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A Descent Flows

The derivation and analysis of descent algorithms is inspired by descent flows. In this section we
introduce and analyzed these family of dynamics.

Definition 3 A dynamics is a descent flow of order p if is satisfies

d

dt
f(Xt) ≤ −‖∇f(Xt)‖

p
p−1
∗ , (27)

for some 1 < p ≤ ∞ and for all 0 ≤ t ≤ ∞.

For dynamics that satisfy (27), we obtain non-asymptotic convergence guarantees for non-convex,
convex and gradient-dominated functions. We summarize our main results for descent curves of order
p in the following three theorems.

Theorem 11 Suppose a dynamical system satisfies (27) for some 1 < p ≤ ∞ and f is differentiable.
Then the system satisfies

min
0≤s≤t

‖∇f(Xs)‖∗ = O
(

1/t
p−1
p

)
. (28)

Theorem 12 Suppose a dynamical system satisfies (27) for some 1 < p ≤ ∞ and f is differentiable
and convex with R = supx:f(x)≤f(x0) ‖x− x

∗‖ <∞. Then the system satisfies

f(Xt)− f(x∗) =

{
O
(

1/
(

1 + 1
Rp t

p−1
p

)p)
if p <∞

O
(
e−t/R

)
if p =∞

. (29)

Theorem 13 Suppose a dynamical system satisfies (27) for some 1 < p ≤ ∞ and f is differentiable
and µ-gradient dominated of order p. Then the system satisfies

f(Xt)− f(x∗) = O

(
e−

p
p−1µ

1
p−1 t

)
. (30)

The proof of these results follows the same structure as the descent algorithms, with both relying on
simple energy arguments.

A.1 Proofs

To show (28), we begin with the energy function Et = f(Xt)− f(x∗). A straightforward calculation
shows

d

dt
Et =

d

dt
f(Xt)

(27)
≤ −‖∇f(Xt)‖

p
p−1
∗ .

Integrating and rearranging gives the bound

t min
0≤s≤t

‖∇f(Xs)‖
p
p−1 ≤

∫ t

0

−‖∇f(Xt)‖
p
p−1
∗ dt ≤ E0 − Et.
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from which we can conclude (28).

Next, fix any a > 0, and define the positive increasing function wa(t) = (1+t/(ap))p which satisfies
d
dt logwa(t) = 1

awa(t)1/p
and the constant cp = (1−1/p)p

p−1 . When p = ∞, each formal expression
written in terms of p in this proof should be interpreted as the limit of that expression as p→∞. For
example, if p =∞, wa(t) = limq→∞(1 + t/(aq))q = et/a and cp = limq→∞

(1−1/q)q
q−1 = 0.

To establish (29), we show the energy function
Et = wa(t)(f(Xt)− f(x∗)) (31)

grows at most linearly for any dynamical system that satisfies (27). To this end, observe that
d
dtEt = w′a(t)(f(Xt)− f(x∗)) + wa(t) ddtf(Xt)

≤ w′a(t)〈∇f(Xt),x
∗ −Xt〉+ wa(t) ddtf(Xt)

(27)
≤ w′a(t)〈∇f(Xt),x

∗ −Xt〉 − wa(t)‖∇f(Xt)‖
p
p−1
∗

= wa(t)( ddt logwa(t)〈∇f(Xt),x
∗ −Xt〉 − ‖∇f(Xt)‖

p
p−1
∗ )

≤ wa(t)cp‖ ddt logwa(t)(Xt − x∗)‖p

= cp‖Xt − x∗‖p/ap ≤ cp R
p

ap .

The first inequality uses the convexity of f and the second inequality uses (27). The third inequality
uses the Fenchel-Young inequality

−‖s‖
p
p−1
∗ + 〈s,u〉 ≤ cp‖u‖p (32)

for s = ∇f(Xt) and u = d
dt logwa(t)(x∗ −Xt). The last step uses the fact that ‖Xt − x∗‖ ≤ R =

supx:f(x)≤f(X0) ‖x− x
∗‖ since condition (27) implies the dynamical system is a descent method.

Moreover, R is finite, since the sublevel sets of f are bounded. Integrating allows us to obtain the
statement Et − E0 ≤ cp R

p

ap t, and subsequently, the upper bound

f(Xt)− f(x∗) ≤ f(X0)−f(x∗)
(1+t/(ap))p + cp

Rp

ap
t

(1+t/(ap))p .

Since a > 0 was arbitrary, we may choose a = R
(cpt)

1/p

(f(X0)−f(x∗))1/p
to obtain the bound

f(Xt)− f(x∗) ≤ 2(f(X0)−f(x∗))(
1+

(f(X0)−f(x∗))1/p

Rc
1/p
p p

t
p−1
p

)p = O(1/(1 + 1
Rp t

p−1
p )p)

as desired.

The last bound (30) uses the energy function Et = f(Xt)− f(x∗) to establish
d

dt
Et =

d

dt
f(Xt)

(27)
≤ −‖∇f(Xt)‖

p
p−1
∗ ≤ p

p− 1
µ

1
p−1 Et.

where the last inequality follows from the gradient dominated condition. We use the intuition from
the bounds established for descent dynamics to derive analogous results for descent algorithms.

B Descent Algorithms

We present proofs of results Section 2.

B.1 Proof of Theorems 1-3

We begin with detailed proofs of Theorems 1-3.

B.1.1 Proof of Theorem 1

By rearranging and summing (2), we obtain

δkminj−k≤s≤j ‖∇f(xs)‖
p
p−1
∗ ≤

∑j
s=j−k ‖∇f(xs)‖

p
p−1
∗ δ ≤ f(x0)− f(xk) ≤ f(x0)

where j = k if the bound (2a) holds and j = k+1 if the bound (2b) holds. Rearranging the inequality
yields the result in Theorem 1.
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B.1.2 Proof of Theorem 2

Fix any a > 0, and define the positive increasing function wa(t) = (1 + t/(ap))p, which satisfies
d
dt logwa(t) = 1

awa(t)1/p
, and the constant cp = (1−1/p)p

p−1 . When p = ∞, each formal expression
written in terms of p in this proof should be interpreted as the limit of that expression as p→∞. For
example, if p = ∞, wa(t) = limq→∞(1 + t/(aq))q = et/a and c∞ = limq→∞

(1−1/q)q
q−1 = 0. For

the proof of Theorem 2 under the condition (2a), we introduce the energy function

Ek = wa(δk)(f(xk)− f(x∗)),

noting that, by the convexity of w on t ≥ 0,
wa(δ(k+1))−wa(δk)

δ ≤ 1
a (1 + δ(k+1)

ap )p−1 = 1
awa(δ(k + 1))(p−1)/p.

and hence
wa(δ(k+1))−wa(δk)

δwa(δ(k+1)) ≤ 1
awa(δ(k+1))1/p

. (33)

When (2a) holds, we have
Ek+1−Ek

δ = wa(δ(k+1))−wa(δk)
δ (f(xk)− f(x∗)) + wa(δ(k + 1)) f(xk+1)−f(xk)

δ

≤ wa(δ(k+1))−wa(δk)
δ 〈∇f(xk),xk − x∗〉+ wa(δ(k + 1)) f(xk+1)−f(xk)

δ

(2a)
≤ wa(δ(k+1))−wa(δk)

δ 〈∇f(xk),xk − x∗〉 − wa(δ(k + 1))‖∇f(xk)‖
p
p−1
∗

= wa(δ(k + 1))(wa(δ(k+1))−wa(δk)
δwa(δ(k+1)) 〈∇f(xk),xk − x∗〉 − ‖∇f(xk)‖

p
p−1
∗ )

≤ wa(δ(k + 1))( 1
awa(δ(k+1))1/p

〈∇f(xk),xk − x∗〉 − ‖∇f(xk)‖
p
p−1
∗ )

≤ wa(δ(k + 1))cp‖ 1
awa(δ(k+1))1/p

(xk − x∗)‖p

= cp‖xk − x∗‖p/ap ≤ cpRp/ap.
The first inequality uses convexity of f , and the second uses (2a). The third inequality is an
application of (33). The fourth inequality uses the Fenchel-Young inequality −‖s‖

p
p−1 + 〈s,u〉 ≤

−p−1p ‖s‖
p
p−1 + 〈s,u〉 ≤ 1

p‖u‖
p with s = ∇f(xk) and u = 1

awa(δ(k+1))1/p
(xk − x∗). Both descent

conditions (2) imply ‖xk − x∗‖ ≤ R, yielding the final inequality. Therefore, we have shown that
for all k ≥ 0, Ek+1 − Ek ≤ cpδRp/ap. This implies Ek ≤ E0 + cpδkR

p/ap. Therefore

f(xk)− f(x∗) ≤ f(x0)−f(x∗)
(1+δk/(ap))p + cp

Rp

ap
δk

(1+δk/(ap))p .

Since a > 0 was arbitrary, we may choose a = R
(cpδk)

1/p

(f(x0)−f(x∗))1/p
to obtain the bound

f(xk)− f(x∗) ≤ 2(f(x0)−f(x∗))(
1+

(f(x0)−f(x∗))1/p

Rc
1/p
p p

(δk)
p−1
p

)p = O(1/(1 + 1
Rp (δk)

p−1
p )p)

as desired.

