
Sobolev Independence Criterion

Youssef Mroueh, Tom Sercu, Mattia Rigotti, Inkit Padhi, Cicero Dos Santos ∗
IBM Research & MIT-IBM Watson AI lab

mroueh,mrigotti@us.ibm.com,inkit.padhi@ibm.com

Abstract

We propose the Sobolev Independence Criterion (SIC), an interpretable dependency
measure between a high dimensional random variable X and a response variable
Y . SIC decomposes to the sum of feature importance scores and hence can be used
for nonlinear feature selection. SIC can be seen as a gradient regularized Integral
Probability Metric (IPM) between the joint distribution of the two random variables
and the product of their marginals. We use sparsity inducing gradient penalties
to promote input sparsity of the critic of the IPM. In the kernel version we show
that SIC can be cast as a convex optimization problem by introducing auxiliary
variables that play an important role in feature selection as they are normalized
feature importance scores. We then present a neural version of SIC where the critic
is parameterized as a homogeneous neural network, improving its representation
power as well as its interpretability. We conduct experiments validating SIC for
feature selection in synthetic and real-world experiments. We show that SIC enables
reliable and interpretable discoveries, when used in conjunction with the holdout
randomization test and knockoffs to control the False Discovery Rate. Code is
available at http://github.com/ibm/sic.

1 Introduction

Feature Selection is an important problem in statistics and machine learning for interpretable predic-
tive modeling and scientific discoveries. Our goal in this paper is to design a dependency measure that
is interpretable and can be reliably used to control the False Discovery Rate in feature selection. The
mutual information between two random variables X and Y is the most commonly used dependency
measure. The mutual information I(X;Y) is defined as the Kullback-Leibler divergence between the
joint distribution pxy of X,Y and the product of their marginals pxpy, I(X;Y) = KL(pxy, pxpy).
Mutual information is however challenging to estimate from samples, which motivated the intro-
duction of dependency measures based on other f -divergences or Integral Probability Metrics [1]
than the KL divergence. For instance, the Hilbert-Schmidt Independence Criterion (HSIC) [2] uses
the Maximum Mean Discrepancy (MMD) [3] to assess the dependency between two variables, i.e.
HSIC(X,Y) = MMD(pxy, pxpy), which can be easily estimated from samples via Kernel mean
embeddings in a Reproducing Kernel Hilbert Space (RKHS) [4]. In this paper we introduce the
Sobolev Independence Criterion (SIC), a form of gradient regularized Integral Probability Metric
(IPM) [5, 6, 7] between the joint distribution and the product of marginals. SIC relies on the statistics
of the gradient of a witness function, or critic, for both (1) defining the IPM constraint and (2) finding
the features that discriminate between the joint and the marginals. Intuitively, the magnitude of
the average gradient with respect to a feature gives an importance score for each feature. Hence,
promoting its sparsity is a natural constraint for feature selection.

The paper is organized as follows: we show in Section 2 how sparsity-inducing gradient penalties can
be used to define an interpretable dependency measure that we name Sobolev Independence Criterion

∗Tom Sercu is now with Facebook AI Research, and Cicero Dos Santos with Amazon AWS AI. The work
was done when they were at IBM Research.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

http://github.com/ibm/sic

(SIC). We devise an equivalent computational-friendly formulation of SIC in Section 3, that gives rise
to additional auxiliary variables ηj . These naturally define normalized feature importance scores that
can be used for feature selection. In Section 4 we study the case where the SIC witness function f is
restricted to an RKHS and show that it leads to an optimization problem that is jointly convex in f
and the importance scores η. We show that in this case SIC decomposes into the sum of feature scores,
which is ideal for feature selection. In Section 5 we introduce a Neural version of SIC, which we
show preserves the advantages in terms of interpretability when the witness function is parameterized
as a homogeneous neural network, and which we show can be optimized using stochastic Block
Coordinate Descent. In Section 6 we show how SIC and conditional Generative models can be used
to control the False Discovery Rate using the recently introduced Holdout Randomization Test [8]
and Knockoffs [9]. We validate SIC and its FDR control on synthetic and real datasets in Section 8.

2 Sobolev Independence Criterion: Interpretable Dependency Measure

Motivation: Feature Selection. We start by motivating gradient-sparsity regularization in SIC as a
mean of selecting the features that maintain maximum dependency between two randoms variable X
(the input) and Y (the response) defined on two spaces X ⊂ Rdx and Y ⊂ Rdy (in the simplest case
dy = 1). Let pxy be the joint distribution of (X,Y) and px, py be the marginals of X and Y resp. Let
D be an Integral Probability Metric associated with a function space F , i.e for two distributions p, q:

D(p, q) = sup
f∈F

Ex∼pf(x)− Ex∼qf(x).

With p = pxy and q = pxpy this becomes a generalized definition of Mutual Information. In-
stead of the usual KL divergence, the metric D with its witness function, or critic, f(x, y) mea-
sures the distance between the joint pxy and the product of marginals pxpy. With this generalized
definition of mutual information, the feature selection problem can be formalized as finding a
sparse selector or gate w ∈ Rdx such that D(pw�x,y, pw�xpy) is maximal [10, 11, 12, 13] , i.e.
supw,‖w‖`0≤s

D(pw�x,y, pw�xpy), where � is a pointwise multiplication and ‖w‖`0 = #{j|wj 6=
0}. This problem can be written in the following penalized form:

(P) : sup
w

sup
f∈F

Epxyf(w � x, y)− Epxpyf(w � x, y)− λ||w||`0 .

We can relabel f̃(x, y) = f(w� x, y) and write (P) as: supf̃∈F̃ Epxy f̃(x, y)−Epxpy f̃(x, y), where

F̃ = {f̃ |f̃(x, y) = f(w � x, y)|f ∈ F , ‖w‖`0 ≤ s}. Observe that we have: ∂f̃
∂xj

= wj
∂f(w�x,y)

∂xj
.

Since wj is sparse the gradient of f̃ is sparse on the support of pxy and pxpy. Hence, we can
reformulate the problem (P) as follows:

(SIC): sup
f∈F

Epxyf(x, y)− Epxpyf(x, y)− λPS(f),

where PS(f) is a penalty that controls the sparsity of the gradient of the witness function f on the
support of the measures. Controlling the nonlinear sparsity of the witness function in (SIC) via its
gradients is more general and powerful than the linear sparsity control suggested in the initial form
(P), since it takes into account the nonlinear interactions with other variables. In the following Section
we formalize this intuition by theoretically examining sparsity-inducing gradient penalties [14].

