 3(f) show a breakdown of wall clock time into computation and communication
time.4 All methods have comparable computation costs, but signum and dist-EF-blockSGDM
have lower communication costs than SGDM. The communication costs for signum and dist-EF-
blockSGDM are comparable for 7 workers, but for 15 workers signum is lower. We speculate that it
is because the sign vectors and scaling factors are sent separately to the server in our implementation,
which causes more latency on the server with more workers. This may be alleviated if the two
operations are fused.

5 Conclusion

In this paper, we proposed a distributed blockwise SGD algorithm with error feedback and mo-
mentum. By partitioning the gradients into blocks, we can transmit each block of gradient using
1-bit quantization with its average `1-norm. The proposed methods are communication-efficient and
have the same convergence rates as full-precision distributed SGD/SGDM for nonconvex objectives.
Experimental results show that the proposed methods have fast convergence and achieve the same
test accuracy as SGD/SGDM, while signSGD and signum only achieve much worse accuracies.

3https://github.com/PermiJW/signSGD-with-Majority-Vote
4Following [4], communication time includes the extra computation time for error feedback and compression.
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A Experimental Setup

As we focus on synchronous distributed training, it is not necessary to compress weight decay. In the
experiment, for dist-EF-blockSGD, the weight decay is not added to gt,i. Instead, we add it to ∆̃t.
For dist-EF-blockSGDM, as momentum is additive, we maintain an extra momentum m̃t for weight
decay on each machine. Specifically, we perform the following update on each worker:

m̃t = µm̃t−1 + λxt,

xt+1 = xt − ηt(∆̃t + µm̃t + λxt),

where λ is the weight decay parameter. In the experiment, the sign is mapped to {−1, 1} and takes 1
bit. Note that the gradient sign has zero probability of being zero.

A.1 Setup: Multi-GPU Experiment on CIFAR-100

Each algorithm is run for 200 epochs. We only tune the initial stepsize, using a validation set
with 5K images that is carved out from the training set. For dist-EF-blockSGD (resp. dist-EF-
blockSGDM), we use the stepsize tuned for SGD (resp. SGDM). The stepsize with the best validation
set performance is used to run the algorithm on the full training set. The stepsize is divided by
10 at the 100-th and 150-th epochs. The weight decay parameter is fixed to 0.0005, and the mo-
mentum parameter µ is 0.9. When mini-batch size is 16 per worker, for both SGD and SGDM,
the stepsize is tuned from {0.05, 0.1, 0.5, 1}, and for signSGD and signum, the stepsize is chosen
from {0.0005, 0.001, 0.005, 0.01}. When we obtain the best stepsize η0 tuned with mini-batch size
B = 16 per worker, for B = 8, the best stepsize is selected from {η0/2, η0}; whereas for B = 32, it
is selected from {η0, 2η0}. The best stepsizes obtained are shown in Table 2

Table 2: Best stepsizes obtained by grid search on a hold-out validation set. We reuse the obtained
stepsizes tuned for SGD/SGDM for dist-EF-blockSGD/dist-EF-blockSGDM.

mini-batch size per worker
algorithm 8 16 32

full-precision SGD 0.25 0.5 1
full-precision SGDM 0.05 0.05 0.1

dist-EF-blockSGD 0.25 0.5 1
dist-EF-blockSGDM 0.05 0.05 0.1

signSGD 0.001 0.001 0.002
signum 0.0005 0.0005 0.0005

A.2 Setup: Distributed Training on ImageNet

We use the default hyperparameters for SGDM and signum in the code base, which have been tuned
for the ImageNet experiment in [4]. Specifically, the momentum parameter µ is 0.9, and weight
decay parameter is 0.0001. A mini-batch size of 128 per worker is employed.

For SGDM, we use η = 0.1M (used for SGDM on the ImageNet experiment in the code base). For
signum, η = 0.0001 (used for signum on the ImageNet experiment in the code base) on 7 workers
and η = 0.0002 on 15 workers. For dist-EF-blockSGDM, we also use µ = 0.9 and a weight decay of
0.0001. Its stepsize η is 0.1 for 7 workers,5 and 0.2 for 15 workers.

5We observe that η = 0.1M is too large for dist-EF-blockSGDM, while SGDM with η = 0.1 performs
worse than SGDM with η = 0.1M .
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B Proof of Lemmas 1 and 3

Lemma 4. Suppose that pt,i = zt,i + ηt−1

ηt
et,i for any sequence zt,i. Consider the error-corrected

iterate x̃t = xt − ηt−1
(
ẽt + 1

M

∑M
i=1 et,i

)
, it satisfies the recurrence:

x̃t+1 = x̃t − ηt
1

M

M∑
i=1

zt,i.

