
A Basic properties

Let us recall that transition kernel of the implicit Metropolis-Hastings algorithm is defined as

t(x | y) = q(x | y)min

�
1,

d(x, y)

d(y, x)

�
+ δ(x− y)

�
dx�q(x� | y)

�
1−min

�
1,

d(x�, y)
d(y, x�)

��
. (26)

In this section we show that such kernel has some basic properties that, along with recurrence, imply
convergence to some stationary distribution. To show these properties we assume that the proposal
distribution q(x | y) and the function d(x, y) are continuous and positive on RD × RD.

Firstly, we validate that such transition kernel defines a correct conditional distribution.

t(x | y) ≥ q(x | y)min

�
1,

d(x, y)

d(y, x)

�
> 0 ∀x, y =⇒ t1(x) =

�
t(x | y)t0(y)dy > 0 ∀x (27)

Normalization constant of t1 can be obtained by straightforward evaluation of the integral:

t1(x) =

�
dyq(x | y)t0(y)min

�
1,

d(x, y)

d(y, x)

�
+ (28)

+

�
dyδ(x− y)t0(y)

�
dx�q(x� | y)

�
1−min

�
1,

d(x�, y)
d(y, x�)

��
(29)

t1(x) =

�
dyq(x | y)t0(y)min

�
1,

d(x, y)

d(y, x)

�
+ t0(x)− (30)

−
�

dx�q(x� |x)t0(x)min

�
1,

d(x�, x)
d(x, x�)

�
(31)

�
t1(x)dx =

�
dxdyq(x | y)t0(y)min

�
1,

d(x, y)

d(y, x)

�
+

�
t0(x)dx− (32)

−
�

dxdx�q(x� |x)t0(x)min

�
1,

d(x�, x)
d(x, x�)

�
(33)

�
t1(x)dx =

�
t0(x)dx = 1 (34)

A.1 Irreducibility

Irreducibility of the chain can be straightforwardly proven by adaptation of the proof from (Roberts
et al., 2004).

Consider some set A such that p(A) > 0. Then there exist R > 0 such that p(AR) > 0 where
AR = A ∩BR(0) and BR(0) is a ball with radius R centered at zero. For continuous and positive
d(x, y) and q(x | y) on RD × RD there exist ε > 0 such that

inf
x,y∈AR

q(x | y)min

�
1,

d(x, y)

d(y, x)

�
≥ inf

x,y∈BR

q(x | y)min

�
1,

d(x, y)

d(y, x)

�
≥ ε. (35)

Hence

t(A | y) ≥ t(AR | y) ≥
�

AR

q(x | y)min

�
1,

d(x, y)

d(y, x)

�
dx ≥ ε|AR| > 0. (36)

Thus the chain defined by t(x | y) is irreducible.

A.2 Aperiodicity

Aperiodicity of the chain can be straightforwardly proven by adaptation of the proof from (Roberts
et al., 2004).

Assume there exist two disjoint sets A1 and A2, such that for any starting point y ∈ A1 the transition
t(x | y) ends in A2, i.e. t(A2 | y) = 1. However, by positivity of d(x, y) and q(x | y) we have

t(A1 | y) =
�

A1

q(x | y)min

�
1,

d(x, y)

d(y, x)

�
dx > 0 =⇒ t(A2 | y) < 1. (37)
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B Proof of Proposition 1

We consider some ergodic chain with kernel t(x | y) and assume that t(x | y) satisfy minorization
condition, i.e. for some distribution ν and some ε > 0 the following inequality holds:

t(x | y) ≥ εν(x), ∀x, y. (38)

We denote a distribution after n steps of t(x | y) as tn(x | y). Such distribution is defined by the
recurrent formula:

tn+1(x) =

�
t(x | y)tn−1(y)dy. (39)

Denoting the difference between two consequent distributions as Δn, we study how the operator
t(x | y) changes the l1-norm of Δn.

tn+1(y) = tn(y) +Δn(y) =⇒
�

t(x | y)tn+1(y)dy =

�
t(x | y)tn(y)dy +

�
t(x | y)Δn(y)dy

(40)