Sparsity Inducing Gradient Penalties. Gradient penalties have a long history in machine learning
and signal processing. In image processing the total variation norm is used for instance as a
regularizer to induce smoothness. Splines in Sobolev spaces [15], and manifold learning exploit
gradient regularization to promote smoothness and regularity of the estimator. In the context of neural
networks, gradient penalties were made possible through double back-propagation introduced in
[16] and were shown to promote robustness and better generalization. Such smoothness penalties
became popular in deep learning partly following the introduction of WGAN-GP [17], and were used
as regularizer for distance measures between distributions in connection to optimal transport theory
[5, 6, 7]. Let µ be a dominant measure of pxy and pxpy the most commonly used gradient penalties is

ΩL2(f) = E(x,y)∼µ ‖∇xf(x, y)‖2 .

While this penalty promotes smoothness, it does not control the desired sparsity as discussed in the
previous section. We therefore elect to instead use the nonlinear sparsity penalty introduced in [14] :

2

Ω`0(f) = #{j|E(x,y)∼µ

∣∣∣∂f(x,y)
∂xj

∣∣∣2 6= 0}, and its relaxation :

ΩS(f) =

dx∑
j=1

√
E(x,y)∼µ

∣∣∣∣∂f(x, y)

∂xj

∣∣∣∣2.
As discussed in [14], E(x,y)∼µ

∣∣∣∂f(x,y)
∂xj

∣∣∣2 = 0 implies that f is constant with respect to variable xj , if
the function f is continuously differentiable and the support of µ is connected. These considerations
motivate the following definition of the Sobolev Independence Criterion (SIC):

SIC(L1)2(pxy, pxpy) = sup
f∈F

Epxyf(x, y)− Epxpyf(x, y)− λ

2
(ΩS(f))

2 − ρ

2
Eµf2(x, y).

Note that we add a `1-like penalty (ΩS(f)) to ensure sparsity and an `2-like penalty (Eµf2(x, y)) to
ensure stability. This is similar to practices with linear models such as Elastic net.

Here we will consider µ = pxpy (although we could also use µ = 1
2 (pxy + pxpy)). Then,

given samples {(xi, yi), i = 1, . . . , N} from the joint probability distribution pxy and iid samples
{(xi, ỹi), i = 1, . . . , N} from pxpy , SIC can be estimated as follows:

ŜIC(L1)2(pxy, pxpy) = sup
f∈F

1

N

N∑
i=1

f(xi, yi)−
1

N

N∑
i=1

f(xi, ỹi)−
λ

2

(
Ω̂S(f)

)2

−ρ
2

1

N

N∑
i=1

f2(xi, ỹi),

where Ω̂S(f) =
∑dx
j=1

√
1
N

∑N
i=1

∣∣∣∂f(xi,ỹi)
∂xj

∣∣∣2.
Remark 1. Throughout this paper we consider feature selection only on x since y is thought of as
the response. Nevertheless, in many other problems one can perform feature selection on x and y
jointly, which can be simply achieved by also controlling the sparsity of∇yf(x, y) in a similar way.

3 Equivalent Forms of SIC with η-trick

As it was just presented, the SIC objective is a difficult function to optimize in practice. First of all,
the expectation appears after the square root in the gradient penalties, resulting in a non-smooth term
(since the derivative of square root is not continuous at 0). Moreover, the fact that the expectation
is inside the nonlinearity introduces a gradient estimation bias when the optimization of the SIC
objective is performed using stochastic gradient descent (i.e. using mini-batches). We alleviate these
problems (non-smoothness and biased expectation estimation) by making the expectation linear in the
objective thanks to the introduction of auxiliary variables ηj that will end up playing an important role
in this work. This is achieved thanks to a variational form of the square root that is derived from the
following Lemma (which was used for a similar purpose as ours when alleviating the non-smoothness
of mixed norms encountered in multiple kernel learning and group sparsity norms):

Lemma 1 ([18],[19]). Let aj , j = 1 . . . d, aj > 0 we have:
(∑d

j=1

√
aj

)2

= inf{
∑d
j=1

aj
ηj

:

η, ηj > 0
∑d
j=1 ηj = 1}, optimum achieved at ηj =

√
aj/

∑
j

√
aj .

We alleviate first the issue of non smoothness of the square root by adding an ε ∈ (0, 1), and we

define: ΩS,ε =
∑dx
j=1

√
E(x,y)∼µ

∣∣∣∂f(x,y)
∂xj

∣∣∣2 + ε. Using Lemma 1 the nonlinear sparsity inducing

gradient penalty can be written as :

(ΩS,ε(f))2 = inf{
dx∑
j=1

Epxpy
∣∣∣∂f(x,y)

∂xj

∣∣∣2 + ε

ηj
: η, ηj > 0,

dx∑
j=1

ηj = 1},

where the optimum is achieved for : η∗j,ε =
βj∑dx
k=1 βk

, where β2
j = Epxpy

∣∣∣∂f(x,y)
∂xj

∣∣∣2 + ε. We refer to

η∗j,ε as the normalized importance score of feature j. Note that ηj is a distribution over the features
and gives a natural ranking between the features. Hence, substituting Ω(S)(f) with ΩS,ε(f) in its
equivalent form we obtain the ε perturbed SIC:

3

SIC(L1)2,ε(pxy, pxpy) = − inf{Lε(f, η) : f ∈ F , ηj , ηj > 0,

dx∑
j=1

ηj = 1}

where Lε(f, η) = −∆(f, pxy, pxpy) + λ
2

∑dx
j=1

Epxpy
∣∣∣ ∂f(x,y)∂xj

∣∣∣2+ε

ηj
+ ρ

2Epxpyf
2(x, y), and

∆(f, pxy, pxpy) = Epxyf(x, y)− Epxpyf(x, y). Finally, SIC can be empirically estimated as

ŜIC(L1)2,ε(pxy, pxpy) = − inf{L̂ε(f, η) : f ∈ F , ηj , ηj > 0,

dx∑
j=1

ηj = 1}

where L̂ε(f, η) = −∆̂(f, pxy, pxpy) + λ
2

∑dx
j=1

1
N

∑N
i=1

∣∣∣ ∂f(xi,ỹi)∂xj

∣∣∣2+ε

ηj
+ ρ

2
1
N

∑N
i=1 f

2(xi, ỹi), and

main the objective ∆̂(f, pxy, pxpy) = 1
N

∑N
i=1 f(xi, yi)− 1

N

∑N
i=1 f(xi, ỹi).

Remark 2 (Group Sparsity). We can define similarly nonlinear group sparsity, if we would like
our critic to depends on subsets of coordinates. Let Gk, k = 1, . . . ,K be an overlapping or non

overlapping group : ΩgS(f) =
∑K
k=1

√∑
j∈Gk Epxpy

∣∣∣∂f(x,y)
∂xj

∣∣∣2. The η-trick applies naturally.

