
Appendix A Further Analysis of reverse KL-divergence Loss

It is interesting to further analyze the properties of the reverse KL-divergence loss by decomposing it
into the reverse cross-entropy and the negative differential entropy:
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Lets consider the reverse-cross entropy term in more detail (and dropping additive constants):
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When the target concentration parameters �(c)are defined as in equation 7, the form of the reverse
cross-entropy will be:

LRCE(✓;�) = Ep̂tr(x)
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This expression for the reverse cross entropy is a scaled version of an upper-bound to the cross
entropy between discrete distributions, obtained via Jensen’s inequality, which was proposed in a
parallel work [34] that investigated a model similar to Dirichlet Prior networks:
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This form of this upper bound loss is identical to standard negative log-likelihood loss, except with
digamma functions instead of natural logarithms. This loss can be analyzed further by considering
the following asymptotic series approximation to the digamma function:
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Given this approximation, it is easy to show that this upper-bound loss is equal to the negative
log-likelihood plus an extra term which drives the concentration parameter ↵̂c to be as large as
possible:
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Thus, the reverse KL-divergence between Dirichlet distributions, given setting of target concentration
parameters via equation 7, yields the following expression:

LRKL(✓;�) ⇡ � · LNLL(✓) + Ep̂tr(x)
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Clearly, this expression is equal to the standard negative log-likelihood loss for discrete distributions,
weighted by �, plus a term which drives the precision ↵̂0 of the Dirichlet to be � +K, where K is
the number of classes.
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Appendix B Synthetic Experiments

The current appendix describes the high data uncertainty artificial dataset used in section 4 of
this paper. This dataset is sampled from a distribution ptr(x, y) which consists of three normally
distributed clusters with tied isotropic covariances with equidistant means, where each cluster
corresponds to a separate class. The marginal distribution over x is given as a mixture of Gaussian
distributions:

ptr(x) =
3X

c=1
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1

3
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N (x;µc,�
2 · I) (21)

The conditional distribution over the classes y can be obtained via Bayes’ rule:

Ptr(y = !c|x) =
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This dataset is depicted for � = 4 below. The green points represent the ’out-of-distribution’ training
data, which is sampled close to the in-domain region. The Prior Networks considered in section 4 are
trained on this dataset. Figure 7 depicts the behaviour of the differential entropy of Prior Networks

Figure 6: High Data Uncertainty artificial dataset.

trained on the high data uncertainty artificial dataset using both KL-divergence losses. Unlike the
total uncertainty, expected data uncertainty and mutual information, it is less clear what is the desired
behaviour of the differential entropy. Figure 7 shows that both losses yield low differential entropy
in-domain and high differential entropy out-of-distribution. However, the reverse KL-divergence
seems to capture more of the structure of the dataset, which is especially evident in figure 7b, than
the forward KL-divergence. This suggests that the differential entropy of Prior Networks trained
via reverse KL-divergence is a measures of total uncertainty, while the differential entropy of Prior
Networks trained using forward KL-divergence is a measure of knowledge uncertainty. The latter is
consistent with results in [16].

(a) Differential Entropy PN-KL (b) Differential Entropy PN-RKL

Figure 7: Differential Entropy derived from Prior Networks trained with forward and reverse KL-
divergence loss.
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Appendix C Experimental Setup

The current appendix describes the experimental setup and datasets used for experiments considered
in this paper. Table 3 describes the datasets used in terms of their size and numbers of classes.

Table 3: Description of datasets in terms of number of images and classes.

Dataset Train Valid Test Classes

MNIST 55000 5000 10000 10
SVHN 73257 - 26032 10
CIFAR-10 50000 - 10000 10
LSUN - - 10000 10
CIFAR-100 50000 - 10000 100
TinyImagenet 100000 10000 10000 200

All models considered in this paper were implemented in Tensorflow [35] using the VGG-16 [2]
architecture for image classification, but with the dimensionality of the fully-connected layer reduced
down to 2048 units. DNN models were trained using the negative log-likelihood loss. Prior Networks
were trained using both the forward KL-divergence (PN-KL) and reverse KL-divergence (PN-RKL)
losses to compare their behaviour on more challenging datasets. Identical target concentration
parameters �(c) were used for both the forward and reverse KL-divergence losses. All models were
trained using the Adam [36] optimizer, with a 1-cycle learning rate policy and dropout regularization.
In additional, data augmentation was done when training models on the CIFAR-10, CIFAR-100 and
TinyImageNet datasets via random left-right flips, random shifts up to ±4 pixels and random rotations
by up to ± 15 degrees. The details of the training configurations for all models and each dataset can
be found in table 4. 5 models of each type were trained starting from different random seeds. The 5
DNN models were evaluated both individually (DNN) and as an explicit ensemble of models (ENS).