Proof.

x̃t+1 = xt − ηtC(p̃t)− ηtẽt+1 − ηt
1

M

M∑
i=1

et+1,i Apply xt+1 = xt − ηtC(p̃t)

= xt − ηtp̃t − ηt
1

M

M∑
i=1

et+1,i Apply ẽt+1 = p̃t − C(p̃t)

= xt − ηt
1

M

M∑
i=1

(∆t,i + et+1,i)− ηt−1ẽt Apply p̃t =
1

M

M∑
i=1

∆t,i +
ηt−1
ηt

ẽt

= xt − ηt
1

M

M∑
i=1

pt,i − ηt−1ẽt Apply et+1,i = pt,i −∆t,i

= xt − ηt
1

M

M∑
i=1

zt,i − ηt−1
1

M

M∑
i=1

et,i − ηt−1ẽt Apply pt,i = zt,i +
ηt−1
ηt

et,i

= x̃t − ηt
1

M

M∑
i=1

zt,i.

The Lemmas 1 and 3 hold by substituting zt,i = gt,i and zt,i = µmt,i + gt,i, respectively.

C Proof of Theorem 1

Proof. By the smoothness of the function F , we have

Et[F (x̃t+1)]

≤ F (x̃t) + 〈∇F (x̃t),Et[x̃t+1 − x̃t]〉+
L

2
Et
[
‖x̃t+1 − x̃t‖22

]
= F (x̃t)− ηt

〈
∇F (x̃t),Et

[
1

M

M∑
i=1

gt,i

]〉
+
Lη2t

2
Et

∥∥∥∥∥ 1

M

M∑
i=1

gt,i

∥∥∥∥∥
2

2


= F (x̃t)− ηt 〈∇F (x̃t),∇F (xt)〉+

Lη2t
2
‖∇F (xt)‖22 +

Lη2t
2

Et

∥∥∥∥∥ 1

M

M∑
i=1

gt,i −∇F (xt)

∥∥∥∥∥
2

2


≤ F (x̃t)− ηt 〈∇F (x̃t),∇F (xt)〉+

Lη2t
2
‖∇F (xt)‖22 +

Lη2t σ
2

2M

where in the second equality we use Lemma 1, and the second-to-last inequality follows the fact
E[‖x − E[x]‖22] = E[‖x‖22] − ‖E[x]‖22. In the last inequality, we use the variance bound of the
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mini-batch gradient, i.e., Et
[∥∥∥ 1

M

∑M
i=1 gt,i −∇F (xt)

∥∥∥2
2

]
≤ σ2

M . Then, we get

Et[F (x̃t+1)]

≤ F (x̃t)− ηt 〈∇F (xt),∇F (xt)〉+
Lη2t

2
‖∇F (xt)‖22 +

Lη2t σ
2

2M
+ ηt 〈∇F (xt)−∇F (x̃t),∇F (xt)〉

= F (x̃t)− ηt
(

1− Lηt
2

)
‖∇F (xt)‖22 +

Lη2t σ
2

2M
+ ηt 〈∇F (xt)−∇F (x̃t),∇F (xt)〉

≤ F (x̃t)− ηt
(

1− Lηt
2

)
‖∇F (xt)‖22 +

Lη2t σ
2

2M
+
ηtρ

2
‖∇F (xt)‖22 +

ηt
2ρ
‖∇F (xt)−∇F (x̃t)‖22

= F (x̃t)− ηt
(

1− Lηt + ρ

2

)
‖∇F (xt)‖22 +

Lη2t σ
2

2M
+
ηt
2ρ
‖∇F (xt)−∇F (x̃t)‖22

≤ F (x̃t)− ηt
(

1− Lηt + ρ

2

)
‖∇F (xt)‖22 +

Lη2t σ
2

2M
+
ηtL

2

2ρ
‖xt − x̃t‖22

= F (x̃t)− ηt
(

1− Lηt + ρ

2

)
‖∇F (xt)‖22 +

Lη2t σ
2

2M
+
ηtη

2
t−1L

2

2ρ

∥∥∥∥∥ẽt +
1

M

M∑
i=1

et,i

∥∥∥∥∥
2

2

,

where the second inequality follows from Young’s inequality with ρ > 0. The last inequality follows
from the smoothness of the function F . Let ρ = 1/2. Taking total expectation and using Lemma 6
with µ = 0, we get

Et[F (x̃t+1)]

≤ E[F (x̃t)]− ηt
(

3

4
− Lηt

2

)
E[‖∇F (xt)‖22] +

Lη2t σ
2

2M
+

8L2ηtη
2
t−1(1− δ)G2

δ2

[
1 +

16

δ2

]
.