4 Convex Sobolev Independence Criterion in Fixed Feature Spaces

We will now specify the function space F in SIC and consider in this Section critics of the form:

F = {f |f(x, y) = 〈u,Φω(x, y)〉 , ‖u‖2 ≤ γ},
where Φω : X × Y → Rm is a fixed finite dimensional feature map. We define the mean
embeddings of the joint distribution pxy and product of marginals pxpy as follow: µ(pxy) =
Epxy [Φω(x, y)], µ(pxpy) = Epxpy [Φω(x, y)] ∈ Rm. Define the covariance embedding of pxpy as
C(pxpy) = Epxpy [Φω(x, y) ⊗ Φω(x, y)] ∈ Rm×m and finally define the Gramian of derivatives
embedding for coordinate j as Dj(pxpy) = Epxpy [∂Φω(x,y)

∂xj
⊗ ∂Φω(x,y)

∂xj
] ∈ Rm×m. We can write

the constraint ‖u‖2 ≤ γ as the penalty term −τ ‖u‖2. Define Lε(u, η) = 〈u, µ(pxpy)− µ(pxy)〉+
1
2

〈
u,
(
λ
∑dx
j=1

Dj(pxpy)+ε
ηj

+ ρC(pxpy) + τIm

)
u
〉

. Observe that :

SIC(L1)2,ε(pxy, pxpy) = − inf{Lε(u, η) : u ∈ Rm, ηj , ηj > 0,

dx∑
j=1

ηj = 1}.

We start by remarking that SIC is a form of gradient regularized maximum mean discrepancy [3].
Previous MMD work comparing joint and product of marginals did not use the concept of nonlinear
sparsity. For example the Hilbert-Schmidt Independence Criterion (HSIC) [2] uses Φω(x, y) =
φ(x)⊗ ψ(y) with a constraint ||u||2 ≤ 1. CCA and related kernel measures of dependence [20, 21]
use L2

2 constraints L2
2(px) and L2

2(py) on each function space separately.

Optimization Properties of Convex SIC We analyze in this Section the Optimization properties of
SIC. Theorem 1 shows that the SIC(L1)2,ε loss function is jointly strictly convex in (u, η) and hence
admits a unique solution that solves a fixed point problem.
Theorem 1 (Existence of a solution, Uniqueness, Convexity and Continuity). Note that L(u, η) =
Lε=0(u, η). The following properties hold for the SIC loss:

1) L(u, η) is differentiable and jointly convex in (u, η). L(u, η) is not continuous for η, such that
ηj = 0 for some j.

2) Smoothing, Perturbed SIC: For ε ∈ (0, 1), Lε(u, η) = L(u, η) + λ
2

∑dx
j=1

ε
ηj

is jointly strictly
convex and has compact level sets on the probability simplex, and admits a unique minimizer (u∗ε, η

∗
ε).

3) The unique minimizer of Lε(u, η) is a solution of the following fixed point prob-

lem: u∗ε =
(
λ
∑dx
j=1

Dj(pxpy)
η∗j

+ ρC(pxpy) + τIm

)−1

(µ(pxy) − µ(pxpy)), and η∗j,ε =
√
〈u∗ε ,Dj(pxpy)u∗ε〉+ε∑dx

k=1

√
〈u∗ε ,Dk(pxpy)u∗ε〉+ε

.

The following Theorem shows that a solution of the unperturbed SIC problem can be obtained from
the smoothed SIC(L1)2,ε in the limit ε→ 0:

4

Theorem 2 (From Perturbed SIC to SIC). Consider a sequence ε`, ε` → 0 as `→∞ , and consider
a sequence of minimizers (u∗ε` , η

∗
`) of Lε`(u, η), and let (u∗, η∗) be the limit of this sequence, then

(u∗, η∗) is a minimizer of L(u, η).

Interpretability of SIC. The following corollary shows that SIC can be written in terms of the
importance scores of the features, since at optimum the main objective is proportional to the constraint
term. It is to the best of our knowledge the first dependency criterion that decomposes in the sum of
contributions of each coordinate, and hence it is an interpretable dependency measure. Moreover, η∗j
are normalized importance scores of each feature j, and their ranking can be used to assess feature
importance.
Corollary 1 (Interpretability of Convex SIC). Let (u∗, η∗) be the limit defined in Theorem 2. Define
f∗(x, y) = 〈u∗,Φω(x, y)〉, and ‖f∗‖F = ‖u∗‖. We have that

SIC(L1)2(pxy, pxpy) =
1

2

(
Epxyf∗(x, y)− Epxpyf∗(x, y)

)
=

λ

2

 dx∑
j=1

√
Epxpy |

∂f∗(x, y)

∂xj
|2

2

+
ρ

2
Epxpyf∗,2(x, y) +

τ

2
||f∗||2F .

Moreover,
√
Epxpy |

∂f∗(x,y)
∂xj

|2 = η∗jΩS,L1
(f∗) and

∑dx
j=1 ηj = 1. The terms η∗j can be seen as

quantifying how much dependency as measured by SIC can be explained by a coordinate j. Ranking
of η∗j can be used to rank influence of coordinates.

Thanks to the joint convexity and the smoothness of the perturbed SIC, we can solve convex empirical
SIC using alternating minimization on u and η or block coordinate descent using first order methods
such as gradient descent on u and mirror descent [22] on η that are known to be globally convergent
in this case (see Appendix A for more details).

5 Non Convex Neural SIC with Deep ReLU Networks

While Convex SIC enjoys a lot of theoretical properties, a crucial short-coming is the need to choose
a feature map Φω that essentially goes back to the choice of a kernel in classical kernel methods. As
an alternative, we propose to learn the feature map as a deep neural network. The architecture of
the network can be problem dependent, but we focus here on a particular architecture: Deep ReLU
Networks with biases removed. As we show below, using our sparsity inducing gradient penalties
with such networks, results in input sparsity at the level of the witness function f of SIC. This is
desirable since it allows for an interpretable model, similar to the effect of Lasso with Linear models,
our sparsity inducing gradient penalties result in a nonlinear self-explainable witness function f [23],
with explicit sparse dependency on the inputs.

Deep ReLU Networks with no biases, homogeneity and Input Sparsity via Gradient Penalties.
We start by invoking the Euler Theorem for homogeneous functions:
Theorem 3 (Euler Theorem for Homogeneous Functions). A continuously differentiable function f
is defined as homogeneous of degree k if f(λx) = λkf(x),∀λ ∈ R. The Theorem states that f is
homogeneous of degree k if and only if kf(x) = 〈∇xf(x), x〉 =

∑dx
j=1

∂f(x)
∂xj

xj .