If, on the other hand (2b) holds, identical reasoning yields
Ek+1−Ek

δ = wa(δ(k+1))−wa(δk)
δ (f(xk+1)− f(x∗)) + wa(δk) f(xk+1)−f(xk)

δ

≤ wa(δ(k+1))−wa(δk)
δ 〈∇f(xk+1),xk+1 − x∗〉+ wa(δk) f(xk+1)−f(xk)

δ

(2b)
≤ wa(δ(k+1))−wa(δk)

δ 〈∇f(xk+1),xk+1 − x∗〉 − wa(δk)‖∇f(xk+1)‖
p
p−1
∗

= wa(δk)(wa(δ(k+1))−wa(δk)
δwa(δk)

〈∇f(xk+1),xk+1 − x∗〉 − ‖∇f(xk+1)‖
p
p−1
∗ )

≤ wa(δk)( wa(δ(k+1))
awa(δk)wa(δ(k+1))1/p

〈∇f(xk+1),xk+1 − x∗〉 − ‖∇f(xk+1)‖
p
p−1
∗ )

≤ wa(δk)cp‖ wa(δ(k+1))
awa(δk)wa(δ(k+1))1/p

(xk+1 − x∗)‖p

=
(
wa(δ(k+1))
wa(δk)

)p−1
cp
Rp

ap .
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Now, since wa(δ(k + 1)) ≤ wa(δk)wa(δ) , we have shown that for all k ≥ 0, Ek+1 − Ek ≤
wa(δ)p−1cp

Rp

ap δ. This implies Ek ≤ E0 + wa(δ)p−1cp
Rp

ap δk. Hence, we find

f(xk)− f(x∗) ≤ f(x0)−f(x∗)
(1+δk/(ap))p + wa(δ)p−1cp

Rp

ap
δk

(1+δk/(ap))p .

Since a > 0 was arbitrary, we may choose a = bwb(δ)
(p−1)/p for b = R

(cpδk)
1/p

(f(x0)−f(x∗))1/p
. Since

wb(δ) ≥ 1, we have b ≤ a and hence wa(δ) ≤ wb(δ). Therefore,

f(xk)− f(x∗) ≤ 2(f(x0)−f(x∗))(
1+

(f(x0)−f(x∗))1/p

Rc
1/p
p pwb(δ)

(p−1)/p
(δk)

p−1
p

)p = O(1/(1 + 1
Rp (δk)

p−1
p )p)

as desired.

B.1.3 Proof of Theorem 3

Take the energy function Ek = f(xk)− f(x∗). Observe that if (2a) holds, then we have:

Ek+1−Ek
δ = f(xk+1)−f(xk)

δ

(2a)
≤ −‖∇f(xk)‖

p
p−1
∗

(3)
≤ − p

p−1µ
1
p−1Ek,

or rewritten, Ek+1 ≤
(

1− p
p−1µ

1
p−1 δ

)
Ek. Summing gives the bound

Ek+1 ≤
(

1− p

p− 1
µ

1
p−1 δ

)k
E0 ≤ e−

p
p−1µ

1
p−1 δkE0,

using 1 + x ≤ ex ∀x ∈ R. On the other hand, if (2b) holds, then a similar argument follows:

Ek+1−Ek
δ = f(xk+1)−f(xk)

δ

(2b)
≤ −‖∇f(xk+1)‖

p
p−1
∗

(3)
≤ − p

p−1µ
1
p−1Ek+1,

or rewritten, Ek+1 ≤
(

1 + p
p−1µ

1
p−1 δ

)−1
Ek. Summing gives the bound

Ek+1 ≤
(

1 + p
p−1µ

1
p−1 δ

)−k
E0 ≤ e−

p
p−1µ

1
p−1 δkE0.

B.2 Examples of descent methods

We now provide detailed demonstration that the examples provided are descent algorithms.

B.2.1 Higher-order gradient descent

Let p̃ = p− 1 + ν. The optimality condition for the HGD algorithm (7) is∑p−1
i=1

1
(i−1)!∇

if(xk) (xk+1 − xk)i−1 + 1
η‖xk+1 − xk‖p̃−2B(xk+1 − xk) = 0. (34)

Since ∇p−1f is L-Lipschitz, we have the following error bound on the (p − 2)-nd order Taylor
expansion of ∇f :∥∥∥∇f(xk+1)−

∑p−1
i=1

1
(i−1)!∇

if(xk) (xk+1 − xk)i−1
∥∥∥
∗
≤ L

(p−2)!‖xk+1 − xk‖p−2+ν . (35)

Substituting (34) to (35) and writing rk = ‖xk+1 − xk‖, we obtain∥∥∥∇f(xk+1) +
rp̃−2
k

η B(xk+1 − xk)
∥∥∥
∗
≤ L

(p−2)!r
p̃−1
k . (36)

Squaring both sides, expanding, and rearranging the terms, we get the inequality

〈∇f(xk+1),xk − xk+1〉 ≥ η

2rp̃−2
k

‖∇f(xk+1)‖2∗ +
ηrp̃k
2

(
1
η2 −

L2

(p−2)!2

)
. (37)

If p = 2, then the first term in (37) already implies the desired bound below. Now assume p ≥ 3.
The right-hand side of (37) is of the form A/rp̃−2 +Brp̃, which is a convex function of r > 0 and

minimized by r∗ =
{

(p̃−2)
p̃

A
B

} 1
2p̃−2

, yielding a minimum value of

A
(r∗)p̃−2 +B(r∗)p̃ = A

p
2p̃−2B

p̃−2
2p̃−2

[(
p̃
p̃−2

) p̃−2
2p̃−2

+
(
p̃−2
p̃

) p̃
p̃−2

]
≥ A

p
2p̃−2B

p̃−2
2p̃−2 .
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Substituting the values A = η
2‖∇f(xk+1)‖2∗ and B = η

2 ( 1
η2 −

L2

(p−2)!2 ) from (37), we obtain

〈∇f(xk+1),xk − xk+1〉 ≥ η
2

(
1
η2 −

L2

(p−2)!2

) p̃−2
2p̃−2 ‖∇f(xk+1)‖

p̃
p̃−1
∗ .

Finally, using the inequality f(xk) − f(xk+1) ≥ 〈∇f(xk+1),xk − xk+1〉 by the convexity of f
yields the progress bound

f(xk+1)− f(xk) ≤ −η
1
p̃−1

2

(
1− (Lη)2

(p−2)!2

) p̃−2
2p̃−2 ‖∇f(xk+1)‖

p̃
p̃−1
∗

≤ − η
1
p̃−1

2
2p̃−3
p̃−1

‖∇f(xk+1)‖
p̃
p̃−1
∗

where the least inequality uses the fact that η ≤
√
3(p−2)!
2L .

B.2.2 Proximal method

The optimality condition for the proximal method is

∇2h(xk)−1∇f(xk+1) +
‖xk+1 − xk‖p−2xk

η
(xk+1 − xk) = 0,

which implies ‖xk+1 − xk‖xk = η
1
p−1 ‖∇f(xk+1)‖

1
p−1
xk,∗, using the shorthand ‖v‖xk,∗ =√

〈v,∇h(xk)−1v〉. From the definition of xk+1, we have f(xk+1) + 1
pη‖xk+1 − xk‖pxk ≤ f(xk).

Rearranging gives

f(xk)− f(xk+1) ≥ 1
pη‖xk+1 − xk‖pxk = η

1
p−1

p ‖∇f(xk+1)‖
p
p−1
∗,xk ≥

m
p
p−1 η

1
p−1

p ‖∇f(xk+1)‖
p
p−1
∗

as desired.

B.2.3 Natural gradient descent

Since∇2f � LB, we have the bound

f(xk+1) ≤ f(xk) + 〈∇f(xk),xk+1 − xk〉+ L
2 ‖xk+1 − xk‖2.

Plugging in the NGD update (9) gives

f(xk+1) ≤ f(xk)− η〈∇f(xk), (∇2h(xk))−1∇f(xk)〉+ Lη2

2 〈∇f(xk),B(∇2h(xk))−2∇f(xk)〉.

Since mB � ∇2h �MB, we have 1
MB−1 � (∇2h)−1 � 1

mB
−1, so

f(xk+1) ≤ f(xk)− η
M ‖∇f(xk)‖2∗ + Lη2

2m2 ‖∇f(xk)‖2∗
= f(xk)− η

(
1
M −

Lη
2m2

)
‖∇f(xk)‖2∗

≤ f(xk)− η
2M ‖∇f(xk)‖2∗

where in the last step we have used the inequality η ≤ m2

ML .

B.2.4 Mirror descent

Plugging the variational condition∇h(xk+1)−∇h(xk) = −η∇f(xk) into the smoothness bound
on f , as well as using the property mB � ∇2h we have

f(xk+1)− f(xk) ≤ 〈∇f(xk),xk+1 − xk〉+ L
2 ‖xk+1 − xk‖2

≤ − 1
η 〈∇h(xk+1)−∇h(xk),xk+1 − xk〉+ L

2m2 ‖∇h(xk+1)−∇h(xk)‖2∗
Given h is M -smooth, − 1

η 〈∇h(xk+1) − ∇h(xk),xk+1 − xk〉 ≤ − 1
ηM ‖∇h(xk+1) − ∇h(xk)‖2∗

((Nesterov, 2004, (2.1.8))) and therefore,

f(xk+1)− f(xk) ≤ −
(

1
ηM −

L
2m2

)
‖∇h(xk+1)−∇h(xk)‖2∗ ≤ −η

(
1
M −

Lη
2m2

)
‖∇f(xk)‖2∗

≤ − η
2M ‖∇f(xk)‖2∗

where in the last step we have used the inequality η ≤ m2

ML .
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B.2.5 Proximal Bregman Method

The optimality condition for the proximal method is η∇f(xk+1) = ∇h(xk+1) − ∇h(xk), which
implies η2‖∇f(xk+1)‖2∗ = ‖∇h(xk+1)−∇h(xk)‖2∗ ≤M2‖xk+1 − xk‖2. From the definition of
xk+1, we have f(xk+1) + 1

ηDh(xk+1,xk) ≤ f(xk). Rearranging gives

f(xk+1)− f(xk) ≤ − 1
ηDh(xk+1,xk) ≤ −m

2η‖xk+1 − xk‖2 ≤ − mη
2M2 ‖∇f(xk+1)‖2∗

as desired.

