Appendices

A Definition for DTMF,

Definition A.1. The DTMs and DTMF; scores are defined as:
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B Proof of Theorems
B.1 Proof of Theorem 3.3
Proof. By standard VC theory [1I, for any ball B C R<, we have
P(B) > p+ B2+ Buy/D = Pu(B) > p. (1)
P(B) <p— B2 —Buy/P= Pa(B) <p )

with probability at least 1 — 4.
Stepl: First, we want to show that
ip(z) < 1p(2) + C(B; + Buv/p) 3)
for all 2. By definition of r,,(z), we have P(B(z,r,(z))) > p. Define r* = inf{r : P(B(z,r)) >
p+ B2 4 Bn+/p}. Then, we have
P(B(z,r")) > p+6i + Ba/D = Po(B(z,r%)) > p

by (I). Therefore, r* > #,(z). Next, note that r,(z) < r*. If r,(z) = v, @) holds trivially. If
rp(x) < 7T, then for all s such that 7,(z) < s < rT, we have

p < P(B(z,rp(x))) < P(B(x,5)) < p+ By + Buy/p.
Then by assumption (A1),
s <mp(@) + C(B] + Bav/p).
Taking s T 7+, we get 7, (z) < v+ < rp(z) + C(B2 + B,,/P) as desired.

Step 2: Next, we want to show the reverse direction:
rp(x) < 7p(x) + C(B + Bu/p)- 4
Let 7~ = inf{r : P(B(z,r)) > p — 82 — Bn+/P}- Then, clearly r~ < r,(z) and P(B(z,77)) >
p — B2 — Bny/p- Forall s < r~, we have
P<B($7S)> <p_ 5721 - /Bn\/];
= P,(B(z,s)) <p
=5 < Tp(x)

where the first implication follows from (2)). Taking s 77—, we get r~ < 7,(z). If r= = rp(z), @)
holds trivially. If »— < r,(x), then for any w satisfying r~— < u < r,(z), we have

p =B = Buy/p < P(B(w,r7)) < P(B(x,u)) < p
=u<7r + C(ﬂi + Bnr/D)-
Taking u 1 r,(x), we get

rp(@) <17+ C(B7 + Buy/p) < p(x) + C(B) + Bav/D)
as desired. O



B.2 Proof of Theorem 3.4

Proof. Fix X, and let P; ,,_; be the marginal distribution of X,,\{X;}. Then by standard VC theory
[L], for any ball B C R¢ with fixed center X; and arbitrary radius, we have

P(B) > p+a2+an/p= P, ,_1(B) > p. (5)

P(B) <p—a2 —any/p= Pin1(B)<p (©6)

with probability at least 1 — d/n. Define 7, *(X;) to be the p-NN radius associated with the empirical
measure P; ,,_1.
Step 1: Following the same steps as in Step 1 in the proof of Theorem 3.3, we have

i (Xi) < rp(X3) + Cad + am/D). (7

Step 2: Next, we want to show the following:

(X)) < 7 (X0) + (02 + oy + ), ®

where p' = p — 2/n. Following the same steps as in step 2 in the proof of Theorem 3.3, let
r~ = inf{r : P(B(X;,r)) > p' — a2 — an/p'}. Then, clearly r~ < r,(X;) < 7,(X;) and
P(B(X;,r7)) >p — a2 — ap/p'. Forall s < r~, we have

P(B(X;,s)) <p —a2 — ozn\/]?
= -Pi,nfl(B(Xia 5)) < p/
=5 <71 (X;)

where the first implication follows from (6)). Taking s 77—, we get r~ < f;l(Xl) Ifr= =r,(X,),
(8) holds trivially. If r~ < 7,(X;), then for any u satisfying r~ < u < r,(X;), we have

P =i, = an/p < P(B(Xi,r7)) < P(B(X;,u)) < p
2
=u<r+C2+an /P + ).
n
Taking u 1 r,(X;), we get

2 , 2
rp(Xi) <77 4 C(2 + an/P' + =) <7 (X) + C(a? + an\/p + ~)

as desired.
Step 3: Finally, we want to show that
fp_/i(Xi) < (X)) < 7 (XG). )
Let k = [(n — 1)p], then we have p < % By construction,
- k i E+1
Pin-1(B(Xi, 7" (X)) = —— = Pa(B(Xi, 7" (X)) = —— 2 —— 2,

which implies that 7,(X;) < r,*(X;). Similarly, let & = [(n — 1)p'], then we have p’ > % By
construction,

Ponr (B 7 (X)) = o = PA(B(Xo i (X)) = 202 < B2 2

, , — <
p n— p n ~—n—1 n P

— )

which implies that 7,*(X;) < 7, (X;).
Combining the results from Step 1,2,3, we get

2
[ (Xi) = 7 (Xi)| < Clog + anyp+ —)

with probability at least 1 — ¢ /n. Thus,

with probability at least 1 — § by union bound. O



B.3 Proof of Theorem 3.5

Proof. Here, we include the proof for (??), the proof for (??) can be argued in a similar fashion. The
conditions p + 32 + f,/p < land p — B2 — B,\/p > 0imply ¢182 < p < 1 — 232 for some
constant ¢; and co. Let I[; = {p: 132 <p <1 — 262} N[0, m] and Iy = [0, m]\I;. Then, with
probability at least 1 — 0, for p € I, sup,, |r,(x) — 7p(x)| < CB,(Bn + 1/P) by Theorem 3.3. For
p € Iy, sup, |rp(z) — 7p(x)| < 2L where L is the bound on the support of P by Assumption (A0).

