
A Extended related work405

Multi-task learning. [44] demonstrated that negative transfer can worsen generalization perfor-406

mance, and avoidance of negative transfer has motivated much work on hierarchical Bayes in transfer407

learning and domain adaptation [e.g., 29, 57, 16, 11, 54]. Closest to our proposed approach is early408

work on hierarchical Bayesian multi-task learning with neural networks that places a prior only on409

the output layer [24, 2, 46, 50]. In contrast, we place a non-parametric prior on the full set of neural410

network weights. Furthermore, none of these approaches were applied to the episodic training setting411

of meta-learning. Similar to our point estimation procedure, [24] and [50] propose training a mixture412

model over the output layer weights of a neural network using MAP inference. However, these413

approaches do not scale well to all the layers in a network as performing full passes on the dataset for414

inference of the full set of weights is computationally intractable in general.415

Clustering. Incremental or stochastic clustering was considered in the EM setting in [37]. and416

in the K-means setting in [48]. [31] conducted online learning of a non-parametric mixture model417

using sequential variational inference. A key distinction between our work and these approaches is418

that we leverage the connection between empirical Bayes in a hierarchical model and gradient-based419

meta-learning [21] to use a MAML-like [14] objective as a log posterior surrogate. This allows our420

algorithm to make use of a scalable stochastic gradient descent optimizer instead of alternating a421

maximization step with an inference pass over the full dataset [c.f., 50, 3].422

Our approach is also distinct from recent work on gradient-based clustering [22] since we employ423

the episodic batching of [53]. This can be a challenging setting for a clustering algorithm, as the424

assignments need to be computed using, for example, K = 1 examples per class in the 1-shot setting.425

Contrasting the batch and stochastic settings. In the stochastic setting, access to past data is426

unavailable, and so none of the standard algorithms and heuristics for inference in non-parametric427

models are applicable [e.g., 26, 25]. In particular, our proposed algorithm does not refine the cluster428

assignments of previously observed points by way of multiple expensive passes over the whole429

dataset.430

In contrast, we incrementally infer model parameters and add components during episodic training431

based on noisy estimates of the gradients of the marginal log-likelihood. Moreover, we avoid the need432

to preserve task assignments, which is potentially harmful due to stale parameter values, since the433

task assignments in our framework are meant to be easily reconstructed on-the-fly using the E-STEP434

with updated parameters ✓(0), . . . ,✓(L), G.435

Maximum a posteriori estimation as iterated conditional modes. Due to the high-dimensionality436

of the parameter set of neural networks, we consider a mode estimation procedure based on iterated437

conditional modes (ICM) [6, 59, 55, 41] that can leverage gradient computation instead of the438

expensive process of Gibbs sampling. iterated conditional modes (ICM) is a greedy strategy that439

iteratively maximizes the full conditional distribution for each variable (i.e., computes the MAP440

estimate), instead of sampling from the conditional as is done in Gibbs sampling [55]. This leads to441

a fast point-estimation of the DPMM parameters in which we only need to track the means of the442

cluster priors.443

Alternative inference procedures in probabilistic mixtures. A standard approach for estimation444

in latent variable models, such as probabilistic mixtures, is to represent the distribution using samples445

produced via some sampling algorithm.The most widely used is the Gibbs sampler [35, 17], which446

draws from the conditional distribution of each latent variable, given the others, until convergence447

to the posterior distribution over all the latents. However, in the setting of latent variables defined448

over high-dimensional parameter spaces such as those of neural network models, using a sampling449

algorithm such as the Gibbs sampler is prohibitively expensive [36, 34]. Instead of sampling, one450

can fit factorized variational distributions to the exact distribution p(�, z|x) ⇡ q(�)q(z) [18, 7]. It451

should be noted that we do not claim that our method of point estimation in the DPMM is the most452

accurate method for posterior inference but we leave improved approximate inference extensions to453

future work.454

The main drawback of using point estimates for a non-parametric mixture estimation is the inability455

to leverage the diffusion of the global prior G0 when computing the likelihood of a new cluster.456

Highly concentrated parameter estimates for non-empty clusters should lead to low likelihoods for457

outlier tasks, whereas the diffused global prior should be better at capturing a wider variety of tasks.458
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Nonetheless, point estimation is a necessary trade-off between computation and accuracy. To allow459

for a more accurate estimate of the likelihood, we experimented with simulating a normal centered at460

the global prior mean with a variance hyperparameter that can be annealed over time to account for461

increased certainty about the prior choice. We can then compare the average cluster responsibility to462

the threshold. Another interesting extension we experimented with was to compute the gradient for463

each of the samples and average over the number of samples as to approximate the expectation of the464

gradient under the global prior. However, we found this to be less stable than simply comparing the465

cluster responsibilities to the threshold.466

B Maximum a posteriori estimation in the Dirichlet process mixture model467

From (4) and using a conditional mode estimate for task-specific parameters �j ,468

log p
⇣
zj = ` | xj1:M , z1:j�1,✓

(`)
⌘
⇡

8
>>>><

>>>>:

log n(`) + log p(xj1:M |�̂(`)
j )+

log p(�̂(`)
j |✓(`))

for `  L

log ⇣ + log p(xj1:M |�̂(`)
j ) +

log(�̂(`)
j |✓(0))

for ` = L+ 1 .