B.3 Rescaled Gradient Descent

Proof of Lemma 4 We show rescaled gradient descent satisfies progress bound (2) with δ =

η
1
p−1 /2 when f is strongly smooth. Since ‖∇pf(x)‖ ≤ Lp, we have the Taylor expansion bound,

f(xk+1)− f(xk) ≤ 〈∇f(xk),xk+1 − xk〉+
∑p−1
m=2

1
m!∇

mf(xk)(xk+1 − xk)m +
Lp
p! ‖xk+1 − xk‖p

(12)
= −η

1
p−1

(
1− ηLp

p!

)
‖∇f(xk)‖

p
p−1
∗ +

∑p−1
m=2

η
m
p−1

m!
∇mf(xk)(∇f(xk))m

‖∇f(xk)‖
m(p−2)
p−1

∗

(13)
≤ −η

1
p−1

(
1− ηLp

p!

)
‖∇f(xk)‖

p
p−1
∗ +

∑p−1
m=2

η
m
p−1

m! Lm‖∇f(xk)‖m+ p−m
p−1 −

m(p−2)
p−1

∗

= −η
1
p−1

(
1− ηLp

p!

)
‖∇f(xk)‖

p
p−1
∗ +

∑p−1
m=2

η
m
p−1

m! Lm‖∇f(xk)‖
p
p−1
∗

= −η
1
p−1

(
1−

∑p
m=2

η
m−1
p−1 Lm
m!

)
‖∇f(xk)‖

p
p−1
∗ .

The second line follows from the rescaled gradient update (12) and the third follows from our strongly
smoothness Assumption (def 2). Since η < 1 we can further bound

f(xk+1)− f(xk) ≤ −η
1
p−1

(
1− η

1
p−1

∑p
m=2

Lm
m!

)
‖∇f(xk)‖

p
p−1
∗ .

Our step-size condition (14) implies 1− η
1
p−1

∑p
m=2

Lm
m! ≥

1
2 , which yields the desired bound (2)

with δ = η
1
p−1 /2.

B.4 Gradient Descent vs. Rescaled Gradient Descent

Proof of Lemma 4 We have f ′(x) = sign(x)|x|p−1, so |f ′(x)|
p−2
p−1 = |x|p−2.

The rescaled gradient descent of order p with step size ε = η
1
p−1 is

xk+1 = xk − ε
f ′(xk)

|f ′(xk)|
p−2
p−1

= xk − ε
sign(xk)|xk|p−1

|xk|p−2
= (1− ε)xk.

Therefore, if 0 < ε < 1, then xk = (1− ε)kx0, and thus f(xk) = (1− ε)pkf(x0) converges to 0 at
an exponential rate Θ((1− ε)pk).

The gradient descent with step size ε = η
1
p−1 for f is

xk+1 = xk − εf ′(xk) = xk − ε sign(xk)|xk|p−1 = (1− ε|xk|p−2)xk.

Note that if 0 < ε < |xk|−(p−2), then xk+1 has the same sign as xk with smaller magnitude. In
particular, if 0 < x0 < ε−

1
p−2 , then xk > xk+1 > 0 for all k > 0, and gradient descent simplifies to

xk+1 = (1 − εxp−2k )xk. Assume we start with 0 < x0 ≤ (2ε)−
1
p−2 , so xk

xk+1
= (1 − εxp−2k )−1 ≤

(1− εxp−20 )−1 ≤ 2. Then by Jensen’s inequality applied to the convex function x 7→ x−(p−2), we

have x−(p−2)k+1 − x−(p−2)k ≤ −(p−2)
xp−1
k+1

(xk − xk+1) = (p − 2)ε
xp−1
k

xp−1
k+1

≤ (p − 2)2p−1ε. This implies

xk ≥ (x
−(p−2)
0 + (p− 2)2p−1εk)−

1
p−2 = Ω((εk)−

1
p−2 ), and thus f(xk) ≥ Ω((εk)−

p
p−2 ) converges

to 0 at a polynomial rate.
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B.4.1 Gradient Flow vs. Rescaled Gradient Flow

We also discuss how the behavior in discrete time above matches the behavior in continuous time.
The rescaled gradient flow of order p for f is

Ẋt = − f ′(Xt)

|f ′(Xt)|
p−2
p−1

= − sign(Xt)|Xt|p−1

|Xt|p−2
= −Xt

so Xt = e−tX0, and thus f(Xt) = e−ptf(X0) converges to 0 at an exponential rate Θ(e−pt).

The gradient flow (which is rescaled gradient flow of order 2) for f is

Ẋt = −f ′(Xt) = −sign(Xt)|Xt|p−1

Without loss of generality assume X0 > 0, so Xt > 0 for all t > 0. Then gradient flow simplifies to
Ẋt = −Xp−1

t , or d
dtX

−(p−2)
t = −(p−2)ẊtX

−(p−1)
t = p−2, soXt = (X

−(p−2)
0 +(p−2)t)−

1
p−2 ,

and thus f(Xt) = Θ(t−
p
p−2 ) converges to 0 at a polynomial rate.

More generally, the rescaled gradient flow of order q (q > 1, q 6= p) for f is

Ẋt = − f ′(Xt)

|f ′(Xt)|
q−2
q−1

= − sign(Xt)|Xt|p−1

|Xt|
(q−2)(p−1)

q−1

= −sign(Xt)|Xt|
p−1
q−1

Assume X0 > 0, so Xt > 0 for all t > 0. Rescaled gradient flow simplifies to Ẋt = −X
p−1
q−1

t ,

or d
dtX

− p−qq−1

t = p−q
q−1 , so Xt = (X

− p−qq−1

0 + (p−qq−1 )t)−
q−1
p−q , and f(Xt) = Θ(t−

p(q−1)
p−q ). Note that if

1 < q < p, then f(Xt) converges to 0 at a polynomial rate, which becomes faster as q → p. At q = p,
the convergence rate becomes exponential, as we see for rescaled gradient flow above. However, for
q > p, f(Xt) diverges to∞. Thus, the best order to use is q = p, but it is better to underestimate p.

C Accelerating Descent Algorithms

The energy function

Ek = Dh(x∗, zk) +Ak(f(yk)− f(x∗)), (38)

will be used to analyze all the accelerated methods introduced in this paper.

C.1 Proof of Proposition 7

Take energy (Lyapunov) function (38) Set Ak = Cδpk(p) where k(p) = k(k + 1) · · · (k + p− 1) is
the rising factorial. Denote αk := Ak+1−Ak

δ = Cpδp−1(k + 1)(p−1) and τk := αk
Ak+1

= k
δ(k+p) .

Algorithm (15): Using (38) we compute

Ek+1−Ek
δ = Dh(x

∗,zk+1)−Dh(x∗,zk)
δ + Ak+1

δ (f(yk+1)− f(x∗))− Ak
δ (f(yk)− f(x∗)). (39)

We bound the first part,

Dh(x
∗,zk+1)−Dh(x∗,zk)

δ = −
〈
∇h(zk+1)−∇h(zk)

δ ,x∗ − zk+1

〉
− 1

δDh(zk+1, zk)

(15b)
= αk〈∇f(xk),x∗ − zk〉+ αk〈∇f(xk), zk − zk+1〉 − 1

δDh(zk+1, zk)

≤ αk〈∇f(xk),x∗ − zk〉+ (δ/m)
1
p−1α

p
p−1

k ‖∇f(xk)‖
p
p−1
∗ , (40)

where the inequality follows from the m-uniform convexity of h of order p and the Fenchel-Young

inequality 〈s,h〉 + 1
p‖h‖

p ≥ − p
p−1‖s‖

p
p−1
∗ ≤ −‖s‖

p
p−1
∗ , with h = (m/δ)

1
p (zk+1 − zk) and s =

(δ/m)
1
pα

p
p−1

k ∇f(xk). Plugging in update (15a),

αk〈∇f(xk),x∗ − zk〉 = αk〈∇f(xk),x∗ − yk〉+ Ak+1

δ 〈∇f(xk), yk − xk〉
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= αk〈∇f(xk),x∗ − xk〉+ Ak
δ 〈∇f(xk), yk − xk〉

≤ −
(
Ak+1

δ (f(yk+1)− f(x∗))− Ak
δ (f(yk)− f(x∗))

)
+Ak+1

f(yk+1)−f(xk)
δ

≤ −
(
Ak+1

δ (f(yk+1)− f(x∗))− Ak
δ (f(yk)− f(x∗))

)
−Ak+1δ

1
p−1 ‖∇f(xk)‖

p
p−1
∗ . (41)

The first inequality follows from the convexity of f and rearranging terms. The second inequality
uses the progress condition assumed for the sequence yk+1. Combining (39) with (40) and (41) we
have,

Ek+1−Ek
δ ≤

(
(δ/m)

1
p−1 (Cpδp−1(k + 1)(p−1))

p
p−1 − Cδ

1
p−1 δp(k + 1)(p)

)
‖∇f(xk)‖

p
p−1
∗ .