<771”L /On Tp(x)qdp)l/q _ (ﬂl1 /Om fp(x)qazp>l/q

<sw (o [T e) = o)1 dp)l/q

sup |d(z) — d(x)| = sup

m

L q q )Uq
< (5 [t e [ enya
1/q
< ((Cﬂn(ﬂn + /m))a = 1P —njlﬁi 4+ pyp@fatm = m AL czﬁfJ)
< C1Bn(Bn +V/m)
for some positive number C', dependent on q. O

B.4 Proof of Proposition 3.6

Proof. Equivalently, by the definition of DTM, we will need to show that

1 m m

1
sup — rpi(z)?dt < inf — rp(y)?dt — h. (10)
z€A, T Jo yeSL M Jo

Since for any x € A,, P(B(z,r)) > (1 — ¢)Py(B(z,7)), we have rps(x) < ro_op(z) =

rp t/1—e(T). enr = (—r=~—— , by the (a, b)-condition of i, we have I x,r)) >
0.t/ Wh sm=s)"/" by the (a,b)-condition of Py, we have Py(B

a(z)r® = £ Hence, rp, ¢/1-.(z) < (m)l/b. Putting the inequalities together, the LHS of

(TO) gives

/ p, ‘Zdt<l m(it )0 at
m i 0 ax)(1l—c¢)
= b ( m q/b
b+q a(z)(l—¢)
Next, consider the right hand side of (I0). We have that
. 1 Mm 1 [
i g ) resran= ot [ evatitan [ onatora
>0+—/ n?dt
_ 0
m
Hence, (I0) holds if
b m i m e
< “—h 11
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@a($)>15<b (mn )) (12)
S rel, (13)



(a) Ring (b) Local Anomalies (c) Clustered Anomalies

Figure 1: Examples of difficult datasets.

C Simulation Results on 23 Real Datasets from ODDS

Table gives the exact AUC and AP scores of [Forest, LODA, LOF, DTM,, kNN, and E'"NN on
23 real datasets from the ODDS library.

D Performance on Difficult Examples

Figure|[T] gives three examples of difficult situations where some algorithms will very likely fail. The
black dots represent the normal instances, and the two red dots represent anomalies. In Figure[Ta]
where the anomalies are located in the center of a circle of normal points, IForest and LODA will
have a hard time detecting the anomalies, whereas LOF and NN-methods have no trouble. In Figure
[ID] if the anomalies are locally relatively far away from a group of normal points, NN-methods,
IForest, and LODA won’t be able to pick them up, whereas LOF is designed to handle this specific
case. However, we observed through extensive simulations that LOF can easily make mistakes on
global anomalies, and Figure[Ic|gives one such example. If we have a cluster of anomalies located at
some distance from a collection of normal points, LOF tends to mis-identify some of the anomalies
as normal points, whereas the other methods have no such problem.

Figure [2|[3|4] show the performance of IForest, LODA, LOF, and DTMj; in each of the difficult
examples. The radius of the circle around each point gives the anomaly score of each algorithm, and
the color of the circle represents the predicted class by the algorithm.
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Table 1: Performance of IForest, LODA, LOF, DTM,, kNN, and k" NN on 23 real datasets from
the ODDS library.

| AUC | IForest | LODA | LOF | DTM, | kNN | k'"NN |

annthyroid 0.846217 | 0.711716 | 0.688763 | 0.677126 | 0.681196 | 0.662250
arrhythmia 0.774180 | 0.789645 | 0.763778 | 0.807466 | 0.806681 | 0.815473

breastw 0.988089 | 0.987891 | 0.376371 | 0.980041 | 0.979805 | 0.982081
cardio 0.925666 | 0.904219 | 0.705637 | 0.831097 | 0.820695 | 0.880306
glass 0.706775 | 0.771816 | 0.737669 | 0.867751 | 0.867209 | 0.869106
ionosphere 0.842363 | 0.853369 | 0.899506 | 0.928007 | 0.928148 | 0.920141
letter 0.600280 | 0.622487 | 0.842000 | 0.856193 | 0.861893 | 0.809837
lympho 1.000000 | 0.992958 | 0.981221 | 0.977700 | 0.977700 | 0.978286
mammography || 0.853864 | 0.866368 | 0.819344 | 0.850100 | 0.850604 | 0.849169
mnist 0.792829 | 0.595506 | 0.839678 | 0.862295 | 0.861369 | 0.861813
musk 0.999944 | 0.994193 | 0.286222 | 0.957031 | 0.936976 | 1.000000