(5)

C Experimental setup469

C.1 Dataset details470

Few-shot regression471

• Polynomial wave (Figure 4a):
y =

X

i

aix
pi

and a ⇠ U(�5.0, 5.0).472

• Sinusoid wave (Figure 4b):
y = a sin(x� �)

where � ⇠ U(0,⇡) and a ⇠ U(0.1, 5.0).473

• Sawtooth wave (Figure 4c):

y = �2a

⇡
arctan(cot(

x⇡

�
))

where � ⇠ U(0,⇡), a ⇠ U(0.1, 5.0).474

C.2 Hyperparameter choices475

C.2.1 MiniImageNet few-shot classification.476

We use the same data split, neural network architecture, and hyperparameter values as in [14] for477

common components. We use ⌧ = 1 for the softmax temperature and the same initialization as [14]478

for the global prior G0. We determine an iteration number for early stopping using the validation set.479

C.2.2 Continual few-shot regression.480

Our architecture is a feedforward neural network with 2 hidden layers with ReLU nonlinearities, each481

of size 40. We use a meta-batch size of 10 tasks (both for the inner updates and the meta-gradient482

updates) for 5-shot regression. Our non-parametric algorithm starts with a single cluster (L0 = 1 in483

Algorithm 3). In these experiments, we set the spawning threshold ✏ = 0.95T/(L+ 1), with L the484

number of non-empty clusters and T the size of the meta-batch. We use the mean-squared error for485

each task as the inner loop and meta-level objectives.486
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C.2.3 Continual few-shot miniImageNet classification.487

We use the same data split, neural network architecture, and hyperparameter values as in [14] for488

common components. We use a meta-batch size of 4 tasks, start with a single cluster, and set the489

spawning threshold to the same formula as in Section C.2.2. We use the multi-class cross entropy490

error for each task as the inner loop and meta-level objectives. More details on the the practical491

implementation for image datasets of the non-parametric algorithm can found in Section D.492

D Practical and implementational details493

D.1 Task-aware vs. task-agnostic494

Since a cluster is not well-tuned immediately after its creation, we consider a cool-down period after495

the spawning of each new cluster where we do not consider the creation of new clusters for a fixed496

number of iterations, and we freeze the updating of existing clusters for a same number of iterations.497

This allows the newly-created cluster to take enough gradient updates in order to move from its global498

prior initialization, allowing it to sufficiently differentiate from the global prior.499

This experimental paradigm also allows us to approximate the task-aware algorithms of prior500

work [e.g., 28, 58, 38, 42] which require access to an explicit delineation between tasks that501

acts as a catalyst to grow model size. For the task-aware non-parametric mixture results reported in502

the experiments, we set this cool-down period to be exactly the length of the training phase for the503

appropriate dataset; therefore, clusters which are not meant to be specialized for the active dataset are504

not updated. In contrast, the task-aware results consider a cool-down period of 1k iterations, which is505

less than 15% of the active period for each dataset. Extensions to this fixed cool-down period could506

consider the rate of learning in the active cluster in order to detect when the new component has been507

sufficiently fit to the new task.508

D.2 Practical extensions to the non-parametric algorithm509

The penalty term of log n(`) or log ⇣ is necessary to regularize the likelihood of a potential new cluster510

in order to limit overspawning. However, in the setting where the likelihood is approximated by the511

loss function of a complex neural network, as in the case for most meta-learning applications, there512

is a large difference in orders of magnitude between the loss value (especially for the cross-entropy513

function) and the penalty term, even after a single batch of assignments. Furthermore, the classical514

log observation count log n term is misaligned with our stochastic setting for two reasons. First,515

since we do not re-evaluate over the whole dataset for every meta-learning episode, we are thus more516

concerned with the relative number of task assignments over recent iterations than the total number517

of assignments over the duration of training. Second, the number of tasks to be assigned can grow518

too large in the stochastic setting (e.g. 60k for miniImageNet) which exacerbates the already large519

difference in orders of magnitudes between the loss function and the penalty term.520

Accordingly, we propose two changes; First, we compute the observation based on a moving window521

of fixed size (5 in the experiments). Second, we apply a coefficient, which can be tuned, to the log522

observation count in (4). This provides more flexibility to our meta-learner as it allows it to apply to523

any black-box function approximator which might exhibit losses of orders of magnitudes smaller than524

those expected of classical probabilistic models. While the moving window size and CRP penalty525

coefficient terms are somewhat interdependent, we propose them as a simple starting point to tune526

this non-parametric meta-learner beyond what is empirically explored in this paper.527