Given ((k + 1)(p−1))
p
p−1 /(k + 1)(p) ≤ 1, it suffices that C ≤ 1/mpp to ensure Ek+1−Ek

δ ≤
0. Summing the Lyapunov function gives the convergence rate f(yk) − f(x∗) = O(1/Ak) =
O(1/(δk)p).

Algorithm (16): Using (38) with the same parameter choices as algorithm (15), we have

Dh(x
∗,zk+1)−Dh(x∗,zk)

δ ≤ αk〈∇f(yk+1),x∗ − zk〉+ (δ/m)
1
p−1α

p
p−1

k ‖∇f(yk+1)‖
p
p−1
∗ , (42)

where the first part uses the same steps as (40) except update (16b) is used instead of (15b). Plugging
in update (16a) yields the following,

αk〈∇f(yk+1),x∗ − zk〉 = αk〈∇f(yk+1),x∗ − yk+1〉+ Ak+1

δ 〈∇f(yk+1), yk+1 − zk〉
(16a)
= αk〈∇f(yk+1),x∗ − yk+1〉+ Ak

δ 〈∇f(yk+1), yk − yk+1〉

+ Ak+1

δ 〈∇f(yk+1), yk+1 − xk〉

≤ −
(
Ak+1

δ (f(yk+1)− f(x∗))− Ak
δ (f(yk)− f(x∗))

)
+ Ak+1

δ 〈∇f(yk+1), yk+1 − xk〉

≤ −
(
Ak+1

δ (f(yk+1)− f(x∗))− Ak
δ (f(yk)− f(x∗))

)
−Ak+1δ

1
p−1 ‖∇f(yk+1)‖

p
p−1
∗ . (43)

The first inequality follows from the convexity of f and rearranging terms. The second inequality
uses the progress condition assumed for the sequence yk+1. Combining (39) with (42) (43), we have

Ek+1−Ek
δ ≤ −δ

1
p−1C(k + 1)(p)‖∇f(yk+1)‖

p
p−1
∗ + (δ/m)

1
p−1 (Cp(k + 1)(p−1))

p
p−1 ‖∇f(yk+1)‖

p
p−1
∗ .

For Ek+1−Ek
δ ≤ 0 it suffices that C ≤ 1/mpp. Summing the Lyapunov function gives the conver-

gence rate f(yk)− f(x∗) = O(1/Ak) = O(1/(δk)p).

C.2 Restarting Scheme

When f is strongly smooth and µ-gradient dominated, we define the restarting scheme (similar
to (Wibisono et al., 2016, (B.1.2))), which proceeds by running 1 for some number of iterations at
each step,

x̂k = (the output yc of running Algorithm 1 for c iterations with input x0 = x̂k−c). (44)

Theorem 14 Assume f is convex and strongly smooth of order 1 < p < ∞ with constants 0 <
L1, . . . ,Lp <∞ and f is µ-gradient dominated of order p. Suppose η satisfies (14). Let x̂k be the
output of running the restarting scheme (44) for k/c times with c = 2p/κ

1
p where κ = µδp = µη.

Finally, let yk be the output of running the rescaled gradient descent update one step from x̂k. The
composite scheme satisfies the convergence rate upper bound: f(yk)− f(x∗) = O(exp(− 1

2pµ
1
p δk)
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Take h(x) = 2p−2

p ‖x− x0‖
p which is 1-uniformly convex of order p. Running k iterations of either

algorithm (15) or (16) results in the convergence bound,

µ
p ‖x̂k − x

∗‖p ≤ f(x̂k)− f(x∗) ≤ 2p−2pp−1‖x̂k−c−x∗‖p
δpkp ≤ 2p−2pp−1‖x̂k−c−x∗‖p

(δc)p

≤ µ
pe‖x̂k−c − x

∗‖p. (45)

where the last inequality follows from the choice c = 2p/κ
1
p . Thus an execution of (44) for c

iterations of the accelerated method reduces the distance to optimum by a factor of at least 1/e.
Iterating (45), we obtain 1

p‖x̂k − x
∗‖p ≤ e−k/c 1p‖x̂0 − x

∗‖p. Using the descent property for both
methods, Ek+1 ≤ δ2pp−1‖xk − x∗‖p (2a) and Ek+1 ≤ δ2pp−1‖xk+1 − x∗‖p (2b), implies that

f(ŷk)− f(x∗) ≤ δ2pp−1e
−κ

1
p k

2p ‖x0 − x∗‖p = O

(
e
−κ

1
p k

2p

)
.

C.3 Proof of Proposition 9

We analyze the following sequence of iterates

xk = δτkzk + (1− δτk)yk (46a)

zk+1 = arg minz
{
αk〈∇f(yk+1), z〉+ 1

δDh(z, zk)
}

, (46b)

where the update for (λk+1, yk+1) satisfies the descent conditions

a ≤ λk+1

δ
3p−2

2

‖yk+1 − xk‖p−2 ≤ b, (46c)

‖yk+1 − xk + λk+1

m ∇f(yk+1)‖ ≤ 1
2‖yk+1 − xk‖, (46d)

and the following identifications αk = Ak+1−Ak
δ , τk = αk

Ak+1
, and λk+1 =

α2
k

δ2Ak+1
hold. Assume h

is m-strongly convex.

Taking energy function (38), we compute
Ek+1−Ek

δ = Ak+1

δ (f(yk+1)− f(x∗))− Ak
δ (f(yk)− f(x∗))

−
〈
∇h(zk+1)−∇h(zk)

δ ,x∗ − zk+1

〉
−Dh(zk+1, zk)

(46b)
≤ αk(f(yk+1)− f(x∗)) + Ak

δ (f(yk+1)− f(yk)) + αk〈∇f(yk+1),x∗ − zk+1〉
− m

2δ‖zk − zk+1‖2

≤ αk〈∇f(yk+1), yk+1 − zk+1〉+ Ak
δ 〈∇f(yk+1), yk − yk+1〉 − m

2δ‖zk − zk+1‖2.

where the first inequality follows from the strong convexity of h and the last inequality follows from
the convexity of f . Denote x = δτkzk+1 + (1− δτk)yk. Starting from the preceding line, we have,

Ek+1−Ek
δ ≤ Ak+1

δ 〈∇f(yk+1), yk+1 − x〉 − m
2δ‖zk −

1
δτk

x+ 1−δτk
δτk

yk‖2

= Ak+1

δ 〈∇f(yk+1), yk+1 − x〉 − 1
2(δτk)2

m
δ ‖δτkzk + (1− δτk)yk − x‖2

(46a)
= Ak+1

δ 〈∇f(yk+1), yk+1 − x〉 − 1
2(δτk)2

m
δ ‖xk − x‖

2

≤ maxx∈X

{
Ak+1

δ 〈∇f(yk+1), yk+1 − x〉 − 1
2(δτk)2

m
δ ‖xk − x‖

2
}

.

Plugging in the solution, which satisfies x = xk − δ2

m
α2
k

Ak+1
∇f(yk+1), and noting λk+1 =

δ2α2
k

Ak+1
we

obtain
Ek+1−Ek

δ ≤ Ak+1

λk+1

m
2δ

(
‖yk+1 − xk + λk+1

m ∇f(yk+1)‖2 − ‖yk+1 − xk‖2
)

(46d)
≤ − Ak+1

λk+1δ
m
4 ‖yk+1 − xk‖2. (47)

This is the same bound as (Monteiro and Svaiter, 2013, (3.12)) with σ = 0.
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Rearranging the last inequality and summing over k, we have∑k
i=0

Ai
λi

m
4 ‖yi+1 − xi‖2 ≤ Ek+1 +

∑k
i=0

Ai
λi

m
4 ‖yi+1 − xi‖2 ≤ E0 = Dh(x∗,x0), (48)

where the last equality comes from taking A0 = 0.

Notice that summing over our bound (47) gives us the rate

f(yk)− f(x∗) ≤ E0

Ak
.

Now we use the second bound (46c) to establish Ak = O(k
3p−2

2 ). This follows from arguments
identical to the those given by (Gasnikov et al., 2019, p.6-7) and (Bubeck et al., p.6-8). Denote
a1 = aδ

3p−2
2 . Observe that

∑k
i=0

Ai

λ
p
p−2
i

a
2
p−2

1

(46c)
≤
∑k
i=0

Ai

λ
1+ 2

p−2
i

(
λi‖yi+1 − xi‖p−2

) 2
p−2 ≤

∑k
i=0

Ai
λi
‖yi+1 − xi‖2

(48)
≤ 4E0/m.