Now consider deep ReLU networks with biases removed for any number of layers L: FReLu =
{f |f(x, y) = 〈u,Φω(x)〉 , where Φω(x, y) = σ(WL . . . σ(W2σ(W1[x, y]))), u ∈ Rm,Φω :
Rdx+dy → Rm}, where σ(t) = max(t, 0),Wj are linear weights. Any f ∈ FReLU is clearly
homogeneous of degree 1. As an immediate consequence of Euler Theorem we then have:
f(x, y) = 〈∇xf(x, y), x〉 + 〈∇yf(x, y), y〉. The first term is similar to a linear term in a lin-
ear model, the second term can be seen as a bias. Using our sparsity-inducing gradient penalties
with such networks guarantees that on average on the support of a dominant measure the gradients
with respect to x are sparse. Intuitively, the gradients wrt x act like the weight in linear models, and
our sparsity inducing gradient penalty act like the `1 regularization of Lasso. The main advantage
compared to Lasso is that we have a highly nonlinear decision function, that has better capacity of
capturing dependencies between X and Y .

Non-convex SIC with Stochastic Block Coordinate Descent (BCD). We define the empirical non
convex SIC(L1)2 using this function space FReLu as follows:

5

ŜIC(L1)2(pxy, pxpy) = − inf{L̂(fθ, η) : fθ ∈ FReLU , ηj , ηj > 0,

dx∑
j=1

ηj = 1},

where θ = (vec(W1) . . . vec(WL), u) are the network parameters. Algorithm 3 in Appendix B
summarizes our stochastic BCD algorithm for training the Neural SIC. The algorithm consists of
SGD updates to θ and mirror descent updates to η.

Boosted SIC. When training Neural SIC, we can obtain different critics f` and importance scores η`,
by varying random seeds or hyper-parameters (architecture, batch size etc). Inspired by importance
scores in random forest, we define Boosted SIC as the arithmetic mean or the geometric mean of η`.

6 FDR Control and the Holdout Randomization Test/ Knockoffs.

Controlling the False Discovery Rate (FDR) in Feature Selection is an important problem for
reproducible discoveries. In a nutshell, for a feature selection problem given the ground-truth set of
features S , and a feature selection method such as SIC that gives a candidate set Ŝ, our goal is to
maximize the TPR (True Positive Rate) or the power, and to keep the False Discovery Rate (FDR)
under Control. TPR and FDR are defined as follows:

TPR := E

[
#{i : i ∈ Ŝ ∩ S}

#{i : i ∈ S}

]
FDR := E

[
#{i : i ∈ Ŝ\S}

#{i : i ∈ Ŝ}

]
. (1)

We explore in this paper two methods that provably control the FDR: 1) The Holdout Randomization
Test (HRT) introduced in [8], that we specialize for SIC in Algorithm 4; 2) Knockoffs introduced
in [9] that can be used with any basic feature selection method such as Neural SIC, and guarantees
provable FDR control.

HRT-SIC. We are interested in measuring the conditional dependency between a feature xj and the
response variable y conditionally on the other features noted x−j . Hence we have the following
null hypothesis: H0 : xj |= y |x−j ⇐⇒ pxy = pxj |x−jpy|x−jpx−j . In order to simulate the null
hypothesis, we propose to use generative models for sampling from xj |x−j (See Appendix D). The
principle in HRT [8] that we specify here for SIC in Algorithm 4 (given in Appendix B) is the
following: instead of refitting SIC under H0, we evaluate the mean of the witness function of SIC on
a holdout set sampled under H0 (using conditional generators for R rounds). The deviation of the
mean of the witness function under H0 from its mean on a holdout from the real distribution gives us
p-values. We use the Benjamini-Hochberg [24] procedure on those p-values to achieve a target FDR.
We apply HRT-SIC on a shortlist of pre-selected features per their ranking of ηj .

Knockoffs-SIC. Knockoffs [25] work by finding control variables called knockoffs x̃ that mimic the
behavior of the real features x and provably control the FDR [9]. We use here Gaussian knockoffs
[9] and train SIC on the concatenation of [x, x̃], i.e we train SIC([X; X̃], Y) and obtain η that has
now twice the dimension dx, i.e for each real feature j, there is the real importance score ηj and the
knockoff importance score ηj+dx . knockoffs-SIC consists in using the statistics Wj = ηj − ηj+dx
and the knockoff filter [9] to select features based on the sign of Wj (See Alg. 5 in Appendix).

7 Relation to Previous Work

Kernel/Neural Measure of Dependencies. As discussed earlier SIC can be seen as a sparse gradient
regularized MMD [3, 7] and relates to the Sobolev Discrepancy of [5, 6]. Feature selection with
MMD was introduced in [10] and is based on backward elimination of features by recomputing MMD
on the ablated vectors. SIC has the advantage of fitting one critic that has interpretable feature scores.
Related to the MMD is the Hilbert Schmidt Independence Criterion (HSIC) and other variants of
kernel dependency measures introduced in [2, 21]. None of those criteria has a nonparametric sparsity
constraint on its witness function that allows for explainability and feature selection. Other Neural
measures of dependencies such as MINE [26] estimate the KL divergence using neural networks, or
that of [27] that estimates a proxy to the Wasserstein distance using Neural Networks.

Interpretability, Sparsity, Saliency and Sensitivity Analysis. Lasso and elastic net [28] are inter-
pretable linear models that exploit sparsity, but are limited to linear relationships. Random forests

6

[29] have a heuristic for determining feature importance and are successful in practice as they can
capture nonlinear relationships similar to SIC. We believe SIC can potentially leverage the deep
learning toolkit for going beyond tabular data where random forests excel, to more structured data
such as time series or graph data. Finally, SIC relates to saliency based post-hoc interpretation of
deep models such as [30, 31, 32]. While those method use the gradient information for a post-hoc
analysis, SIC incorporates this information to guide the learning towards the important features. As
discussed in Section 2.1 many recent works introduce deep networks with input sparsity control
through a learned gate or a penalty on the weights of the network [11, 12, 13]. SIC exploits a stronger
notion of sparsity that leverages the relationship between the different covariates.