Therefore

�tn+1 − tn�TV =
1

2

�
|Δn(y)|dy, and �tn+2 − tn+1�TV =

1

2

� ����
�

t(x | y)Δn(y)dy

����dx.
(41)

Note that Δn integrates in zero
�

Δn(y)dy =

�
tn+1(y)dy −

�
tn(y)dy = 0. (42)

Using that fact we can rewrite the following integral
�

t(x | y)Δn(y)dy =

�
(t(x | y)− εν(x))Δn(y)dy (43)

1

2

� ����
�

t(x | y)Δn(y)dy

����dx ≤ 1

2

�
(t(x | y)− εν(x))|Δn(y)|dydx = (1− ε)

1

2

�
|Δn(y)|dy

(44)

Using the last inequality and equalities from (41), we obtain

�tn+2 − tn+1�TV ≤ (1− ε) �tn+1 − tn�TV . (45)

C Proof of Proposition 2

For the kernel of implicit Metropolis-Hastings algorithm:

t(x | y) = q(x | y)min

�
1,

d(x, y)

d(y, x)

�
+ δ(x− y)

�
dx�q(x� | y)

�
1−min

�
1,

d(x�, y)
d(y, x�)

��
, (46)

we want to derive upper bound on the length of the first step in terms of TV-distance

�t1 − p�TV =
1

2

�
dx

����
�

dyt(x | y)p(y)− p(x)

����. (47)

Firstly, we take the integral inside of TV-distance:
�

dyt(x | y)p(y) =
�

dyq(x | y)p(y)min

�
1,

d(x, y)

d(y, x)

�
+

�
dyδ(x− y)p(y)− (48)

−
�

dx�dyδ(x− y)q(x� | y)p(y)min

�
1,

d(x�, y)
d(y, x�)

�
= (49)

=

�
dyq(x | y)p(y)min

�
1,

d(x, y)

d(y, x)

�
+ p(x)−

�
dx�q(x� |x)p(x)min

�
1,

d(x�, x)
d(x, x�)

�
= (50)

=

�
dyq(x | y)p(y)min

�
1,

d(x, y)

d(y, x)

�
+ p(x)−

�
dyq(y |x)p(x)min

�
1,

d(y, x)

d(x, y)

�
(51)
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Substituting this formula into (47) we obtain

�t1 − p�TV =
1

2

�
dx

����
�

dyq(x | y)p(y)min

�
1,

d(x, y)

d(y, x)

�
−

�
dyq(y |x)p(x)min

�
1,

d(y, x)

d(x, y)

����� ≤
(52)

≤1

2

�
dxdy

����q(x | y)p(y)min

�
1,

d(x, y)

d(y, x)

�
− q(y |x)p(x)min

�
1,

d(y, x)

d(x, y)

����� =
(53)

Note that changing variables in integral does not change value of function, hence we can integrate
over the half of the space and then multiply the integral by 2:

=

�

A

dxdy

����q(x | y)p(y)min

�
1,

d(x, y)

d(y, x)

�
− q(y |x)p(x)min

�
1,

d(y, x)

d(x, y)

����� = (54)

A =

�
x, y :

d(x, y)

d(y, x)
≥ 1

�
(55)

=

�

A

dxdy

����q(x | y)p(y)− q(y |x)p(x)min

�
1,

d(y, x)

d(x, y)

����� (56)

Thus, we obtain

�t1 − p�TV ≤ 2

����q(x | y)p(y)− q(y |x)p(x)min

�
1,

d(y, x)

d(x, y)

�����
TV

(57)

D Proof of Proposition 3

To prove Proposition 3 we extend the proof from (Pollard, 2000). Consider a distribution α(x) and
some positive function f(x) > 0 ∀x. Normalization constants for α and f are�

α(x)dx = 1, and
�

f(x)dx = C. (58)

The proof is constructed around the following inequality

(1 + r) log(1 + r)− r ≥ 1

2

r2

1 + r/3
, r ≥ −1. (59)