(49)

Denote c1 = a
− 2
p−2

1 4E0/m = (aδ
3p−2

2 )−
2
p−2E04/m. Using the previous line, we have

Ak ≥ 1
4

(∑k
i=1

√
λi

)2
≥ 1

4c
− p−2

p

1

(∑k
i=1A

p−2
3p−2

i

) 3p−2
p

, (50)

where the first inequality follows from definition of αk (see (Bubeck et al., Lem 2.6)) and the second
inequality uses reverse Holders (see (Bubeck et al., p.7-8)). Specifically, we have

αk =
λk +

√
λ2k + 4λkAk−1

2
≥ λk

2
+
√
λkAk−1 ≥

(
λk
2

+
√
Ak−1

)2

−Ak−1,

and α2
k = λkAk which allows us to conclude the first inequality. For the second inequality, we

use reverse Holder (i.e. ‖fg‖1 ≥ ‖f‖ 1
q
‖g‖− 1

q−1
for q ≥ 1) with q = 1 + p−2

2p = 3p−2
2p so that

− 1
q−1 = 2p

p−2 , we have

∑k
i=0

√
λi =

∑k
i=0A

p−2
2p

i

(
Ai

λ
p
p−2
i

)− p−2
2p

≥
(∑k

i=0A
p−2
3p−2

i

) 3p−2
2p

(∑k
i=0

Ai

λ
p
p−2
i

)− p−2
2p

. (51)

Equation (50) follows from combining (51) with (49).

To end our proof, we use the elementary fact (Bubeck et al., Lem 3.4) that for a positive sequence Bj
such that Bαk ≥ c2

∑k
i=1Bj , we have

Bk ≥
(
α−1
α c2k

) 1
α−1

with the identificatons α = p
p−2 , Bk = A

p−2
3p−2

k and c2 =
c
− p−2

3p−2
1

4
p

3p−2
. Subsequently,

Ak ≥
(

2c2k

p

) 3p−2
2

= Θ
(

(δk)
3p−2

2 E
− p−2

2
0

)
,

as desired. Picking up the constants, we have the bound

f(yk)− f(x∗) ≤ E0

Ak
= c3Dh(x

∗,x0)
p
2

(δk)
3p−2

2

,

where c−13 = a(2/p)
3p−2

2 (4/m)−
p−2
2 .
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C.4 Restarting Scheme

When f is strongly smooth and µ-gradient dominated, we define the restarting scheme (similar
to (44)), which proceeds by running Algorithm 2 for some number of iterations at each step,

x̂k = (the output yc of running Algorithm 2 for c iterations with input x0 = x̂k−c). (52)

We summarize the behavior of the restarting scheme in the following theorem:

Theorem 15 Assume f is convex and s-strongly smooth of order 1 < p < ∞ with constants
0 < L1, . . . ,Lp <∞ and f is µ-gradient dominated of order p. Take h(x) = 1

2‖x‖
2. Let x̂k be the

output of running the restarting scheme (52) for k/c times with c = (p3/2)
p

3p−2 (e/3κ)
2

3p−2 where
κ = µδ

3p−2
2 = µη. Finally, let yk be the output of running the rescaled gradient descent update one

step from x̂k. Then we have the convergence rate upper bound:

f(yk)− f(x∗) = O
(

exp
(
−c1µ

2
3p−2 δk

))
,

where c1 = (3/e)
2

3p−2 (2/p3)
p

3p−2 .

Take h(x) = 1
2‖x‖

2 which is 1-strongly convex. Running k iterations of algorithm (46) results in the
convergence bound

µ
p ‖x̂k − x

∗‖p ≤ f(x̂k)− f(x∗) ≤
c3
2 ‖x̂k−c−x

∗‖p

(δk)
3p−2

2

≤
c3
2 ‖x̂k−c−x

∗‖p

(δc)
3p−2

2

≤ µ
pe‖x̂k−c − x

∗‖p, (53)

where the last inequality follows from the choice c = (c3pe/2κ)
2

3p−2 where κ = δ
3p−2

2 µ. Thus an
execution of (52) for c iterations of the accelerated method reduces the distance to optimum by a
factor of at least 1/e. Iterating (53), we obtain 1

p‖x̂k − x
∗‖p ≤ e−k/c 1p‖x̂0− x

∗‖p. Here, we require
that the update from xk to yk+1 be a descent algorithm. Using the descent property for both methods
Ek+1 ≤ δ2pp−1‖xk − x∗‖p (2a) and Ek+1 ≤ δ2pp−1‖xk+1 − x∗‖p (2b) implies that

f(ŷk)− f(x∗) ≤ δ2pp−1e−c4µ
2

3p−2 δk‖x0 − x∗‖p = O

(
e−c4µ

2
3p−2 δk

)
,

where c4 = (c3pe/2)−
2

3p−2 .

C.5 Proof of Theorem 10

We show under the strong smoothness, rescaled gradient descent with line search condition (46c)
satisfies (46d). We summarize in the following Lemma.

Lemma 16 Under the above assumptions, if η
1
p−1 ≤ min{ 2

5p , 1/(2
∑p
m=2

Lm
m! )} and λk+1 is such

that
3
4 ≤

λk+1‖xk+1−xk‖p−2

η ≤ 5
4 , (54)

then rescaled gradient descent (12) satisfies

‖xk+1 − xk + λk+1∇f(xk+1)‖ ≤ 1
2‖xk+1 − xk‖. (55)

Note, we can write (54) as

3
4

η
1
p−1

‖∇f(xk)‖
p−2
p−1

≤ λk+1 ≤ 5
4

η
1
p−1

‖∇f(xk)‖
p−2
p−1

. (56)

Plugging in the RGD update (12) to (55), what we wish to show is that∥∥∥∥λk+1∇f(xk+1)− η
1
p−1

‖∇f(xk)‖
p−2
p−1

∇f(xk)

∥∥∥∥ ≤ η
1
p−1

2 ‖∇f(xk)‖
1
p−1 . (57)

Since ‖∇pf(x)‖ ≤ Lp, we have the following Taylor expansion of∇f :

∇f(xk+1) = ∇f(xk) +
∑p−1
m=2

1
(m−1)! (∇

mf(xk))(xk+1 − xk)m−1 +Rk
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where Rk is the remainder term which can be bounded as

‖Rk‖ ≤ Lp
(p−1)!‖xk+1 − xk‖p−1 =

Lp
(p−1)!η‖∇f(xk)‖.

Furthermore, by strong smoothness assumption, for m = 2, . . . , p− 1 we have

‖(∇mf(xk))(xk+1 − xk)m−1‖ = η
m
p−1
|(∇mf(xk))(∇f(xk))m−1|

‖∇f(xk)‖
(m−1)(p−2)

p−1

≤ η
m
p−1

Lm‖∇f(xk)‖
m−1+

p−m
p−1

‖∇f(xk)‖
(m−1)(p−2)

p−1

= η
m
p−1Lm‖∇f(xk)‖.

By plugging in the bounds above to the left-hand side of (57), we get∥∥∥∥λk+1∇f(xk+1)− η
1
p−1

‖∇f(xk)‖
p−2
p−1

∇f(xk)

∥∥∥∥
=

∥∥∥∥(λk+1 − η
1
p−1

‖∇f(xk)‖
p−2
p−1

)
∇f(xk) + λk+1

∑p−1
m=2

1
(m−1)! (∇

mf(xk))(xk+1 − xk)m−1 + λk+1Rk

∥∥∥∥
≤
∣∣∣∣λk+1 − η

1
p−1

‖∇f(xk)‖
p−2
p−1

∣∣∣∣ ‖∇f(xk)‖+ λk+1

∑p−1
m=2

1
(m−1)!‖(∇

mf(xk))(xk+1 − xk)m−1‖+ λk+1‖Rk‖

≤
∣∣∣∣λk+1 − η

1
p−1

‖∇f(xk)‖
p−2
p−1

∣∣∣∣ ‖∇f(xk)‖+ λk+1

∑p−1
m=2

1
(m−1)!η

m
p−1Lm‖∇f(xk)‖∗ + λk+1

Lp
(p−1)!η‖∇f(xk)‖

=

(∣∣∣∣λk+1 − η
1
p−1

‖∇f(xk)‖
p−2
p−1

∣∣∣∣+ λk+1

∑p−1
m=2

η
m
p−1 Lm
(m−1)! + λk+1

Lp
(p−1)!η

)
‖∇f(xk)‖

=

(∣∣∣∣λk+1 − η
1
p−1

‖∇f(xk)‖
p−2
p−1

∣∣∣∣+ λk+1

∑p
m=2

η
m
p−1mLm
m!

)
‖∇f(xk)‖

≤
(∣∣∣∣λk+1 − η

1
p−1

‖∇f(xk)‖
p−2
p−1

∣∣∣∣+ λk+1η
2
p−1 p

∑p
m=2

Lm
m!

)
‖∇f(xk)‖

≤
(∣∣∣∣λk+1 − η

1
p−1

‖∇f(xk)‖
p−2
p−1

∣∣∣∣+ λk+1
η

1
p−1 p
2

)
‖∇f(xk)‖

where in the last step we have used that η
1
p−1 ≤ 1/(2

∑p
m=2

Lm
m! ).

Therefore, from the above, we see that if∣∣∣∣λk+1 − η
1
p−1

‖∇f(xk)‖
p−2
p−1

∣∣∣∣ ≤ η
1
p−1

4‖∇f(xk)‖
p−2
p−1

(58)

and

λk+1
η

1
p−1 p
2 ≤ η

1
p−1

4‖∇f(xk)‖
p−2
p−1

, (59)

then the desired relation (57) holds. The first condition (58) is equivalent to

3
4

η
1
p−1

‖∇f(xk)‖
p−2
p−1

≤ λk+1 ≤ 5
4

η
1
p−1

‖∇f(xk)‖
p−2
p−1

which is precisely the requirement (56), whereas the second condition (59) is equivalent to

λk+1 ≤ 1

2p‖∇f(xk)‖
p−2
p−1

.