Note that without such changes in the stochastic setting of meta-learning, a nonparametric algorithm528

would be unable to spawn a new cluster after the first handful of iterations. Even if we were to529

lower the threshold ✏, multiple almost identical clusters would be spawned in the first few iterations530

before it would be impossible to spawn anymore. Furthermore, the clusters would be nearly identical531

given the small step size of a gradient update for each meta-learning episode. Finally, this would be532

computationally intensive since unlike the typical applications of non-parametric mixture learning533

where one can afford to spawn hundreds of components then prune them over the training procedure.534
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D.3 Thresholding535

A marked difference that is not immediate from the Gibbs conditionals is the use of a threshold536

on the cluster responsibilities, detailed in the E-STEP in Subroutine 4, to account for noise from537

stochastic optimization when spawning a cluster on the basis of a single batch. This threshold is538

necessary for the stochastic mode estimation procedure of Algorithm 3, as it ensures that a new539

cluster’s responsibility needs to exceed a certain value before being permanently added to the set of540

components.541

If a cluster has close to an equal share of responsibilities as compared to existing clusters after542

accounting for the CRP penalty log n(`) or log ⇣, it is spawned. Accordingly, this approximate543

inference routine still preserves the preferential attachment (“rich-get-richer”) dynamics of Bayesian544

nonparametrics [41]. A sequential approximation for non-parametric mixtures with a similar threshold545

was proposed in [31] and [51], in which variational Bayes was used instead of point estimation in a546

DPMM.547

D.4 Pruning heuristics548

None of the results reported in our experiments used a pruning heuristic as we used a rather conserva-549

tive hyper parameter setting that deters overspawning. We did however explore different heuristics550

which could work in more general settings, especially in the presence of many more latent clusters551

of tasks than considered in the experimental settings in this work. One such heuristic is to prune552

small clusters that have received disproportionately few assignments over a certain number of past553

iterations. Another is to evaluate the functional similarity of two clusters by computing an odds-ratio554

statistic for the assignment probabilities to each cluster over a set of validation tasks. If the odds-ratio555

statistic is below a certain threshold, the smaller cluster can be pruned.556

D.5 Estimating the CRP hyperparameters557

We fixed ↵ at the size of the meta-batch. An alternative is to place a �(1, 1) on the concentration pa-558

rameter. Based on the likelihood , the posterior is then proportional to p(↵|N,K) / �(↵)
�(↵+N)↵

Ke�↵
559

This is not a standard distribution but [39] have shown that log p(↵|N,K) is log-concave and methods560

such as L-BFGS have been used successfully in prior works. Alternatively, if we have some prior561

knowledge about the expected number of clusters, we can compute ↵ based on E[K] = ↵ logN .562

For the window-size, we considered an initial size of 20 iterations that can grow as more cluster are563

considered.564

D.6 Implementation details565

We implemented both of our parametric and non-parametric meta-learners in TensorFlow (TF) [1].566

We considered 2 different settings for the M-STEP optimization:567

• Train each cluster’s parameters separately based on its corresponding loss function in an568

alternating manner closest to the classic EM algorithm.569

• Train all cluster weights simultaneously using a surrogate loss over all validation batches.570

Since the latter better leverages the differentiability of softmax-clustering and performed better571

empirically, we used it to report all experimental results.572

D.6.1 Nonparametric Implementation573

For the nonparametric algorithm, we chose the first approach to the M-STEP by constructing separate574

optimizers for each cluster’s parameters. We pre-allocate a set of weights and use a mask during575

training to discard the parameters of empty clusters due to the static nature of TF graphs. When the576

algorithm exhausts the set of pre-allocated weights, we simply construct more network weight and577

reinitialize our optimizers.578
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D.6.2 CRP global prior579

The likelihood of a new cluster is sensitive to the choice of a base measure or prior prior, G0 on580

the cluster hyperparameters. Our gradient-based point estimation does not make any modeling581

assumption on the distribution of the weights, rendering the problem of principally updating the582

base measure, after or during training, non-trivial. We chose to initialize all weights with zero-583

mean normals in the fully-connected layers. For the convolutional layers, we leveraged Xavier584

initialization [19] similarly to prior work [14] in meta-learning.585

However, such initialization is poor in the non-parametric for most non-trivial regression or classifica-586

tion tasks. Therefore, in the nonparametric setting, we start with a single cluster for a fixed number587

of iterations. We then initialize all clusters with the weights of the first clusters. This set of weights588

can be considered as the mean of the base measure or global prior in our setting.589

We periodically update the global prior using a uniform average of the parameters of the existing590

clusters. This can be done by simply averaging over the parameter of the non-empty clusters as591

weighted by their sizes. Note that, we found that performing weighted KDE smoothing with a592

small bandwidth hyperparameter to perform slightly better than the average which is to be expected593

for neural network parameters. The number of iterations between updates of the global prior is594

a hyperparameter that we tune on the validation set. It is also possible to continuously, but less595

frequently over time, update this global prior as more data is encountered.596
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