Assume that ηt < 3/(2L) for all t. Rearranging the terms, taking summation, and dividing by∑T−1
k=0

ηk
4 (3− 2Lηk) gives

1∑T−1
k=0 ηk (3− 2Lηk)

T−1∑
t=0

ηt (3− 2Lηt)E
[
‖∇F (xt)‖22

]
≤ 4∑T−1

k=0 ηk (3− 2Lηk)

T−1∑
t=0

E[F (x̃t)− F (x̃t+1)] +
2Lσ2

M

T−1∑
t=0

η2t∑T−1
k=0 ηk (3− 2Lηk)

+
32L2(1− δ)G2

δ2

[
1 +

16

δ2

] T−1∑
t=0

ηtη
2
t−1∑T−1

k=0 ηk (3− 2Lηk)

≤ 4∑T−1
k=0 ηk (3− 2Lηk)

[F (x0)− F∗] +
2Lσ2

M

T−1∑
t=0

η2t∑T−1
k=0 ηk (3− 2Lηk)

+
32L2(1− δ)G2

δ2

[
1 +

16

δ2

] T−1∑
t=0

ηtη
2
t−1∑T−1

k=0 ηk (3− 2Lηk)
.

Let o ∈ {0, . . . , T − 1} be an index such that

P (o = k) =
ηk (3− 2Lηk)∑T−1
t=0 ηt (3− 2Lηt)

.

Then, we have

E[‖∇F (xo)‖22] =
1∑T−1

k=0 ηk (3− 2Lηk)

T−1∑
t=0

ηt (3− 2Lηt)E
[
‖∇F (xt)‖22

]
,

which concludes the results.
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D Proof of Corollary 1

Proof. Let ηt = η for all t, we have

E[‖∇F (xo)‖22] ≤ 4

η (3− 2Lη)T
[F (x0)− F∗] +

2Lησ2

(3− 2Lη)M

+
32L2η2(1− δ)G2

(3− 2Lη) δ2

[
1 +

16

δ2

]
. (3)

Let η = min

(
1
2L ,

γ
√
T√
M

+
(1−δ)1/3

δ2/3
(1+ 16

δ2
)
1/3

T 1/3

)
for some γ > 0, then 3 − 2Lη ≥ 2. Substituting

this into (3), we get

E[‖∇F (xo)‖22]

≤ 2

ηT
[F (x0)− F∗] +

Lησ2

M
+

16L2η2(1− δ)G2

δ2

[
1 +

16

δ2

]
≤ 2

T
max

(
2L,

√
T

γ
√
M

+
(1− δ)1/3

γδ2/3

[
1 +

16

δ2

]1/3
T 1/3

)
[F (x0)− F∗]

+
Lησ2

M
+

16L2η2(1− δ)G2

δ2

[
1 +

16

δ2

]
≤ 4L

T
[F (x0)− F∗] +

[
2

γ
√
MT

+
2(1− δ)1/3

γδ2/3T 2/3

[
1 +

16

δ2

]1/3]
[F (x0)− F∗]

+
Lγσ2

√
MT

+
16L2γ2(1− δ)1/3G2

δ2/3T 2/3

[
1 +

16

δ2

]1/3
=

4L

T
[F (x0)− F∗] +

[
2

γ
[F (x0)− F∗] + Lγσ2

]
1√
MT

+
2(1− δ)1/3[ 1γ [F (x0)− F∗] + 8L2γ2G2]

δ2/3T 2/3

[
1 +

16

δ2

]1/3
.

The bound on full-precision distributed SGD follows similar proof. For completeness, we present
proof here. By the smoothness of the function F , we have

Et[F (xt+1)]

≤ F (xt) + 〈∇F (xt),Et[xt+1 − xt]〉+
L

2
Et
[
‖xt+1 − xt‖22

]
= F (xt)− ηt

〈
∇F (xt),Et

[
1

M

M∑
i=1

gt,i

]〉
+
Lη2t

2
Et

∥∥∥∥∥ 1

M

M∑
i=1

gt,i

∥∥∥∥∥
2

2


= F (x̃t)− ηt

(
1− Lηt

2

)
‖∇F (xt)‖22 +

Lη2t
2

Et

∥∥∥∥∥ 1

M

M∑
i=1

gt,i −∇F (xt)

∥∥∥∥∥
2

2


≤ F (xt)− ηt

(
1− Lηt

2

)
‖∇F (xt)‖22 +

Lη2t σ
2

2M
.