Note that if η
1
p−1 ≤ 2

5p , then the last condition above is automatically satisfied if the right-hand side
of the former condition (56) holds. Therefore, we have shown that the condition (56) implies the
desired relation (57), or equivalently (55). A simple continuity argument, similar to (Bubeck et al.,
Lem 3.2) ensures the existence of pair (λk, yk) that satisfies (54) and (55) simultaneously.
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C.6 Proximal method

Given xk ∈ Rn and η > 0, let xk+1 be the proximal update (8), which satisfies

xk+1 = xk − η
1
p−1

∇f(xk+1)

‖∇f(xk+1)‖
p−2
p−1

. (60)

Lemma 17 If λk+1 is such that

1
2 ≤

λk+1‖xk+1−xk‖p−2

ε ≤ 3
2 , (61)

then

‖xk+1 − xk + λk+1∇f(xk+1)‖ ≤ 1
2‖xk+1 − xk‖. (62)

Note (61) is equivalent to the condition

1
2

η
1
p−1

‖∇f(xk+1)‖
p−2
p−1

≤ λk+1 ≤ 3
2

η
1
p−1

‖∇f(xk+1)‖
p−2
p−1

. (63)

Plugging in the proximal update (60) to (62), what we wish to show is that∥∥∥∥λk+1∇f(xk+1)− η
1
p−1

‖∇f(xk+1)‖
p−2
p−1

∇f(xk+1)

∥∥∥∥ ≤ η
1
p−1

2 ‖∇f(xk+1)‖
1
p−1 .

Equivalently, we wish to show that∣∣∣∣λk+1 − η
1
p−1

‖∇f(xk+1)‖
p−2
p−1

∣∣∣∣ ≤ ε
1
p−1

2‖∇f(xk+1)‖
p−2
p−1

,

which is exactly condition (63). Subsequently, we can write the Monteiro-Svaiter-style accelerated
proximal method as the following sequence of updates,

Algorithm 3 Monteiro-Svaiter-style accelerated proximal method

Require: f is differentiable and h is 1-strongly convex
1: Set x0 = z0 = 0, A0 = 0, δ

3p−2
2 = η, η > 0

2: for k = 1, . . . ,K do
3: Choose λk+1 (e.g. by line search) such that 1

2 ≤
λk+1‖yk+1−xk‖p−2

η ≤ 3
2 , where

yk+1 = arg minx∈X

{
f(x) + 1

ηp‖x− xk‖
p
}

,

and αk =
λk+1+

√
λk+1+4Akλk+1

2δ , Ak+1 = δαk +Ak, τk = αk
Ak+1

(so that λk+1 =
δ2α2

k

Ak+1
) and

xk = δτkzk + (1− δτk)yk.

4: Update zk+1 = arg minz∈X
{
αk〈∇f(yk+1), z〉+ 1

δDh(z, zk)
}

5: return yK .

D Examples and Numerical Experiments

D.1 Comparison to Runge-Kutta

In Zhang et al. (2018) the following gradient lower bound assumption is made

Definition 4 f satisfies the gradient lower bound of order p ≥ 2 if for all m = 1, . . . , p− 1,

f(x)− f(x∗) ≥ 1
Cm
‖∇mf(x)‖

p
p−m ∀x ∈ Rn

for some constants 0 < C1, . . . ,Cp−1 <∞.
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Notice that when p = 2, this is equivalent to s-strong smoothness, which is the general smoothness
condition on the gradient. However, for p > 2 we can show that it is slightly weaker than strong
smoothness. We summarize in the following Lemma:

Lemma 18 If f is strongly smooth of order p with constants Lm, then f satisfies the gradient lower

bound of order p with constants Cm = 4(
∑p
i=2

Li
i! )L

p
p−m
m .

Let η = 1/(2
∑p
m=2

Lm
m! )p−1 as in (2). Then with xk = x and xk+1 = x −

η
1
p−1∇f(x)/‖∇f(x)‖

p−2
p−1 , by Lemma 4 we have

f(x∗) ≤ f(xk+1) ≤ f(x)− η
1
p−1

2 ‖∇f(x)‖
p
p−1 = f(x)− 1

4
∑p
m=2

Lm
m!

‖∇f(x)‖
p
p−1 .

Rearranging gives the desired claim:

f(x)− f(x∗) ≥ 1
4
∑p
m=2

Lm
m!

‖∇f(x)‖
p
p−1 .

D.2 Examples

We provide details on the examples presented in the main text.

D.3 `p loss

Let

f(x) =
1

p
‖x‖pp =

1

p

d∑
i=1

|xi|p =
1

p

d∑
i=1

sgn(xi)
pxpi .

The gradient∇f(x) has entries

(∇f(x))i = sgn(xi)
pxp−1i .

The norm of the gradient is

‖∇f(x)‖ =

(
d∑
i=1

x2p−2i

) 1
2

= ‖x‖p−12p−2.

Therefore, for m ≥ 2,

‖∇f(x)‖
p−m
p−1 = ‖x‖p−m2p−2 =

(
d∑
i=1

x2p−2i

) p−m
2p−2

.

For m ≥ 2, the m-th derivative∇mf(x) has nonzero entries only on the diagonal:

(∇mf(x))i,...,i = (p− 1) · · · (p−m+ 1)sgn(xi)
pxp−mi .

Then for any unit vector v ∈ Rd,

(∇mf(x))(vm) = (p− 1) · · · (p−m+ 1)

d∑
i=1

sgn(xi)
pxp−mi vmi .

By Hölder’s inequality with q = 2p−2
p−m and r = 2p−2

p+m−2 , so 1
q + 1

r = 1, we have

|(∇mf(x))(vm)| = (p− 1) · · · (p−m+ 1)

∣∣∣∣∣
d∑
i=1

sgn(xi)
pxp−mi vmi

∣∣∣∣∣
≤ (p− 1) · · · (p−m+ 1)

(
d∑
i=1

|sgn(xi)x
p−m
i |

2p−2
p−m

) p−m
2p−2

(
d∑
i=1

|vmi |
2p−2
p+m−2

) p+m−2
2p−2
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= (p− 1) · · · (p−m+ 1) ‖x‖p−m2p−2

(
d∑
i=1

|vi|
2m(p−1)
p+m−2

) p+m−2
2p−2

.

Note that m(p−1)
p+m−2 = 1 + (m−1)(p−2)

p+m−2 ≥ 1. Then using
∑d
i=1 c

q
i ≤ (

∑d
i=1 ci)

q for ci ≥ 0, q ≥ 1, we
can write

d∑
i=1

|vi|
2m(p−1)
p+m−2 ≤

(
d∑
i=1

v2i

)m(p−1)
p+m−2

= ‖v‖
2m(p−1)
p+m−2

2 = 1

since we assumed v is a unit norm vector, so ‖v‖2 = 1. Plugging this to the bound above, we obtain

|(∇mf(x))(vm)| ≤ (p− 1) · · · (p−m+ 1) ‖x‖p−m2p−2

= (p− 1) · · · (p−m+ 1) ‖∇f(x)‖
p−m
p−1 .

Taking the supremum over unit vectors v ∈ Rd, we conclude that

‖∇mf(x)‖ ≤ (p− 1) · · · (p−m+ 1)‖∇f(x)‖
p−m
p−1 .

This shows that f is strongly smooth of order p with constants

Lm = (p− 1) · · · (p−m+ 1).

D.4 Logistic loss

We show the logistic loss of strongly smooth of order p =∞. We have

∇f(x) = − w

1 + e−w>x

and

‖∇f(x)‖ =
‖w‖

1 + e−w>x
.

By induction we can see that

∇mf(x) = − (m− 1)!w⊗m

(1 + e−w>x)m

so that

‖∇mf(x)‖ = sup
‖v‖=1

|(∇mf(x))(vm)| = (m− 1)!‖w‖m

(1 + e−w>x)m
.

Then
‖∇mf(x)‖
‖∇f(x)‖

=
(m− 1)!‖w‖m−1

(1 + e−w>x)m−1
≤ (m− 1)!‖w‖m−1.

This shows that f(x) = log(1 + e−w
>x) satisfies the strong smoothness condition with p =∞ with

constant
Lm = (m− 1)!‖w‖m−1.

D.5 GLM loss

Consider the generalized linear model loss function f(x) = 1
2 (y − φ(x>w))2 for φ(r) = 1/(1 +

e−r) ∈ (0, 1), y ∈ {0, 1}, and w ∈ Rd. Introduce the shorthand b = 1− 2y ∈ {1,−1}, and note that

φ(r)− y = bφ(br),

φ′(r) = e−r/(1 + e−r)2 = φ(r)φ(−r) = φ′(−r) ∈ (0, 1/4],

φ′(r)/φ(r) = φ(−r),
φ′′(r) = φ′(r)φ(−r)− φ(r)φ′(−r) = φ′(r)(φ(−r)− φ(r)) ∈ [−1/(6

√
3), 1/(6

√
3)],

φ′′(r)/φ′(r) = φ(−r)− φ(r), and

φ′′′(r) = φ′′(r)(φ(−r)− φ(r))− 2φ′(r)2 ∈ [−1/2, 0]
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To simplify the presentation, we will fix x and let z = x>w. With this notation in place we have

f(x) = 1
2φ(bz)2,

∇f(x) = bφ(bz)φ′(bz)w,

∇2f(x) = (φ′(bz)2 + φ(bz)φ′′(bz))ww>, and

∇3f(x) = b(3φ′(bz)φ′′(bz) + φ(bz)φ′′′(bz))w⊗3.