8 Experiments

Synthetic Data Validation. We first validate our methods and compare them to baseline models
in simulation studies on synthetic datasets where the ground truth is available by construction. For
this we generate the data according to a model y = f(x) + ε where the model f(·) and the noise ε
define the specific synthetic dataset (see Appendix F.1). In particular, the value of y only depends
on a subset of features xi, i = 1, . . . , p through f(·), and performance is quantified in terms of TPR
and FDR in discovering them among the irrelevant features. We experiment with two datasets: A)
Complex multivariate synthetic data (SinExp), which is generated from a complex multivariate
model proposed in [33] Sec 5.3, where 6 ground truth features xi out of 50 generate the output y
through a non-linearity involving the product and composition of the cos, sin and exp functions (see
Appendix F.1). We therefore dub this dataset SinExp. To increase the difficulty even further, we
introduce a pairwise correlation between all features of 0.5. In Fig. 1 we show results for datasets
of 125 and 500 samples repeated 100 times comparing performance of our models with the one of
two baselines: Elastic Net (EN) and Random Forest (RF). B) Liang Dataset. We show results on the
benchmark dataset proposed by [34], specifically the generalized Liang dataset matching most of the
setup from [8] Sec 5.1. We provide dataset details and results in Appendix F.1 (Results in Figure 2).

TPR
top 6

FDR
top 6

TPR
HRT

FDR
HRT

TPR
top 6

FDR
top 6

TPR
HRT

FDR
HRT

0.0

0.2

0.4

0.6

0.8

1.0

Po
we

r a
nd

 F
DR

Elastic Net Random Forest

TPR
top 6

FDR
top 6

TPR
HRT

FDR
HRT

TPR
top 6

FDR
top 6

TPR
HRT

FDR
HRT

0.0

0.2

0.4

0.6

0.8

1.0

MSE + Sobolev Penalty SIC

Dataset SINEXP, n=125 samples

TPR
top 6

FDR
top 6

TPR
HRT

FDR
HRT

TPR
top 6

FDR
top 6

TPR
HRT

FDR
HRT

0.0

0.2

0.4

0.6

0.8

1.0

Po
we

r a
nd

 F
DR

Elastic Net Random Forest

TPR
top 6

FDR
top 6

TPR
HRT

FDR
HRT

TPR
top 6

FDR
top 6

TPR
HRT

FDR
HRT

0.0

0.2

0.4

0.6

0.8

1.0

MSE + Sobolev Penalty SIC

Dataset SINEXP, n=500 samples

Figure 1: SinExp synthetic dataset. TPR and FDR of Elastic Net (EN) and Random Forest (RF)
baseline models (left panels) are compared to our methods: a 2-hidden layer neural network with no
biases trained to minimize an objective comprising an MSE cost and a Sobolev Penalty term (MSE +
Sobolev Penalty), and the same network trained to optimize SIC criterion (right panels), for datasets
of 125 samples (top panels) and 500 samples (bottom panels). For all models TPR and FDR are
computed by selecting the top 6 features in order of feature importance (which for EN is defined
as the absolute value of the weight of a feature, for RF is the out-of-bag error associated to it (see
[35]), and for our method is the value of its η). Selecting the first 6 features is useful to compare
models, but assumes oracle knowledge of the fact that there are 6 ground truth features. We therefore
also compute FDR and TPR after selecting features using the HRT method of [8] among the top 20
features. HRT estimates the importance of a feature quantifying its effect on the distribution of y on a
holdout set by replacing its values with samples from a conditional distribution (see Section 6). We
use HRT to control FDR rate at 10% (red horizontal dotted line). Standard box plots are generated
over 100 repetitions of each simulation.

7

Feature Selection on Drug Response dataset. We consider as a real-world application the Cancer
Cell Line Encyclopedia (CCLE) dataset [36], described in Appendix F.2. We study the result of
using the normalized importance scores ηj from SIC for (heuristic) feature selection, against features
selected by Elastic Net. Table 1 shows the heldout MSE of a predictor trained on selected features,
averaged over 100 runs (each run: new randomized 90%/10% data split, NN initialization). The
goal here is to quantify the predictiveness of features selected by SIC on its own, without the full
randomized testing machinery. The SIC critic and regressor NN were respectively the big_critic and
regressor_NN described with training details in Appendix F.3, while the random forest is trained
with default hyper parameters from scikit-learn [37]. We can see that, with just ηj , informative
features are selected for the downstream regression task, with performance comparable to those
selected by ElasticNet, which was trained explicitly for this task. The features selected with high ηj
values and their overlap with the features selected by ElasticNet are listed in Appendix F.2 Table 3.

NN RF

All 7251 features 1.160 ± 3.990 0.783 ± 0.167
Elastic-Net1 [36] top-7 0.864 ± 0.432 0.931 ± 0.215
Elastic-Net2 [8] top-10 0.663 ± 0.161 0.830 ± 0.190
SIC top-7 0.728 ± 0.166 0.856 ± 0.189
SIC top-10 0.706 ± 0.158 0.817 ± 0.173
SIC top-15 0.734 ± 0.168 0.859 ± 0.202

Table 1: CCLE results on downstream regression task. Heldout MSE for drug PLX4720 prediction
based on selected features. Columns: neural network (NN) and random forest (RF) regressors.

HIV-1 Drug Resistance with Knockoffs-SIC. The second real-world dataset that we analyze is
the HIV-1 Drug Resistance[38], which consists in detecting mutations associated with resistance
to a drug type. For our experiments we use all the three classes of drugs: Protease Inhibitors (PIs),
Nucleoside Reverse Transcriptase Inhibitors (NRTIs), and Non-nucleoside Reverse Transcriptase
Inhibitors (NNRTIs). We use the pre-processing of each dataset (<drug-class, drug-type>) of the
knockoff tutorial [39] made available by the authors. Concretely, we construct a dataset (X, X̃) of
the concatenation of the real data and Gaussian knockoffs [9], and fit SIC([X, X̃], Y). As explained
in Section 6, we use in the knockoff filter the statistics Wj = ηj − ηj+dx , i.e. the difference of SIC
importance scores between each feature and its corresponding knockoff. For SIC experiments, we use
small_critic architecture (See Appendix F.3 for training details). We use Boosted SIC, by varying
the batch sizes in N ∈ {10, 30, 50}, and computing the geometric mean of η produced by those three
setups as the feature importance needed for Knockoffs. Results are summarized in Table 2.