Let ηt = η. Taking total expectation, rearranging terms, and averaging over T , we obtain

E
[
‖∇F (xo)‖22

]
≤ 2

η (2− Lη)T
[F (x0)− F∗] +

Lησ2

(2− Lη)M
.
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Substituting η = min
(

1
2L ,

γ
√
M√
T

)
, we get

E
[
‖∇F (xo)‖22

]
≤ 4

3ηT
[F (x0)− F∗] +

2Lησ2

3M

≤ 8L

3T
[F (x0)− F∗] +

4

3γ
√
T

[F (x0)− F∗] +
2Lγσ2

3M
√
T

=
8L

3T
[F (x0)− F∗] +

[
2

γ
[F (x0)− F∗] + Lγσ2

]
2

3
√
MT

.

E Proof of Corollary 2

Proof. Let ηt = γ
((t+1)T )1/4√

M
+

(1−δ)1/3

δ2/3
(1+ 16

δ2
)
1/3

T 1/3
. The following implies that ηt ≤ 1/(2L) for all

0 ≤ t ≤ T − 1.

T ≥ 16L4γ4M2.

Then, we have

T−1∑
t=0

ηt = γ

T−1∑
t=0

1
((t+1)T )1/4√

M
+ (1−δ)1/3

δ2/3

(
1 + 16

δ2

)1/3
T 1/3

≥ γ

T−1∑
t=0

1
√
T√
M

+ (1−δ)1/3
δ2/3

(
1 + 16

δ2

)1/3
T 1/3

=
1

1
γ
√
MT

+ (1−δ)1/3
γδ2/3T 2/3

(
1 + 16

δ2

)1/3 .
Using the fact that

∑T
t=1 t

α−1 ≤
∫ T
0
xα−1dx = Tα

α , for any 0 < α < 1, we have

T−1∑
t=0

η2t ≤ γ2M√
T

T∑
t=1

1√
t
≤ 2γ2M,

T−1∑
t=0

ηtη
2
t−1 =

T−1∑
t=1

ηtη
2
t−1 ≤

T−1∑
t=1

η3t−1 ≤
γ3

(1−δ)
δ2

(
1 + 16

δ2

) .
Substituting the above results into Theorem 1, we obtain

E
[
‖∇F (xo)‖22

]
≤

[
1

γ
√
MT

+
(1− δ)1/3

γδ2/3T 2/3

(
1 +

16

δ2

)1/3
]

2[F (x0)− F∗]

+

[
1

γ
√
MT

+
(1− δ)1/3

γδ2/3T 2/3

(
1 +

16

δ2

)1/3
]

2Lγ2σ2

+

[
1

γ
√
MT

+
(1− δ)1/3

γδ2/3T 2/3

(
1 +

16

δ2

)1/3
]

16L2γ3G2

= 2

[
1√
MT

+
(1− δ)1/3

δ2/3T 2/3

(
1 +

16

δ2

)1/3
] [

1

γ
[F (x0)− F∗] + Lγσ2 + 8L2γ2G2

]
.
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Similarly, let ηt = γ
√
t+1

T√
M

+
(1−δ)1/3

δ2/3
(1+ 16

δ2
)
1/3

T 5/6
. We obtain

T−1∑
t=0

ηt = γ

T−1∑
t=0

√
t+ 1

T√
M

+ (1−δ)1/3
δ2/3

(
1 + 16

δ2

)1/3
T 5/6

= γ

T∑
t=1

√
t

T√
M

+ (1−δ)1/3
δ2/3

(
1 + 16

δ2

)1/3
T 5/6

≥ γ

∫ T

0

√
x

T√
M

+ (1−δ)1/3
δ2/3

(
1 + 16

δ2

)1/3
T 5/6

dx

=
2T 3/2

3T
γ
√
M

+ 3(1−δ)1/3
γδ2/3

(
1 + 16

δ2

)1/3
T 5/6

.

Using the fact that
∑T
t=1 t

α ≤
∫ T+1

1
xαdx ≤ (T+1)α+1

α+1 for any α > 0, we also have
T−1∑
t=0

η2t ≤ γ2M

T 2

T∑
t=1

t =
γ2M(T + 1)

2T
,

T−1∑
t=0

ηtη
2
t−1 =

T−1∑
t=1

ηtη
2
t−1 ≤

T−1∑
t=1

η3t ≤
2γ3(T + 1)5/2

5 (1−δ)
δ2

(
1 + 16

δ2

)
T 5/2

.