Since φ(r)φ′(r) ∈ (0, 1), we have, for any a ∈ [0, 1]

‖∇2f(x)‖
‖∇f(x)‖a = |φ′(bz)2+φ(bz)φ′′(bz)|

|φ(bz)φ′(bz)|a ‖w‖2−a ≤ |φ
′(bz)2+φ(bz)φ′′(bz)|
|φ(bz)φ′(bz)| ‖w‖2−a

= |2φ(−bz)− φ(bz)|‖w‖2−a ≤ 2‖w‖2−a.

Moreover,

|∇3f(x)‖ = |3φ′(bz)φ′′(bz) + φ(bz)φ′′′(bz)|‖w‖3 ≤ (
√

3/24 + 1/2)‖w‖3.

Therefore, f is s-strongly smooth of order p = 3 with L2 = 2‖w‖1.5 and L3 = (
√

3/24+1/2)‖w‖3.

E Additional Results

E.1 Coordinate Descent Methods

At each iteration, a randomized coordinate method samples a coordinate direction i ∈ {1, . . . , d}
uniformly at random and performs an update along that coordinate direction. Denote ∇ikf =
eike

>
ik
∇f(x) where ei is the i-th basis vector.

Definition 5 An algorithm xk+1 = A(xk) is a coordinate descent algorithm of order 1 < p ≤ ∞,
if for some constant 0 < δ <∞, it almost surely satisfies

f(xk+1)− f(xk)

δ
≤ −‖∇ikf(xk)‖

p
p−1
∗ . (65)

For coordinate descent methods of order p, it is possible to obtain non-asymptotic guarantees for
non-convex, convex and gradient dominated functions. We summarize in the following theorems.

Theorem 19 Suppose an algorithm satisfies (65) for some 0 < δ < ∞ and 1 < p ≤ ∞ and f is
differentiable. Then the algorithm also satisfies

min
0≤s≤k

E‖∇isf(xs)‖∗ ≤ (E0/(δk))
p−1
p = O(1/δk). (66)

Theorem 20 Suppose an algorithm satisfies (65) for some 0 < δ < ∞ and 1 < p ≤ ∞ and f is
differentiable and convex with R = supx:f(x)≤f(x0) ‖x− x

∗‖ <∞. Then the algorithm satisfies

E[f(xk)]− f(x∗) =

{
O
(

1/
(

1 + 1
Rp (δk)

p−1
p

)p)
if p <∞

O
(
e−δk/R

)
if p =∞

. (67)

Theorem 21 Suppose an algorithm satisfies (2) for some 0 < δ < ∞ and 1 < p ≤ ∞, and f is
differentiable and µ-gradient dominated of order p. Then the algorithm satisfies

E[f(xk)]− f(x∗) = O

(
e−

1
d

p
p−1µ

1
p−1 δk

)
. (68)

E.1.1 Proof of Theorem 19

δkEmin0≤s≤k ‖∇sf(xs)‖
p
p−1
∗ ≤ E

∑k
s=0 ‖∇sf(xs)‖

p
p−1
∗ δ ≤ f(x0)− Ef(xk) ≤ f(x0)

Rearranging the inequality yields the result in Theorem 19.
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E.1.2 Proof of Theorem 20

For the proof of Theorem 20 under the condition (65), we use the energy function
Ek = wa(δk)(f(xk)− f(x∗)),

When (65) holds, we have
Ek+1−Ek

δ = wa(δ(k+1))−wa(δk)
δ (f(xk)− f(x∗)) + wa(δ(k + 1)) f(xk+1)−f(xk)

δ

≤ wa(δ(k+1))−wa(δk)
δ 〈∇f(xk),xk − x∗〉+ wa(δ(k + 1)) f(xk+1)−f(xk)

δ

(65)
≤ wa(δ(k+1))−wa(δk)

δ 〈∇f(xk),xk − x∗〉 − wa(δ(k + 1))‖∇ikf(xk)‖
p
p−1
∗

= wa(δ(k + 1))(wa(δ(k+1))−wa(δk)
δwa(δ(k+1)) 〈∇f(xk),xk − x∗〉 − ‖∇ikf(xk)‖

p
p−1
∗ )

≤ wa(δ(k + 1))( 1
awa(δ(k+1))1/p

〈∇f(xk),xk − x∗〉 − ‖∇ikf(xk)‖
p
p−1
∗ )

= wa(δ(k + 1))( 1
awa(δ(k+1))1/p

〈∇ikf(xk),xk − x∗〉 − ‖∇ikf(xk)‖
p
p−1
∗ ) + ξk

≤ wa(δ(k + 1))cp‖ 1
awa(δ(k+1))1/p

(xk − x∗)‖p + ξk

= cp‖xk − x∗‖p/ap + ξk ≤ cpRp/ap + ξk.

Here, the martingale ξk := wa(δ(k+1))
awa(δ(k+1))1/p

〈∇f(xk)−∇ikf(xk),xk − x∗〉. The first inequality uses
convexity of f , and the second uses (2a). The third inequality is an application of (33). The fourth
inequality uses the Fenchel-Young inequality with s = ∇ikf(xk) and u = 1

awa(δ(k+1))1/p
(xk − x∗).

Both descent conditions (2) imply ‖xk − x∗‖ ≤ R, yielding the final inequality. Therefore, we have
shown that for all k ≥ 0, E[Ek+1|xk]− Ek ≤ cpδRp/ap. This implies E[Ek] ≤ E0 + cpδkR

p/ap.
Therefore

E[f(xk)]− f(x∗) ≤ f(x0)−f(x∗)
(1+δk/(ap))p + cp

Rp

ap
δk

(1+δk/(ap))p .

Since a > 0 was arbitrary, we may choose a = R
(cpδk)

1/p

(f(x0)−f(x∗))1/p
to obtain the bound

E[f(xk)]− f(x∗) ≤ 2(f(x0)−f(x∗))(
1+

(f(x0)−f(x∗))1/p

Rc
1/p
p p

(δk)
p−1
p

)p = O(1/(1 + 1
Rp (δk)

p−1
p )p)

as desired.

E.1.3 Proof of Theorem 21

Take the energy function Ek = f(xk)− f(x∗), and observe that if (2a) holds, then we have:

E[Ek+1|xk]−Ek
δ = E[f(xk+1)|xk]−f(xk)

δ

(65)
≤ −E[‖∇ikf(xk)‖

p
p−1
∗ |xk]

= − 1
d

∑d
i=1 ‖∇if(xk)‖

p
p−1

≤ − 1
d‖∇f(xk)‖

p
p−1

(3)
≤ − 1

d
p
p−1µ

1
p−1Ek,

or rewritten, E[Ek+1] ≤
(

1− 1
d

p
p−1µ

1
p−1 δ

)
Ek. Summing gives the bound

E[Ek+1] ≤
(

1− 1

d

p

p− 1
µ

1
p−1 δ

)k
E0 ≤ e−

1
d

p
p−1µ

1
p−1 δkE0,

E.1.4 Rescaled coordinate descent

Rescaled coordinate descent,

xk+1 = xk − η
1
p−1

ik

∇ikf(xk)

‖∇ikf(xk)‖
p−2
p−1

= arg min
x∈X

{
〈∇ikf(xk),x〉+

1

ηikp
‖x− xk‖p

}
(69)

where 0 < ηik <∞ for ik ∈ {1, . . . k}, satisfies (65) provided the objective is strongly smooth along
each coordinate direction.
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Definition 6 A function f is strongly smooth of order p along each coordinate direction for p > 1,
if there exist constants 0 < L

(i)
1 , . . . ,L

(i)
p <∞ for i = 1, . . . , d, such that for m = 1, . . . , p− 1 and

for all x ∈ Rd, as well as for all i ∈ {1, . . . d}

∇mf(x)(∇if(x))m ≤ L(i)
m ‖∇if(x)‖m+ p−m

p−1
∗ , (70)

and moreover for m = p, f satisfies the condition ‖∇pf(x)‖ ≤ L(i)
p .

We summarize our results regarding the rescaled coordinate descent in the following Lemma.

Lemma 22 Suppose f is strongly smooth of order p ≥ 2 along each coordinate direction with
constants 0 < L

(i)
1 , . . . ,L

(i)
p <∞ for i = 1, . . . , d. Then rescaled gradient descent (69) with step

size

0 < η
1
p−1

i ≤ min

1,
1(

2
∑p
m=2

L
(i)
m

m!

)
 (71)

satisfies (65) with δ = mini=1,...,d η
1
p−1

i /2.