Drug Class Drug Type Knockoff with GLM Boosted SIC Knockoff

TD FD FDP TD FD FDP

PIs

APV 19 3 0.13 17 5 0.22
ATV 22 8 0.26 19 1 0.05
IDV 19 12 0.38 15 3 0.16
LPV 16 1 0.05 14 2 0.12
NFV 24 7 0.22 19 5 0.21
RTV 19 8 0.29 12 2 0.20
SQV 17 4 0.19 14 8 0.36

NRTIs

X3TC 0 0 0 7 0 0
ABC 10 1 0.09 11 1 0.08
AZT 16 4 0.2 12 5 0.29
D4T 6 1 0.14 8 0 0
DDI 0 0 0 8 0 0

NNRTIs
DLV 10 13 0.56 8 10 0.55
EFV 11 11 0.5 11 10 0.47
NVP 7 10 0.58 7 11 0.611

Table 2: Comparison of applying (knockoff filter + GLM) and (Knockoff filter+Boosted SIC). For
each <drug-class, drug-type> we compared the True Discoveries (TD), False Discoveries(FD) and
False Discovery Proportion (FDP). Knockoff with Boosted SIC keeps FDP under control without
compromising power, and succeeds in making true discoveries that GLM with knockoffs doesn’t find.

8

9 Conclusion

We introduced in this paper the Sobolev Independence Criterion (SIC), a dependency measure that
gives rise to feature importance which can be used for feature selection and interpretable decision
making. We laid down the theoretical foundations of SIC and showed how it can be used in
conjunction with the Holdout Randomization Test and Knockoffs to control the FDR, enabling
reliable discoveries. We demonstrated the merits of SIC for feature selection in extensive synthetic
and real-world experiments with controlled FDR.

References
[1] Bharath K. Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Bernhard Scholkopf, and Gert

R. G. Lanckriet. On integral probability metrics, φ-divergences and binary classification. 2009.

[2] A. Gretton, K. Fukumizu, CH. Teo, L. Song, B. Schölkopf, and AJ. Smola. A kernel statistical
test of independence. In Advances in neural information processing systems 20, 2008.

[3] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander
Smola. A kernel two-sample test. JMLR, 2012.

[4] Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur, and Bernhard Schölkopf. Kernel
mean embedding of distributions: A review and beyond. Arxiv, 2017.

[5] Youssef Mroueh, Chun-Liang Li, Tom Sercu, Anant Raj, and Yu Cheng. Sobolev gan. ICLR,
2018.

[6] Youssef Mroueh, Tom Sercu, and Anant Raj. Sobolev descent. In AISTATS, 2019.

[7] Michael Arbel, Dougal J. Sutherland, Mikolaj Binkowski, and Arthur Gretton. On gradient
regularizers for mmd gans. NeurIPS, 2018.

[8] W. Tansey, V. Veitch, H. Zhang, R. Rabadan, and D. M. Blei. The holdout randomization test:
Principled and easy black box feature selection. arXiv preprint arXiv:1811.00645, 2018.

[9] Emmanuel Candes, Yingying Fan, Lucas Janson, and Jinchi Lv. Panning for gold: model-x
knockoffs for high dimensional controlled variable selection. 2018.

[10] Le Song, Alex Smola, Arthur Gretton, Justin Bedo, and Karsten Borgwardt. Feature selection
via dependence maximization. J. Mach. Learn. Res., 2012.

[11] Jean Feng and Noah Simon. Sparse-input neural networks for high-dimensional nonparametric
regression and classification. 2017.

[12] Mao Ye and Yan Sun. Variable selection via penalized neural network: a drop-out-one loss
approach. In Proceedings of the 35th International Conference on Machine Learning, 2018.

[13] Yutaro Yamada, Ofir Lindenbaum, Sahand Negahban, and Yuval Kluger. Deep supervised
feature selection using stochastic gates. Arxiv, 2018.

[14] Lorenzo Rosasco, Silvia Villa, Sofia Mosci, Matteo Santoro, and Alessandro Verri. Nonpara-
metric sparsity and regularization. J. Mach. Learn. Res., 2013.

[15] Grace Wahba. Smoothing noisy data with spline functions. Numerische mathematik, 24(4),
1975.

[16] Harris Drucker and Yann LeCun. Improving generalization performance using double back-
propagation. IEEE Transactions on Neural Networks, 1992.

[17] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville.
Improved training of wasserstein gans. arXiv:1704.00028, 2017.

[18] Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Convex multi-task feature
learning. Mach. Learn., 2008.

9

[19] Francis Bach, Rodolphe Jenatton, and Julien Mairal. Optimization with Sparsity-Inducing
Penalties (Foundations and Trends(R) in Machine Learning). Now Publishers Inc., Hanover,
MA, USA, 2011.

[20] H.D. Vinod. Canonical ridge and econometrics of joint production. Journal of Econometrics,
1976.

[21] Kenji Fukumizu, Arthur Gretton, Xiaohai Sun, and Bernhard Schölkopf. Kernel measures of
conditional dependence. In Advances in Neural Information Processing Systems 20. 2008.

[22] Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for
convex optimization. Oper. Res. Lett., 2003.

[23] David Alvarez Melis and Tommi Jaakkola. Towards robust interpretability with self-explaining
neural networks. In Advances in Neural Information Processing Systems 31. 2018.

[24] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: A Practical and powerful
approach to multiple testing. J. Roy. Statist. Soc., 57:289–300, 1995.

[25] Rina Foygel Barber, Emmanuel J Candès, et al. Controlling the false discovery rate via
knockoffs. The Annals of Statistics, 43(5):2055–2085, 2015.

[26] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeswar, Sherjil Ozair, Yoshua Bengio,
Aaron Courville, and R Devon Hjelm. Mine: Mutual information neural estimation, 2018.

[27] Sherjil Ozair, Corey Lynch, Yoshua Bengio, Aaron van den Oord, Sergey Levine, and Pierre
Sermanet. Wasserstein dependency measure for representation learning, 2019.

[28] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning.
Springer New York Inc., 2001.

[29] Leo Breiman. Random forests. Mach. Learn., 2001.

[30] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. In Proceedings of the 34th International Conference on
Machine Learning, 2017.

[31] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. International Conference on
Learning Representations (Workshop Track)., 2014.

[32] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert
Müller, and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by
layer-wise relevance propagation. PLoS ONE, 2015.

[33] Jean Feng and Noah Simon. Sparse-input neural networks for high-dimensional nonparametric
regression and classification. arXiv preprint arXiv:1711.07592, 2017.

[34] Faming Liang, Qizhai Li, and Lei Zhou. Bayesian neural networks for selection of drug sensitive
genes. Journal of the American Statistical Association, 113(523), 2018.

[35] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[36] Jordi Barretina, Giordano Caponigro, Nicolas Stransky, Kavitha Venkatesan, Adam A Margolin,
Sungjoon Kim, Christopher J Wilson, Joseph Lehár, Gregory V Kryukov, Dmitriy Sonkin, et al.
The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity.
Nature, 483(7391):603, 2012.