C.1 Adversarial Attack Generation

An adversarial input xadv will be defined as the output of a constrained optimization process Aadv

applied to a natural input x:

Aadv(x,!t) = arg min
x̃2RD
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The loss L is typically the negative log-likelihood of a particular target class y = !t:

L
�
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�
= � ln P(y = !t|x̃; ✓̂) (24)

The distance �(·, ·) represents a proxy for the perceptual distance between the natural sample x and
the adversarial sample x̃. In the case of adversarial images �(·, ·) is typically the L1, L2 or L1
norm. The distance �(·, ·) is constrained to be within the set of allowed perturbations such that the
adversarial attack is still perceived to be a natural input to a human observer. First-order optimization
under a Lp constraint is called Projected Gradient Descent [25], where the solution is projected back
onto the Lp-norm ball whenever it exceeds the constraint.

There are multiple ways in which the PGD optimization problem 23 can be solved [17, 18, 19, 20, 25].
The simplest way to generate an adversarial example is via the Fast Gradient Sign Method or FGSM
[18], where the sign of the gradient of the loss with respect to the input is added to the input:

xadv = x� ✏ · sign(rxL
�
!t,x, ✓̂

�
) (25)

Epsilon controls the magnitude of the perturbation under a particular distance �(x,xadv), the L1
norm in this case. A generalization of this approach to other Lp norms, called Fast Gradient Methods

(FGM), is provided below:
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�
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FGM attacks are simple adversarial attacks which are not always successful. A more challenging class
of attacks are iterative FGM attacks, such as the Basic Iterative Method (BIM) [19] and Momentum
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Table 4: Training Configurations. ⌘0 is the initial learning rate, � is the out-of-distribution loss weight
and � is the concentration of the target class. The batch size for all models was 128. Dropout rate is
quoted in terms of probability of not dropping out a unit.

Training Model ⌘0 Epochs Cycle Dropout � �in OOD dataDataset Length

MNIST
DNN

1e-3 20 10 0.5
-

PN-KL 0.0 1e3 -PN-RKL

SVHN
DNN 1e-3

40 30
0.5 -

PN-KL 5e-4 0.7 1.0 1e3 CIFAR-10PN-RKL 5e-6 0.7 10.0

CIFAR-10

DNN 1e-3 45 30 0.5 - - -
DNN-ADV FGSM-ADV
PN-KL 5e-4 45 30 0.7 1.0 1e2 CIFAR-100PN-RKL 5e-6 10.0
PN 5e-6 45 30 0.7 30.0 1e2 FGSM-ADV

CIFAR-100

DNN 1e-3 100 70 0.5 - - -
DNN-ADV FGSM-ADV
PN-KL 5e-4 100 70 0.7 1.0 1e2 TinyImageNetPN-RKL 5e-6 10.0
PN 5e-4 100 70 0.7 30.0 1e2 FGSM-ADV

TinyImageNet
DNN 1e-3

120 80 0.5
-

PN-KL 5e-4 0.0 1e2 -PN-RKL 5e-6

Iterative Method (MIM) [20], and others [21, 33]. However, as pointed out by Madry et. al [25], all
of these attacks, whether one-step or iterative, are generated using variants of Projected Gradient

Descent to solve the constrained optimization problem in equation 23. Madry [25] argues that all
attacks generated using various forms of PGD share similar properties, even if certain attacks use
more sophisticated forms of PGD than others.

In this work MIM L1 attacks, which are considered to be strong L1 attacks, are used to attack all
models considered in section 6. However, standard targeted attacks which minimize the negative
log-likelihood of a target class are not adaptive to the detection scheme. Thus, in this work adaptive

targeted attacks are generated by minimizing the losses proposed in section 6, in equation 13.