optdigits 0.714978 | 0.714282 | 0.612373 | 0.560559 | 0.537313 | 0.842404
pendigits 0.961689 | 0.950902 | 0.850733 | 0.958278 | 0.950210 | 0.970528

pima 0.675037 | 0.618657 | 0.557993 | 0.636045 | 0.634418 | 0.639545
satellite 0.686132 | 0.725766 | 0.578879 | 0.768331 | 0.764688 | 0.795738
satimage-2 || 0.993326 | 0.994631 | 0.991675 | 0.999054 | 0.999079 | 0.998954
shuttle 0.997529 | 0.992264 | 0.522135 | 0.989215 | 0.984996 | 0.993954
speech 0.441678 | 0.441248 | 0.478689 | 0.482781 | 0.483310 | 0.47859%4
thyroid 0.978939 | 0.954587 | 0.963042 | 0.946970 | 0.947420 | 0.943083
vertebral || 0.359048 | 0.338889 | 0.495714 | 0.331746 | 0330794 | 0.323968
vowels 0.739488 | 0.757411 | 0.937155 | 0.961067 | 0.963144 | 0.946216

whe 0.943177 | 0.958517 | 0.910764 | 0.948113 | 0.946379 | 0.949980
wine 0.776471 | 0.963025 | 0.428151 | 0.994958 | 0.993277 | 0.996218
avgrank || 4.086957 | 4478261 | 6.391304 | 4.086957 | 4347826 | 3.565217
(a) AUC
| AUC | TForest | LODA | LOF | DTMs; | kNN | k'"NN |

annthyroid 0.336719 | 0.221278 | 0.252282 | 0.201405 | 0.203313 | 0.191132
arrhythmia 0.422741 | 0.479021 | 0.372709 | 0.491718 | 0.489785 | 0.511596

breastw 0.972689 | 0.970735 | 0.272824 | 0.945230 | 0.944475 | 0.951773
cardio 0.577570 | 0.579294 | 0.202455 | 0.404516 | 0.399020 | 0.450174
glass 0.096007 | 0.140315 | 0.193538 | 0.162208 | 0.162824 | 0.155266
ionosphere 0.794018 | 0.794706 | 0.866694 | 0.928604 | 0.928993 | 0.911973
letter 0.089123 | 0.090754 | 0.334208 | 0.260399 | 0.268795 | 0.200453
lympho 1.000000 | 0.835714 | 0.655556 | 0.723611 | 0.723611 | 0.695202
nmammography || 0.193517 | 0.264330 | 0.130258 | 0.167475 | 0.169236 | 0.161568
mnist 0.267129 | 0.143844 | 0.397000 | 0.404172 | 0.403502 | 0.387391
musk 0.998328 | 0.881940 | 0.021850 | 0.618577 | 0.496054 | 1.000000

noptdigits 0.051332 | 0.047997 | 0.033582 | 0.032489 | 0.031128 | 0.081907
npendigits 0.328479 | 0.263207 | 0.077311 | 0.217698 | 0.193527 | 0.315036

npima 0.506879 | 0.491468 | 0.391361 | 0.486558 | 0.485157 | 0.492184
satellite 0.659824 | 0.693257 | 0.406871 | 0.639164 | 0.634576 | 0.680913
satimage-2 0.936035 | 0.911899 | 0.516222 | 0.972246 | 0.972113 | 0.972834
shuttle 0.983694 | 0.825359 | 0.261309 | 0.746971 | 0.694083 | 0.818767
speech 0.016421 | 0.015298 | 0.018916 | 0.019062 | 0.019088 | 0.018781
thyroid 0.595528 | 0.276667 | 0.397719 | 0.297644 | 0.296979 | 0.285007
vertebral 0.094209 | 0.090683 | 0.121829 | 0.089739 | 0.089664 | 0.088901
vowels 0.179951 | 0.181478 | 0.396334 | 0.484752 | 0.501906 | 0.403366
wbc 0.588631 | 0.640832 | 0.279934 | 0.495254 | 0.488687 | 0.554438
wine 0.192461 | 0.544417 | 0.072027 | 0.941540 | 0.928312 | 0.954040
avg.rank 3.521739 | 4.260870 | 6.260870 | 4.347826 | 4.739130 | 3.869565
(b) AP
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Figure 2: Performance on the difficult datasets. Case: ring
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Figure 3: Performance on the difficult datasets. Case: local anomalies
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Figure 4: Performance on the difficult datasets. Case: clustered anomalies
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