Assuming that T ≥ 4L2γ2M , we have ηt ≤ 1/(2L) for all 0 ≤ t ≤ T − 1. Substituting the above
results into Theorem 1, we obtain

E
[
‖∇F (xo)‖22

]
≤

[
1

γ
√
MT

+
(1− δ)1/3

γδ2/3T 2/3

(
1 +

16

δ2

)1/3
]

3[F (x0)− F∗]

+

[
1

γ
√
MT

+
(1− δ)1/3

γδ2/3T 2/3

(
1 +

16

δ2

)1/3
]

3Lγ2σ2(T + 1)

4T

+

[
1

γ
√
MT

+
(1− δ)1/3

γδ2/3T 2/3

(
1 +

16

δ2

)1/3
]

48L2γ3G2(T + 1)5/2

5T 5/2

= 3

[
1√
MT

+
(1− δ)1/3

δ2/3T 2/3

(
1 +

16

δ2

)1/3
] [

1

γ
[F (x0)− F∗] +

Lγσ2(T + 1)

4T
+

16L2γ2G2(T + 1)5/2

5T 5/2

]
.

F Proof of Proposition 1

Proof.

‖CB(v)− v‖22 =

B∑
b=1

∥∥∥∥‖vGb‖1db
sign(vGb)− vGb

∥∥∥∥2
2

=

B∑
b=1

[
‖vGb‖21
db

− 2
‖vGb‖21
db

+ ‖vGb‖22
]

=

B∑
b=1

(
1− ‖vGb‖21

db‖vGb‖22

)
‖vGb‖22

≤
(

1− min
b∈[B]

‖vGb‖21
db‖vGb‖22

)
‖v‖22.
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G Proof of Theorem 2

We first introduce the following Lemmas.

Lemma 5. For any i ∈ [M ], we have

E
[
‖µmt,i + gt,i‖22

]
≤ G2

1− µ
.

Proof.

E
[
‖µmt,i + gt,i‖22

]
= E

∥∥∥∥∥
t∑

k=1

µt−k+1gk,i + gt,i

∥∥∥∥∥
2

2


=

(
t∑

k=1

µt−k+1 + 1

)2

E

∥∥∥∥∥
∑t
k=1 µ

t−k+1gk,i + gt,i∑t
k=1 µ

t−k+1 + 1

∥∥∥∥∥
2

2


≤

(
t∑

k=1

µt−k+1 + 1

)(
t∑

k=1

µt−k+1E
[
‖gk,i‖22

]
+ E

[
‖gt,i‖22

])

≤

(
t∑

k=1

µt−k+1 + 1

)2

G2

≤ G2

(1− µ)2
,

where in the first inequality we use Jensen’s inequality. In the second-to-last equality, we apply
Assumptions 2 and 3. The last inequality follows from the sum of a geometric series.

Lemma 6. For any t ≥ 0, we have

E

∥∥∥∥∥ẽt +
1

M

M∑
i=1

et,i

∥∥∥∥∥
2

2

 ≤ 8(1− δ)G2

δ2(1− µ)2

[
1 +

16

δ2

]
.

Proof. When t = 0, the bound trivially holds as ẽ0 = 0 and e0,i = 0 for all i. Using (a + b)2 ≤
2a2 + 2b2, we get

∥∥∥∥∥ẽt+1 +
1

M

M∑
i=1

et+1,i

∥∥∥∥∥
2

2

≤ 2 ‖ẽt+1‖22 + 2

∥∥∥∥∥ 1

M

M∑
i=1

et+1,i

∥∥∥∥∥
2

2

≤ 2 ‖ẽt+1‖22 +
2

m

M∑
i=1

‖et+1,i‖22 , ∀t ≥ 0. (4)
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Now, we can consider two terms separately. For the second term, we have

1

M

M∑
i=1

E
[
‖et+1,i‖22

]
=

1

M

M∑
i=1

E
[
‖C(pt,i)− pt,i‖22

]
≤ (1− δ) 1

M

M∑
i=1

E
[
‖pt,i‖22

]
(5)

= (1− δ) 1

M

M∑
i=1

E
[
‖et,i + µmt,i + gt,i‖22

]
≤ (1− δ)(1 + β)

1

M

M∑
i=1

E
[
‖et,i‖22

]
+ (1− δ)(1 + 1/β)

1

M

M∑
i=1

E
[
‖µmt,i + gt,i‖22

]
≤ (1− δ)(1 + β)

1

M

M∑
i=1

E
[
‖et,i‖22

]
+ (1− δ)(1 + 1/β)

G2

(1− µ)2

≤
t∑

k=0

[(1− δ)(1 + β)]t−k(1− δ)(1 + 1/β)
G2

(1− µ)2

≤ (1− δ)(1 + 1/β)