For r we consider the ratio r(x) = α(x)/f(x) − 1, and introduce a random variable F with the
density f(x)/C. Then

EF r(x) =

�
f(x)

C

�
α(x)

f(x)
− 1

�
dx =

1

C
− 1 (60)

EF (1 + r(x)) log(1 + r(x)) =
1

C

�
α(x) log

α(x)

f(x)
� 1

C
�KL(α�f) (61)

EF

�
1 +

r(x)

3

�
=

2

3
+

1

3C
> 0 (62)

EF |r(x)| =
1

C

� ����α(x)− f(x)

����dx =
2

C
�α− f�TV (63)

Substituting all the equations into (59) we obtain

EF

�
(1 + r(x)) log(1 + r(x))− r(x)

�
≥ 1

2
EF

�
r(x)2

1 + r(x)/3

�
(64)

EF

�
1 +

r(x)

3

�
EF

�
(1 + r(x)) log(1 + r(x))− r(x)

�
≥ 1

2
EF

�
r(x)2

1 + r(x)/3

�
EF

�
1 +

r(x)

3

�

(65)

EF

�
1 +

r(x)

3

�
EF

�
(1 + r(x)) log(1 + r(x))− r(x)

�
≥ 1

2

�
EF |r(x)|

�2
(66)

2C + 1

3C

�
1

C
�KL(α�f)− 1

C
+ 1

�
≥ 2

C2
�α− f�2TV (67)
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Hence, we obtain

�α− f�2TV ≤ 2C + 1

6

�
�KL(α�f) + C − 1

�
(68)

Note, that if f is a distribution, then C = 1 and we obtain Pinsker’s inequality:

�α− f�2TV ≤ 1

2
�KL(α�f). (69)

E DRE

We derive the formula for the optimal discriminator by taking derivative of the following objective
w.r.t. the value of d(x, y) in a single point (x, y)

min
d
E x ∼ p(x)

y ∼ q(y |x)

�
log

d(y, x)

d(x, y)
+

d(y, x)

d(x, y)

�
. (70)

Speaking informally, we treat the expectation as a sum over all the possible points. Taking a derivative
w.r.t. a single point allows us to consider only two elements of the sum.

∇d(x,y)

�
p(x)q(y |x)

�
log

d(y, x)

d(x, y)
+

d(y, x)

d(x, y)

�
+ p(y)q(x | y)

�
log

d(x, y)

d(y, x)
+

d(x, y)

d(y, x)

��
= 0

(71)

p(x)q(y |x)
�
− 1

d(x, y)
− d(y, x)

d(x, y)2

�
+ p(y)q(x | y)

�
1

d(x, y)
+

1

d(y, x)

�
= 0 (72)

p(x)q(y |x)
p(y)q(x | y)

�
− 1− d(y, x)

d(x, y)

�
+

�
1 +

d(x, y)

d(y, x)

�
= 0 (73)

p(x)q(y |x)
p(y)q(x | y)

d(y, x) + d(x, y)

d(x, y)
=

d(x, y) + d(y, x)

d(y, x)
(74)

p(x)q(y |x)
p(y)q(x | y) =

d(x, y)

d(y, x)
(75)

Note that we do not derive an explicit form of d(x, y), actually d(x, y) could be any function which
ratio equals to the density-ratio.

The same result can be obtained by taking a derivative in function space, but for simplicity, we
provide here an informal proof by taking the pointwise derivative.

F Relation to the cross-entropy

In this Section we make a connection between loss (18) and the conventional loss for the density-ratio
estimation — cross-entropy.

F.1 Markov proposal

For Markov proposal, the loss from (18) can be straightforwardly upper bounded by the cross-entropy:

E x ∼ p(x)
y ∼ q(y |x)

�
log

d(y, x)

d(x, y)
+

d(y, x)

d(x, y)

�
≤E x ∼ p(x)

y ∼ q(y |x)

�
− log d(x, y)− log(1− d(y, x)) +

1

b

�
.