The optimization problem in equation 23 contains a hard constraint, which essentially projects the
solutions of gradient descent optimization to the allowed Lp-norm ball whenever �(·, ·) is larger than
the constraint. This may be both disruptive to iterative momentum-based optimization methods. An
alternative soft-constraint formulation of the optimization problem is to simultaneously minimize the
loss as well as the perturbation �(·, ·) directly:

Aadv(x, t) = arg min
x̃2RK

n
L
�
!t, x̃, ✓̂

�
+ c · �(x, x̃)

o
(27)

In this formulation c is a hyper-parameter which trades of minimization of the loss L
�
!t, x̃, ✓̂

�
and

the perturbation �(·, ·). Approaches which minimize this expression are the Carlini and Wagner L2

(C&W) attack [21] and the "Elastic-net Attacks to DNNs" (EAD) attack [33]. While the optimization
expression is different, these methods are also a form of PGD and therefore are expected to have
similar properties as other PGD-based attacks [25]. The C&W and EAD are considered to be
particularly strong L2 and L1 attacks, and Prior Networks need to be assessed on their ability to be
robust to and detect them. However, adaptation of these attacks to Prior Networks is non-trivial and
left to future work.
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C.2 Adversarial Training of DNNs and Prior Networks

Prior Networks and DNNs considered in section 6 are trained on a combination of natural and
adversarially perturbed data, which is known as adversarial training. DNNs are trained on L1
targeted FGSM attacks which are generated dynamically during training from the current training
minibatch. The target class !t is selected from a uniform categorical distribution, but such that it
is not the true class of the image. The magnitude of perturbation ✏ is randomly sampled for each
image in the minibatch from a truncated normal distribution, which only yields positive values, with
a standard deviation of 30 pixels:

✏ ⇠ Npos(0,
30

128
) (28)

The perturbation strength is sampled such that the model learns to be robust to adversarial attacks
across a range of perturbations. The DNN is then trained via maximum likelihood on both the natural
and adversarially perturbed version of the minibatch.

Adversarial training of the Prior Network is a little more involved. During training, an adversarially
perturbed version of the minibatch is generated using the targeted FGSM method. However, the loss
is not the negative log-likelihood of a target class, but the reverse KL-divergence (eqn. 11) between
the model and a targeted Dirichlet which is focused on a target class which is chosen from a uniform
categorical distribution (but not the true class of the image). For this loss the target concentration is
the same as for natural data (�in = 1e2). The Prior Network is then jointly trained on the natural and
adversarially perturbed version of the minibatch using the following loss:

L(✓,D) =LRKL
in (✓,Dtrain;�in) + � · LRKL

adv (✓,Dadv;�adv) (29)

Here, the concentration of the target class for natural data is �in = 1e2 and for adversarially perturbed
data �adv = 1, where the concentration parameters are set via 7. Setting �adv = 1 results in a very
wide Dirichlet distribution whose mode and mean are closest to the target class. This ensures that
the prediction yields the correct class and that all measure of uncertainty, such as entropy of the
predictive posterior or the mutual information, are high. Note, that due to the nature of the reverse
KL-divergence loss, adversarial inputs which have a very small perturbation ✏ and lie close to their
natural counterparts will naturally have a target concentration which is an interpolation between the
concentration for natural data and for adversarial data. The degree of interpolation is determined by
the OOD loss weight �, as discussed in section 3.

It is necessary to point out that FGSM attack are used because they are computationally cheap to
compute during training. However, iterative adversarial attacks can also be considered during training,
although this will make training much slower.
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Appendix D Jointly Assessing Adversarial Attack Robustness and Detection

In order to investigate detection of adversarial attacks, it is necessary to discuss how to assess the
effectiveness of an adversarial attack in the scenario where detection of the attack is possible. Previous
work on detection of adversarial examples [37, 38, 39, 14, 15] assesses the performance of detection
methods separately from whether an adversarial attack was successful, and use the standard measures
of adversarial success and detection performance. However, in a real deployment scenario, an attack
can only be considered successful if it both affects the predictions and evades detection. Here, we
develop a measure of performance to assess this.