1− (1− δ)(1 + β)

G2

(1− µ)2
=

(1− δ)(1 + 1/β)

δ − β(1− δ)
G2

(1− µ)2
,

where the first inequality follows from the definition of the compressor C. The second inequality
follows from Young’s inequality with any β > 0, and the third inequality follows from Lemma 5.
The third equality follows from the definition of pt,i and the assumption ηt = η. The last inequality
follows from the sum of a geometric series. Let β = δ

2(1−δ) , then 1 + 1/β = (2− δ)/δ ≤ 2/δ. We
get

1

M

M∑
i=1

E
[
‖et+1,i‖22

]
≤ (1− δ)(1 + 1/β)

δ − β(1− δ)
G2

(1− µ)2
=

2(1− δ)(1 + 1/β)

δ(1− µ)2
G2 ≤ 4(1− δ)

δ2(1− µ)2
G2. (6)

Then, the first term can be bounded as

E
[
‖ẽt+1‖22

]
= E

[
‖C(p̃t)− p̃t‖22

]
≤ (1− δ)E

[
‖p̃t‖22

]
= (1− δ)E

∥∥∥∥∥ 1

M

M∑
i=1

∆t,i + ẽt

∥∥∥∥∥
2

2


≤ (1− δ)(1 + β)E

[
‖ẽt‖22

]
+ (1− δ)(1 + 1/β)E

∥∥∥∥∥ 1

M

M∑
i=1

∆t,i

∥∥∥∥∥
2

2


≤ (1− δ)(1 + β)E

[
‖ẽt‖22

]
+ 2(1− δ)(1 + 1/β)E

∥∥∥∥∥ 1

M

M∑
i=1

∆t,i −
1

M

M∑
i=1

pt,i

∥∥∥∥∥
2

2


+2(1− δ)(1 + 1/β)E

∥∥∥∥∥ 1

M

M∑
i=1

pt,i

∥∥∥∥∥
2

2


≤ (1− δ)(1 + β)E

[
‖ẽt‖22

]
+ 2(1− δ)2(1 + 1/β)

1

M

M∑
i=1

E
[
‖pt,i‖22

]
+2(1− δ)(1 + 1/β)

1

M

M∑
i=1

E
[
‖pt,i‖22

]
= (1− δ)(1 + β)E

[
‖ẽt‖22

]
+ 2(1− δ)(2− δ)(1 + 1/β)

1

M

M∑
i=1

E
[
‖pt,i‖22

]
. (7)
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Combining (5), (6), we have 1
M

∑M
i=1 E

[
‖pt,i‖22

]
≤ 4

δ2(1−µ)2G
2. Substituting it into (7), we get

E
[
‖ẽt+1‖22

]
≤ (1− δ)(1 + β)E

[
‖ẽt‖22

]
+

8(1− δ)(2− δ)(1 + 1/β)

δ2(1− µ)2
G2

≤
t∑

k=0

[(1− δ)(1 + β)]t−k
8(1− δ)(2− δ)(1 + 1/β)

δ2(1− µ)2
G2

≤ 8(1− δ)(2− δ)(1 + 1/β)

δ2(1− (1− δ)(1 + β))(1− µ)2
G2

=
8(1− δ)(2− δ)(1 + 1/β)

δ2(δ − β(1− δ))(1− µ)2
G2

=
16(1− δ)(2− δ)(1 + 1/β)

δ3(1− µ)2
G2

=
32(1− δ)(2− δ)
δ4(1− µ)2

G2

≤ 64(1− δ)
δ4(1− µ)2

G2. (8)

Then, combining (4), (6) and (8), we obtain

E

∥∥∥∥∥ẽt+1 +
1

M

M∑
i=1

et+1,i

∥∥∥∥∥
2

2

 ≤ 8(1− δ)G2

δ2(1− µ)2

[
1 +

16

δ2

]
.

Proof. In the sequel, we assume ηt = η for some η > 0. Let us introduce the following virtual
iterate:

zt = x̃t −
ηµ2

1− µ
1

M

M∑
i=1

mt−1,i,

where x̃t is defined in Lemma 3 . Then, it satisfies the following recurrence:

zt+1 = x̃t+1 −
ηµ2

1− µ
1

M

M∑
i=1

mt,i

= x̃t − η
1

M

M∑
i=1

(µmt,i + gt,i)−
ηµ2

1− µ
1

M

M∑
i=1

mt,i

= x̃t −
ηµ

1− µ
1

M

M∑
i=1

mt,i − η
1

M

M∑
i=1

gt,i

= x̃t −
ηµ2

1− µ
1

M

M∑
i=1

mt−1,i −
ηµ

1− µ
1

M

M∑
i=1

gt,i − η
1

M

M∑
i=1

gt,i

= zt −
η

1− µ
1

M

M∑
i=1

gt,i.
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By the smoothness of the function F , we get