(76)

That yields the optimal discriminator

d(x, y) =
p(x)q(y |x)

p(x)q(y |x) + p(y)q(x | y) , (77)

using which we can achieve �t∞ − p�TV = 0.
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F.2 Independent proposal

In Section 2 we describe Algorithm 2 proposed in (Neklyudov et al., 2018; Turner et al., 2018). The
idea of the algorithm is to use learned generator of any GAN model as independent proposal q(x) in
the Metropolis-Hastings algorithm. Authors propose to learn a discriminator d(x) by minimization
of the cross-entropy:

min
d

�
− Ex∼p(x) log d(x)− Ex∼q(x) log(1− d(x))

�
, (78)

and then to estimate the density-ratio as

p(x)q(y)

p(y)q(x)
≈ d(x)(1− d(y))

(1− d(x))d(y)
. (79)

In this section, we show that there exists such an upper bound on �t∞ − p�TV that its optimization is
equivalent to the optimization of cross-entropy (78). To derive such upper bound we upper bound the
discriminator objective (18), considering an independent proposal q(x) and factorized discriminator
d(x, y) = d(x)(1− d(y)).

Ex ∼ p(x)
y ∼ q(y)

�
log

d(y)(1− d(x))

d(x)(1− d(y))
+

d(y)(1− d(x))

d(x)(1− d(y))

�
≤Ex ∼ p(x)

y ∼ q(y)

�
log

d(y)(1− d(x))

d(x)(1− d(y))
+

1

b

�

(80)

Splitting the logarithm into sum results in
�
− Ex∼p(x) log d(x)− Ey∼q(y) log(1− d(y)) + Ex∼p(x) log(1− d(x)) + Ey∼q(y) log d(y)

�
≤

≤− Ex∼p(x) log d(x)− Ey∼q(y) log(1− d(y)),
(81)

where the last upper bound is the cross-entropy (78). The obtained upper bound on the discriminator
objective (18) can be substituted in (17) that results in

�t∞ − p�2TV ≤ L(d) ≤
�
4 + 2b

3ε2b3

�
·

·
�
− Ex∼p(x) log d(x)− Ey∼q(y) log(1− d(y)) +

1

b
− 1 + KL(q(y)p(x)�q(x)p(y))

�
.

(82)

Hence, minimization of the cross-entropy leads to the minimization of the TV-distance between
stationary distribution of the chain t∞(x) and target distribution p(x). Note that during optimization
of such upper-bound we also could achieve �t∞ − p�TV = 0 for any target p(x) and proposal q(x),
since the optimal discriminator d∗(x) allows correct estimation of density ratio:

d∗(x)(1− d∗(y))
(1− d∗(x))d∗(y)

=
p(x)q(y)

p(y)q(x)
. (83)

G Synthetic examples

G.1 1-D mixture of Gaussians

We validate the proposed algorithm and compare different losses on the synthetic target distribution.
For the target empirical distribution we take 5000 samples from the mixture of two Gaussians
p(x) = 0.5N (x |µ = −2,σ = 0.5) + 0.5N (x |µ = 2,σ = 0.7). We simulate an implicit Markov
proposal by sampling from the random-walk kernel q(x | y) = N (x |µ = y,σ = 1.0), and an
implicit independent proposal by sampling from the Gaussian q(x) = N (x |µ = 0.0,σ = 2.0).
Note, despite that we know densities of the target and proposals, we use only samples from these
distributions during training and sampling stages. As a discriminator, we use the neural network
with 3 fully-connected layers (100 hidden neurons) and learn it with the Adam optimizer for 1000
iterations.
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Since we have access to the density of distributions, we monitor the TV-distance (from (10))

2

����q(y |x)p(x)− q(x | y)p(y)d(x, y)
d(y, x)

����
TV

(84)

throughout the learning of the discriminator. This distance can be treated as the averaged l1-error of
the density-ratio estimation:

2

����q(y |x)p(x)− q(x | y)p(y)d(x, y)
d(y, x)

����
TV

=

�
dxdy q(x | y)p(y)

����
q(y |x)p(x)
q(x | y)p(y) − d(x, y)

d(y, x)

����. (85)

We compare losses from Table 1 in Figure 4. In agreement with our theoretical result, the TV-distance
steadily goes down during the learning of the discriminator. For Markov proposal (left plot in Fig.
4), the optimization of upper bound (UB) behaves similarly to the optimization of the cross-entropy
(MCE). However, for the independent proposal (right plot in Fig. 4), the best metric for optimization
is the conventional cross-entropy (CCE). In Figure 6, we demonstrate filtering of the independent
proposal with the discriminator learned by the optimization of the cross-entropy (CCE).