[37] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-
learn: Machine learning in python. Journal of machine learning research, 12(Oct):2825–2830,
2011.

10

[38] Soo-Yon Rhee, Jonathan Taylor, Gauhar Wadhera, Asa Ben-Hur, Douglas L Brutlag, and
Robert W Shafer. Genotypic predictors of human immunodeficiency virus type 1 drug resistance.
Proceedings of the National Academy of Sciences, 103(46):17355–17360, 2006.

[39] Matteo Sesia and Evan Patterson. R tutorial for knockoffs - 4. https://web.stanford.edu/
group/candes/knockoffs/software/knockoffs/tutorial-4-r.html, 2017.

[40] P. Tseng. Convergence of a block coordinate descent method for nondifferentiable minimization.
J. Optim. Theory Appl., 109, 2001.

[41] Meisam Razaviyayn, Mingyi Hong, and Zhi-Quan Luo. A unified convergence analysis of block
successive minimization methods for nonsmooth optimization. SIAM Journal on Optimization,
2013.

[42] Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al.
Conditional image generation with pixelcnn decoders. In Advances in neural information
processing systems, pages 4790–4798, 2016.

[43] Ethan Perez, Harm de Vries, Florian Strub, Vincent Dumoulin, and Aaron Courville. Learning
visual reasoning without strong priors. arXiv preprint arXiv:1707.03017, 2017.

[44] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

[45] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

[46] Yaniv Romano, Matteo Sesia, and Emmanuel Candès. Deep knockoffs. Journal of the American
Statistical Association, pages 1–27, 2019.

11

https://web.stanford.edu/group/candes/knockoffs/software/knockoffs/tutorial-4-r.html
https://web.stanford.edu/group/candes/knockoffs/software/knockoffs/tutorial-4-r.html

A Algorithms for Convex SIC

Algorithms and Empirical Convex SIC from Samples. Given samples from the joint and the
marginals, it is easy to see that the empirical loss L̂ε can be written in the same way with empir-
ical feature mean embeddings µ̂(pxy) = 1

N

∑N
i=1 Φω(xi, yi) and µ̂(pxpy) = 1

N

∑N
i=1 Φω(xi, ỹi),

covariances Ĉ(pxpy) = 1
N

∑N
i=1 Φω(xi, ỹi)⊗ Φω(xi, ỹi) and derivatives grammians D̂j(pxpy) =

1
N

∑N
i=1

∂Φω(xi,ỹi)
∂xj

⊗ ∂Φω(x,y)
∂xj

. Given the strict convexity of L̂ε jointly in u and η, alternating
optimization as given in Algorithm 1 in Appendix is known to be convergent to a global optima
(Theorem 4.1 in [40]). Similarly Block Coordinate Descent (BCD) using first order methods as given
in Algorithms 3 and 2 (in Appendix): gradient descent on u and mirror descent on η (in order to
satisfy the simplex constraint [22]) are also known to be globally convergent (Theo 2 in [41].)

Algorithm 1 Alternating Optimization

Inputs: ε,λ, τ , ρ , Φω
Initialize η̂j = 1

dx
,∀j, δ̂ = µ̂(pxy)− µ̂(pxpy)

for i = 1 . . .Maxiter do
û←(
λ
∑dx
j=1

D̂j(pxpy)
η̂j

+ ρĈ(pxpy) + τIm

)−1

δ̂

η̂j ←
√
〈û,D̂j(pxpy)û〉+ε∑dx

k=1

√
〈û,D̂k(pxpy)û〉+ε

end for
Output: û, η̂

Algorithm 2 Block Coordinate Descent

Inputs: ε,λ, τ , ρ, α, αη (learning rates),Φω
Initialize η̂j = 1

dx
,∀j , Softmax(z) =

ez/
∑dx
j=1 e

zj

for i = 1 . . .Maxiter do
Gradient step u:
û← û− α∂L̂ε(û,η̂)

∂u
Mirror Descent η :
logit← log(η̂)− αη ∂L̂ε(û,η̂)

∂η

η̂ ← Softmax(logit) {stable implementation
of softmax}

end for
Output: û, η̂

B Algorithms for Neural SIC, HRT-SIC and Model-X Knockoff SIC

Algorithm 3 (non convex) Neural SIC(X,Y)
(Stochastic BCD)

Inputs: X,Y dataset X ∈ RN×dx , Y ∈
RN×dy , such that (xi = Xi,., yi = Yi,.) ∼ pxy
Hyperparameters: ε,λ, τ , ρ, αθ, αη (learning
rates)
Initialize ηj = 1

dx
,∀j , Softmax(z) =

ez/
∑dx
j=1 e

zj

for iter = 1 . . .Maxiter do
Fetch a minibatch of size N (xi, yi) ∼ pxy
Fetch a minibatch of size N (xi, ỹi) ∼ pxpy
{ỹi obtained by permuting rows of Y }
Stochastic Gradient step on θ:
θ ← θ − αθ ∂L̂(fθ,η)

∂θ {We use ADAM}
Mirror Descent η :
logit← log(η)− αη ∂L̂(fθ,η)

∂η

η ← Softmax(logit) {stable implementation
of softmax}

end for
Output: fθ, η

Algorithm 4 HRT With SIC (X,Y)

Inputs: Dtrain = (Xtr, Ytr) , a Heldout set
DHoldout = (X,Y), features Cutoff K
SIC: (fθ∗ , η∗) = SIC(Dtrain) {Alg. 3}
Score of witness on Hold out : S∗ =
MEAN(fθ∗(X,Y))
Conditional Generators Pre-trained condi-
tional Generator : G(x−j , j) predicts Xj |X−j
Shortlist : I = INDEXTOPK(η)
{p-values for j ∈ I; randomizations tests}
for j ∈ I do

for r = 1 . . . R do
Construct X̃ , X̃.,k = X.,k∀k 6= j and
X̃.,j = G(X−j , j) {Simulate Null Hyp.}
Sj,r = MEAN(fθ∗(X̃, Y)) {Score of wit-
ness function on the Null}

end for
pj = 1

R+1

(
1 +

∑R
r=1 1Srj≥S∗

)
end for
discoveries =BH(p,targetFDR) {Benjamini-
Hochberg Procedure}
Output: discoveries

12

Algorithm 5 Model-X Knockoffs FDR control with SIC

Inputs: Dtrain = (Xtr, Ytr) , Model-X knockoff features X̃ ∼
ModelX(Xtr), target FDR q

Train SIC: (fθ∗ , η) = SIC([Xtr, X̃], Y), {Alg. 3} where
[Xtr, X̃] is the concatenation of Xtr and knockoffs X̃
for j = 1, . . . , dX do

Compute importance score of j feature: Wj = ηj − ηj+dx ,
where ηj+dX is the η of feature knockoff X̃j

end for
Compute threshold τ > 0 by setting
τ = min

{
t > 0 :

#{j:Wj≤−t}
#{j:Wj≥t} ≤ q

}
Output: discoveries {j : Wj > τ}

C Proofs

Proof of Theorem 1. 1) Let δ = µ(pxy)− µ(pxpy).