Et[F (zt+1)]

≤ F (zt) + 〈∇F (zt),Et[zt+1 − zt]〉+
L

2
Et[‖zt+1 − zt‖22]

= F (zt)−
η

1− µ

〈
∇F (zt),Et

[
1

M

M∑
i=1

gt,i

]〉
+

Lη2

2(1− µ)2
Et

∥∥∥∥∥ 1

M

M∑
i=1

gt,i

∥∥∥∥∥
2

2


= F (zt)−

η

1− µ
〈∇F (zt),∇F (xt)〉+

Lη2

2(1− µ)2

‖∇F (xt)‖22 + Et

∥∥∥∥∥ 1

M

M∑
i=1

gt,i −∇F (xt)

∥∥∥∥∥
2

2


≤ F (zt)−

η

1− µ
〈∇F (zt),∇F (xt)〉+

Lη2

2(1− µ)2
‖∇F (xt)‖22 +

Lη2σ2

2(1− µ)2M
, (9)

where the second-to-last equality follows from E[‖x − E[x]‖22] = E[‖x‖22] − ‖E[x]‖22. Then, we
bound the second term −〈∇F (zt),∇F (xt)〉.

−〈∇F (zt),∇F (xt)〉 = −‖∇F (xt)‖22 + 〈∇F (xt)−∇F (zt),∇F (xt)〉

≤ −
(

1− ρ

2

)
‖∇F (xt)‖22 +

1

2ρ
‖∇F (xt)−∇F (zt)‖22 (10)

for any 0 < ρ < 2. Then, we have

‖∇F (xt)−∇F (zt)‖22 ≤ L2‖xt − zt‖22
≤ 2L2‖xt − x̃t‖22 + 2L2‖x̃t − zt‖22

= 2L2η2

∥∥∥∥∥ẽt +
1

M

M∑
i=1

et,i

∥∥∥∥∥
2

2

+
2L2η2µ4

(1− µ)2

∥∥∥∥∥ 1

M

M∑
i=1

mt−1,i

∥∥∥∥∥
2

2

≤ 16L2η2(1− δ)G2

δ2(1− µ)2

[
1 +

16

δ2

]
+

2L2η2µ4

(1− µ)2

∥∥∥∥∥ 1

M

M∑
i=1

mt−1,i

∥∥∥∥∥
2

2

,(11)

where in the last inequality we use Lemma 6. Let At−1 =
∑t−1
k=0 µ

t−1−k = 1−µt
1−µ . Then, we bound

the last term: ∥∥∥∥∥ 1

M

M∑
i=1

mt−1,i

∥∥∥∥∥
2

2

= A2
t−1

∥∥∥∥∥
t−1∑
k=0

µt−1−k

At−1

1

M

M∑
i=1

gk,i

∥∥∥∥∥
2

2

≤ A2
t−1

t−1∑
k=0

µt−1−k

At−1

∥∥∥∥∥ 1

M

M∑
i=1

gk,i

∥∥∥∥∥
2

2

= At−1

t−1∑
k=0

µt−1−k
∥∥∥∥∥ 1

M

M∑
i=1

gk,i

∥∥∥∥∥
2

2

≤ 1

1− µ

t−1∑
k=0

µt−1−k
∥∥∥∥∥ 1

M

M∑
i=1

gk,i

∥∥∥∥∥
2

2

, (12)

where the first inequality follows from Jensen’s inequality. Then, combining (9), (10), (11), and (12),
we obtain

Et[F (zt+1)]

≤ F (zt)−
(
η (2− ρ)

2(1− µ)
− Lη2

2(1− µ)2

)
‖∇F (xt)‖22 +

L2η3µ4

ρ(1− µ)4

t−1∑
k=0

µt−1−k
∥∥∥∥∥ 1

M

M∑
i=1

gk,i

∥∥∥∥∥
2

2

+
Lη2σ2

2(1− µ)2M
+

8L2η3(1− δ)G2

ρδ2(1− µ)3

[
1 +

16

δ2

]
.
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Taking total expectation and telescoping this inequality from 0 to T − 1, we obtain(
η (2− ρ)

2(1− µ)
− Lη2

2(1− µ)2

) T−1∑
t=0

E[‖∇F (xt)‖22]