Note that learning a discriminator for the random-walk proposal allows for estimation of target
unnormalized density:

d(x, y)

d(y, x)
≈ p(x)q(y |x)

p(y)q(x | y) =
p(x)

p(y)
, (86)

since q(x | y) = q(y |x).
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Figure 4: Comparison of different losses for a
discriminator in terms of the TV-distance (84).
On the left plot we learn the discriminator for
the Markov proposal, on the right plot we learn
the discriminator for the independent proposal.
For losses see Table 1.

� � � � � � � � �

����

����

����

����

����

����

����

����

����

������

��������

� � � � �

����

����

����

����

����

����

����

����

���� ������

���

Figure 5: Samples from the independent pro-
posal distribution are on the left. Samples ob-
tained after filtering with the implicit Metropolis-
Hastings (IMH) algorithm are on the right.

G.2 Scaling with dimensions

To assess the behavior of the algorithm on high-dimensional tasks, we consider a tractable toy distri-
bution and gradually increase its number of dimensions. As in (Roberts et al., 2001), for the target,
we take factorized distribution p(x) = p(x1)

�d
i=2 p(xi), where p(x1) = 0.5N (x |µ = −1.5,σ =

0.5)+0.5N (x |µ = 1.5,σ = 0.7) is the mixture of two Gaussians and the rest d−1 components are
standard normal p(xi) = N (0, 1). For the Markov proposal, we take the homogeneous random-walk
kernel q(x|y) = N (x|y,σI) and scale σ with dimensions as proposed in (Roberts et al., 2001) to
keep the acceptance rate about 20%. For the independent proposal, we take homogeneous Gaussian
q(x) = N (0,σI),σ = 1.2.

To evaluate the quality of a chain we draw 20000 samples from the chain and compute the symmetric
KL-divergence along the first dimension (as the most difficult), averaging across 100 independent
runs. Since for the symmetric KL we need both densities, we approximate the density of the samples
by a histogram. In Fig. 6, we demonstrate the quality of sampling with the growth of dimensionality.
For the reference performance we take the exact Metropolis-Hastings algorithm (MH on the plots).
The implicit MH algorithm demonstrate a comparable performance with the exact MH algorithm
for all loss functions of the discriminator. This fact indicates that the growth of the symmetric KL
divergence is a property of the MH algorithm itself (not a poor test approximation). In other words,
the error in the test is negligible compared to the error induced by the growth of dimensionality.
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Figure 6: The mean error of the chains measured as the symmetric KL divergence along the first
dimension of the target distribution. We average across 100 independent runs and plot the variance
for each dimension. The error of the implicit MH algorithm (different losses: MCE, UB, CCE) grows
comparably with the error of the exact MH algorithm. For the density of the target distribution see
details in the text.

H Monotonous improvements throughout the learning of the discriminator
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Figure 7: Monotonous improvements in terms of FID and IS for the learning of discriminator by
CCE. During iterations, we evaluate metrics several times (scatter) and then average them (solid
lines). For a single metric evaluation, we use 10k samples. Higher values of IS and lower values of
FID are better. Performance for the original models corresponds to the 0th iteration on the plots.
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Figure 8: Monotonous improvements in terms of FID and IS for the learning of discriminator by
CCE. During iterations, we evaluate metrics several times (scatter) and then average them (solid
lines). For a single metric evaluation, we use 10k samples. Higher values of IS and lower values of
FID are better. Performance for the original models corresponds to the 0th iteration on the plots.
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Table 2: Different losses for the density-ratio estimation.
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