For the purposes of this discussion the adversarial generation process Aadv will be defined to either
yield a successful adversarial attack xadv or an empty set ;. In a standard scenario, where there is no
detection, the efficacy of an adversarial attack on a model8 can be summarized via the success rate S
of the attack:

S =
1

N

NX

i=1

I(Aadv(xi,!t)), I(x) =
⇢
1, x 6= ;
0, x = ; (30)

Typically S is plotted against the total maximum perturbation ✏ from the original image, measured as
either the L1, L2 or L1 distance from the original image.

Consider using a threshold-based detection scheme where a sample is labelled ’positive’ if some
measure of uncertainty H(x), such as entropy or mutual information, is less than a threshold T and
’negative’ if it is higher than a threshold:

IT (x) =
⇢
1, T > H(x)
0, T  H(x)

(31)

The performance of such a scheme can be evaluated at every threshold value using the true positive

rate tp(T ) and the false positive rate fp(T ):

tp(T ) =
1

N

NX

i=1

IT (xi), fp(T ) =
1

N

NX

i=1

IT (Aadv(xi,!t)) (32)

The whole range of such trade offs can be visualized using a Receiver-Operating-Characteristic
(ROC) and the quality of the trade-off can be summarized using area under the ROC curve. However,
a standard ROC curve does account for situations where the process Aadv(·) fails to produce a
successful attack. In fact, if an adversarial attack is made against a system which has a detection
scheme, it can only be considered successful if it both affects the predictions and evades detection.
This condition can be summarized in the following indicator function:

ÎT (x) =

8
<

:

1, T > H(x)
0, T  H(x)
0, x = ;

(33)

Given this indicator function, a new false positive rate f̂P (T ) can be defined as:

f̂p(T ) =
1

N

NX

i=1

ÎT (Aadv(xi,!t)) (34)

This false positive rate can now be seen as a new Joint Success Rate which measures how many
attacks were both successfully generated and evaded detection, given the threshold of the detection
scheme. The Joint Success Rate can be plotted against the standard true positive rate on an ROC
curve to visualize the possible trade-offs. One possible operating point is where the false positive rate
is equal to the false negative rate, also known as the Equal Error-Rate point:

f̂P (TEER) = 1� tP (TEER) (35)

Throughout this work the EER false positive rate will be quoted as the Joint Success Rate.

8Given an evaluation dataset Dtest = {xi, yi}Ni=1
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Appendix E Additional Adversarial Attack Detection Experiments

In this appendix additional experiments on adversarial attack detection are presented. In figure 8
adaptive whitebox adversarial attacks generated by iteratively minimizing KL divergence between
the original and target (permuted) categorical distributions LKL

PMF are compared to attacks generated
by minimzing the KL-divergence between the predicted and permuted Dirichlet distributions LKL

DIR.
Performance is assessed only against Prior Network models. The results show that KL PMF attacks
are more successful at switching the prediction to the desired class and at evading detection. The
could be due to the fact that Dirichlet distributions which are sharp at different corners have limited
common support, making the optimization of the KL-divergence between them more difficult than
the KL-divergence between categorical distributions.

(a) C10 Success Rate (b) C10 ROC AUC (c) C10 Joint Success Rate

Figure 8: Comparison of performance of whitebox adaptive PGD MIM L1 attacks which minimize
the KL-divergence between PMFs (KL PMF) and Dirichlet distributions (KL DIR) on CIFAR-10.

Results in figure 9 show that L2 PGD Momentum Iterative attacks which minimize the LKL
PMF loss

are marginally more successful than the L1 version of these attacks. However, it is necessary to
consider appropriate adaptation of the C&W L2 attacks to the loss functions considered in this work
for a more aggressive set of L2 attacks.

(a) C10 Success Rate (b) C10 ROC AUC (c) C10 Joint Success Rate

(d) C100 Success Rate (e) C100 ROC AUC (f) C100 Joint Success Rate

Figure 9: Comparison of performance of whitebox adaptive L1 and L2 PGD MIM attacks against
Prior Networks trained on CIFAR-10 (C10) and CIFAR-100 (C100) datasets.
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