E.2 Accelerating Coordinate Descent Methods

Coordinate descent algorithms of order p can also be accelerated.Suppose f is convex. Set Ak =

Cδpk(p) where we use the rising factorial k(p) = k(k+1) · · · (k+p−1). Denote αk := Ak+1−Ak
δ =

Cpδp−1(k + 1)(p−1) and τk := αk
Ak+1

= k
δ(k+p) . We write the algorithm as,

xk = δτkzk + (1− δτk)yk (72a)

zk+1 = arg minz
{
αk〈∇ikf(xk), z〉+ 1

δDh(z, zk)
}

(72b)

where the update for yk+1 satisfies the descent condition
f(yk+1)−f(xk)

δ
p
p−1

≤ −‖∇ikf(xk)‖
p
p−1 . (73)

For algorithm (72), using (38) we compute
Ek+1−Ek

δ = Dh(x
∗,zk+1)−Dh(x∗,zk)

δ + Ak+1

δ (f(yk+1)− f(x∗))− Ak
δ (f(yk)− f(x∗)). (74)

We bound the first part,

Dh(x
∗,zk+1)−Dh(x∗,zk)

δ = −
〈
∇h(zk+1)−∇h(zk)

δ ,x∗ − zk+1

〉
− 1

δDh(zk+1, zk)

(72b)
= αk〈∇ikf(xk),x∗ − zk〉+ αk〈∇ikf(xk), zk − zk+1〉
− 1

δDh(zk+1, zk)

≤ αk〈∇f(xk),x∗ − zk〉 − ξk − (δ/m)
1
p−1α

p
p−1

k ‖∇if(xk)‖
p
p−1 , (75)

where ξk = αk〈∇f(xk) − ∇ikf(xk),x∗ − zk〉 which is a martingale. The inequality follows
from the m-uniform convexity of h of order p and the Fenchel-Young inequality 〈s,u〉+ 1

p‖u‖
p ≥

− p
p−1‖s‖

p
p−1
∗ , with u = (m/δ)

1
p (zk+1 − zk) and s = (δ/m)

1
pα

p
p−1

k ∇ikf(xk). Plugging in up-
date (15a),

αk〈∇f(xk),x∗ − zk〉 = αk〈∇f(xk),x∗ − yk〉+ Ak+1

δ 〈∇f(xk), yk − xk〉
= αk〈∇f(xk),x∗ − xk〉+ Ak

δ 〈∇f(xk), yk − xk〉

≤ −
(
Ak+1

δ (f(yk+1)− f(x∗))− Ak
δ (f(yk)− f(x∗))

)
+Ak+1

f(yk+1)−f(xk)
δ

(73)
≤ −

(
Ak+1

δ (f(yk+1)− f(x∗))− Ak
δ (f(yk)− f(x∗))

)
29



−Ak+1δ
1
p−1 ‖∇ikf(xk)‖

p
p−1 . (76)

The first inequality follows from the convexity of f and rearranging terms. The second inequality
uses (73). Combining (74) with (75) and (76) we have,

Ek+1−Ek
δ ≤

(
(δ/m)

1
p−1 (Cpδp−1(k + 1)(p−1))

p
p−1 − Cδ

1
p−1 δp(k + 1)(p)

)
‖∇ikf(xk)‖

p
p−1 − ξk.

Given ((k + 1)(p−1))
p
p−1 /(k + 1)(p) ≤ 1, it suffices that C ≤ 1/mpp to ensure E[Ek+1|xk]−Ek

δ ≤ 0.
Summing, we obtain the desired bound.

E[f(xk)]− f(x∗) . 1/(δk)p.

E.2.1 Accelerating rescaled coordinate descent

A corollary to the coordinate descent property of rescaled descent with step size (71) is that it can be
combined with sequences (72a) and (72b) to form a method with an O(1/(δk)p) convergence rate
upper bound. We summarize this result in the following theorem.

Algorithm 4 Nesterov-style accelerated rescaled coordinate descent.

Require: f is strongly smooth of order p along each coordinate direction and h satisfies Dh(x, y) ≥
1
p‖x− y‖

p.

1: Set x0 = z0 = 0 and Ak = Cδpk(p), αk = Ak+1−Ak
δ = Cpδp−1(k+ 1)(p−1) and τk = αk

Ak+1
=

k
δ(k+p) where k(p) := k(k + 1) · · · (k + p− 1).

2: for k = 1, . . . ,K do
3: xk = δτkzk + (1− δτk)yk
4: sample ik ∈ {1, . . . , d}. Update
5: zk+1 = arg minz

{
αk〈∇ikf(xk), z〉+ 1

δDh(z, zk)
}

6: yk+1 = xk − η
1
p−1

ik

∇ikf(xk)

‖∇ikf(xk)‖
p−2
p−1
∗

7: return yK .

Theorem 23 Suppose f is convex and strongly smooth of order 1 < p <∞ along each coordinate
direction i with constants 0 < L

(i)
1 , . . . ,L

(i)
p <∞. Also suppose ηi satisfies (71). Then Algorithm 4

satisfies,

E[f(yk)]− f(x∗) . 1/(δk)p.

E.3 Optimal Universal Higher-order Tensor Methods

We say that it has Hölder continuous (p− 1)-st order gradients of degree ν ∈ [0, 1] on a convex set
X ⊆ domf , if for some constant Lν it holds

‖∇p−1f(x)−∇p−1f(y)‖ ≤ Lν‖x− y‖ν (77)

The final result of our paper contains the analysis of the following optimal algorithm for minimizing
functions that satsify (77)
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Algorithm 5 Monteiro-Svaiter-style universal higher-order tensor method.

Require: f satisfies (77) with parameters p and Lν , h is 1-strongly convex, B = I, p̃ = p− 1 + ν.
1: Set x0 = z0 = 0, A0 = 0, δ

3p−2
2 = η, η = Lν/(p− 2)!

2: for k = 1, . . . ,K do
3: Choose λk+1 (e.g. by line search) such that

1
2 ≤

λk+1‖yk+1−xk‖p̃−2

η ≤ 3
4 , (78a)

where

yk+1 = arg minx∈X

{
fp−1(x;xk) + 1

p̃η‖x− xk‖
p̃
}

, (78b)

and αk =
λk+1+

√
λk+1+4Akλk+1

2δ , Ak+1 = δαk +Ak, τk = αk
Ak+1

(so that λk+1 =
δ2α2

k

Ak+1
) and

xk = δτkzk + (1− δτk)yk.

4: Update zk+1 = arg minz∈X
{
αk〈∇f(yk+1), z〉+ 1

δDh(z, zk)
}

5: return yK .

We summarize results on performance of Algorithm 5 in the following corollary to Theorem 9:

Theorem 24 Assume f is convex and has Hölder continuous (p − 1)-st order gradients. Then
Algorithm 5 satisfies the convergence rate upper bound

f(yk)− f(x∗) = O
(

1/(δk)
3(p−1+ν)−2

2

)
.

To prove Theorem 24, the first thing to notice is that the proof of Theorem 9 holds for all R 3 p > 0.
Subsequently, to extend our analysis to Algorithm (5), it is sufficient to show (1) (78b) with the line
search step (78a) satisfies

‖yk+1 − xk − λk+1∇f(yk+1)‖ ≤ 1

2
‖yk+1 − xk‖ (79)

and that (2) there exists a sequence (λk+1, yk+1) that satisfies (78b) and (78a) simultaneously.

(1) Observe that the optimality condition for (78b) satisfies

∇fp−1(yk+1;xk)− 1

η
(yk+1 − xk)‖yk+1 − xk‖p̃−2 = 0.

so that ‖∇fp−1(yk+1;xk)‖ = 1
η‖yk+1 − xk‖p̃−1. In particular,

yk+1 − xk + λk+1∇f(yk+1) = λk+1∇f(yk+1)− η

‖yk+1 − xk‖p̃−2
∇fp−1(yk+1;xk).

From the integral form of the mean value theorem it follows that

‖∇fp−1(y;x)−∇f(y)‖ ≤ Lν
(p−2)!‖y − x‖

p−2+ν .

Subsequently

‖yk+1 − xk + λk+1∇f(yk+1)‖ ≤ λk+1
Lν

(p−2)!‖yk+1 − xk‖p̃−1 +
∣∣∣λk+1 − η

‖yk+1−xk‖p̃−2

∣∣∣ ‖∇fp−1(yk+1;xk)‖

≤ ‖yk+1 − xk‖
(
λk+1

Lν
(p−2)!‖yk+1 − xk‖p̃−2 + |λk+1

η ‖yk+1 − xk‖p̃−2 + 1|
)

If we choose η = Lν/(p− 2)! and plug in our line search criterion (78a), we see condition (79) is
met.

31



(2) We now show there exists a pair (λk+1, yk+1) that satisfies (78b) and (78a) simultaneously.
This claim follows directly form the argument given by Bubeck et al (Bubeck et al., Sec 3.2), which
did not rely on p > 0 being an integer. For self-containment, we reproduce the argument here.

Lemma 25 Let A ≥ 0, x, y ∈ Rd such that f(x) 6= f(x∗). Define the following functions:

a(λ) = λ+
√
λ2+4λA
2

x(λ) = a(λ)
A+a(λ)x+ A

A+a(λ)y

y(z) = arg minx∈X

{
fp−1(w; z) + 1

p̃η‖w − z‖
p̃
}

g(λ) = λ‖y(x(λ))− x(λ)‖p̃−1.

Then we have g(R+) = R+.

The first claim is that g(λ) is a continuous function of λ . This follows from the fact that y(z) is a
continuous function of z. Furthermore, g(0) = 0, and since f(x) 6= f(x∗) we also have y(x) 6= x
which proves g(+∞) = +∞

Remark 3 The same binary line search step introduced by Bubeck et al., Sec 4 finds a λk+1 satisfy-
ing (78a). The argument given there did not rely on the fact that p ∈ Z+.
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