≤ E[F (z0)]− E[F (zT )] +
L2η3µ4

ρ(1− µ)4

T−1∑
t=0

t−1∑
k=0

µt−1−kE

∥∥∥∥∥ 1

M

M∑
i=1

gk,i

∥∥∥∥∥
2

2


+

Lη2σ2T

2(1− µ)2M
+

8L2η3(1− δ)G2T

ρδ2(1− µ)3

[
1 +

16

δ2

]
= F (x0)− E[F (zT )] +

L2η3µ4

ρ(1− µ)4

T−1∑
t=0

t−1∑
k=0

µt−1−kE
[
‖∇F (xk)‖22

]

+
L2η3µ4

ρ(1− µ)4

T−1∑
t=0

t−1∑
k=0

µt−1−kE

∥∥∥∥∥ 1

M

M∑
i=1

gk,i −∇F (xk)

∥∥∥∥∥
2

2


+

Lη2σ2T

2(1− µ)2M
+

8L2η3(1− δ)G2T

ρδ2(1− µ)3

[
1 +

16

δ2

]
≤ F (x0)− F∗ +

L2η3µ4

ρ(1− µ)4

T−1∑
t=0

t−1∑
k=0

µt−1−kE
[
‖∇F (xk)‖22

]
+
L2η3µ4σ2T

ρ(1− µ)5M
+

Lη2σ2T

2(1− µ)2M
+

8L2η3(1− δ)G2T

ρδ2(1− µ)3

[
1 +

16

δ2

]
.

Using double-sum trick, we get

T−1∑
t=0

t−1∑
k=0

µt−1−kE
[
‖∇F (xk)‖22

]
=

T−2∑
k=0

T−1∑
t=k+1

µt−1−kE
[
‖∇F (xk)‖22

]

≤ 1

1− µ

T−2∑
k=0

E
[
‖∇F (xk)‖22

]
≤ 1

1− µ

T−1∑
k=0

E
[
‖∇F (xk)‖22

]
.

Rearranging the terms, we get

T−1∑
t=0

(
η (2− ρ)

2(1− µ)
− Lη2

2(1− µ)2
− L2η3µ4

ρ(1− µ)5

)
E[‖∇F (xt)‖22]

≤ F (x0)− F∗ +
L2η3µ4σ2T

ρ(1− µ)5M
+

Lη2σ2T

2(1− µ)2M
+

8L2η3(1− δ)G2T

ρδ2(1− µ)3

[
1 +

16

δ2

]
. (13)

Let η ≤ (2−ρ)(1−µ)2
2L and ρ is selected such that ρ ≥ (2− ρ)µ3, we get

η (2− ρ)

2(1− µ)
− Lη2

2(1− µ)2
− L2η3µ4

ρ(1− µ)5
≥ η (2− ρ)

4(1− µ)
. (14)

Hence, combining (13) and (14), and dividing by T ,

1

T

T−1∑
t=0

E[‖∇F (xt)‖22] ≤ 4(1− µ)

η (2− ρ)T
[F (x0)− F∗] +

2Lησ2

(2− ρ)(1− µ)M

[
1 +

2Lηµ4

ρ(1− µ)3

]
+

32L2η2(1− δ)G2

ρ(2− ρ)δ2(1− µ)2

[
1 +

16

δ2

]
.

Let ρ = 1 and E
[
‖∇F (xo)‖22

]
= 1

T

∑T−1
t=0 E[‖∇F (xt)‖22], we obtain the result.
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H Proof of Corollary 3

Proof. Let η = γ
√
T√
M

+
(1−δ)1/3

δ2/3
(1+ 16

δ2
)
1/3

T 1/3
for some γ > 0. As T ≥ 4γ2L2M

(1−µ)4 , we have η ≤ (1−µ)2
2L

and

E
[
‖∇F (xo)‖22

]
≤

[
1

γ
√
MT

+
(1− δ)1/3

γδ2/3T 2/3

(
1 +

16

δ2

)1/3
]

4(1− µ)[F (x0)− F∗]

+
2Lγσ2

(1− µ)
√
MT

[
1 +

2Lγµ4
√
M

(1− µ)3
√
T

]
+

32L2γ2(1− δ)1/3G2

δ2/3(1− µ)2T 2/3

[
1 +

16

δ2

]1/3
=

[
2(1− µ)

γ
[F (x0)− F∗] +

Lγσ2

1− µ

]
2√
MT

+
4L2γ2µ4σ2

(1− µ)4T

+
4(1− δ)1/3

[
(1−µ)
γ [F (x0)− F∗] + 8L2γ2G2

(1−µ)2
]

δ2/3T 2/3

[
1 +

16

δ2

]1/3
.
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