We have

L(u, η) = −〈u, δ〉+
1

2
〈u, (ρC(pxpy) + τIm)u〉+

λ

2

∑
j

〈u,Dj(pxpy)u〉
ηj

, u ∈ Rm and η ∈ ∆dx

where ∆dx is the probability simplex. L is the sum of a linear tem and quadratic terms (convex in u)
and a function of the form

f(u, η) =
1

2

dx∑
j=1

u>Aju

ηj

where Aj are PSD matrices, and η is in the probability simplex (convex). Hence it is enough to show
that f is jointly convex. Let g(w, η) = w>Aw

η , η > 0. The Hessian of g(w, η), Hg has the following
form:

Hg(w, η) =

[
∂2L

∂w⊗∂w
∂2L
∂w∂η

∂2L
∂η∂w

∂2L
∂η2

]
=

[
A
η −Awη2

−w
>A
η2

w>Aw
η3

]
Let us prove that for all (w, η), ηj >,∀j0:

(w′, η′)>Hg(w, η)(w′, η′) ≥ 0,∀(w′, η′), η′j > 0,∀j

We have :

(w′, η′)>Hg(w, η)(w′, η′) =
〈w′, Aw′〉

η
− 2η′

〈w′, Aw〉
η2

+ η′2
w>Aw

η3

=
1

η

(
〈w′, Aw′〉 − 2η′

η
〈w′, Aw〉+

η′2

η2
w>Aw

)
=

1

η

∥∥∥∥A 1
2w′ − η′

η
A

1
2w

∥∥∥∥2

2

≥ 0 for η > 0

Now back to f it is easy to see that :

(w′, η′)>Hf(w, η)(w′, η′) =

dx∑
j=1

1

ηj

∥∥∥∥A 1
2
j w
′ −

η′j
ηj
A

1
2
j w

∥∥∥∥2

2

≥ 0 for η ∈ ∆dx
j , ηj > 0.

Hence the loss L is jointly convex in (u, η). Due to discontinuity at ηj = 0 the loss is not continuous
.

13

2) It is easy to see that the hessian becomes definite:

(w′, η′)>HLε(w, η)(w′, η′) =

dx∑
j=1

1

ηj

(∥∥∥∥A 1
2
j w
′ −

η′j
ηj
A

1
2
j w

∥∥∥∥2

2

+ ε(
η′j
ηj

)2

)
> 0 for η ∈ ∆dx

j , ηj , η
′
j > 0,

andLε(u, η) is jointly strictly convex, u is unconstrained and η belongs to a convex set (the probability
simplex) and hence admits a unique minimizer.

3) The unique minimizer satisfies first order optimality conditions for the following Lagragian:

L (u, η, ξ) = Lε(u, η) + ξ(
∑
j

ηj − 1)

∂L (u, η, ξ)

∂u
= −δ +

λ dx∑
j=1

Dj(pxpy)

ηj
+ ρC(pxpy) + τIm

u = 0

and
∂L (u, η, ξ)

∂ηj
= −λ

2

〈u,Dj(pxpy)u〉+ ε

η2
j

+ ξ = 0

and
∂L (u, η, ξ)

∂ξ
=
∑
j

ηj − 1 = 0

Hence:

u∗ε =

λ dx∑
j=1

Dj(pxpy)

η∗j
+ ρC(pxpy) + τIm

−1

(µ(pxy)− µ(pxpy))

and :

η∗j,ε =

√
〈u∗ε, Dj(pxpy)u∗ε〉+ ε∑dx

k=1

√
〈u∗ε, Dk(pxpy)u∗ε〉+ ε

.

Proof of Theorem 2. The proof follows similar proof in Argryou 2008.

Sε(u) = L(uε, η(uε)) = −〈u, δ〉+1

2
〈u, (ρC(pxpy) + τIm)u〉+λ

2

∑
j

√
〈u,Dj(pxpy)u〉+ ε

2

Let {(u`n , η`n(u`n)), n ∈ N} be a limiting subsequence of minimizers of Lε`n (., .) and let (u∗, η∗)
be its limit as n→∞. From the definition of Sε(u), we see that minu Sε(u) decreases as ε decreases
to zero, and admits a limit S̄ = minu S0(u). Hence Sε`n → S̄. Note that Sε(u) is continuous in
both ε and u and we have finally S0(u∗) = S̄, and u∗ is a minimizer of S0.

Proof of Corollary 1 . The optimum (u∗ε, η
∗
ε) satisfies:

−δ +

λ dx∑
j=1

Dj(pxpy)

ηj
+ ρC(pxpy) + τIm

u∗ε = 0

14

Let f∗(x) = 〈u,Φω(x, y)〉 and define ||f∗ε ||F = ‖u∗ε‖2. It follows that η∗j =√
Epxpy

∣∣∣ ∂f∗ε (x,y)

∂xj

∣∣∣2+ε

∑
k

√
Epxpy

∣∣∣ ∂f∗ε (x,y)

∂xk

∣∣∣2+ε

Note that we have Epxyf∗ε (x, y)− Epxpyf∗ε (x, y)

= 〈δ, u∗ε〉

=

〈
u∗ε,

λ dx∑
j=1

Dj(pxpy)

η∗j,ε
+ ρC(pxpy) + τIm

u∗ε

〉

= λ

 dx∑
j=1

√
Epxpy |

∂f∗ε (x, y)

∂xj
|2 + ε

2

+ ρEpxpyf∗,2ε (x, y) + τ ||f∗ε ||2F

SIC(L1)2,ε = Epxyf∗ε (x, y)− Epxpyf∗ε (x, y)− 1

2
(λ

 dx∑
j=1

√
Epxpy |

∂f∗ε (x, y)

∂xj
|2 + ε

2

+ ρEpxpyf∗,2ε (x, y) + τ ||f∗ε ||2F)

=
λ

2

 dx∑
j=1

√
Epxpy |

∂f∗ε (x, y)

∂xj
|2 + ε

2

+
ρ

2
Epxpyf∗,2ε (x, y) +

τ

2
||f∗ε ||2F

=
1

2

(
Epxyf∗ε (x, y)− Epxpyf∗ε (x, y)

)
We conclude by taking ε→ 0.

D FDR Control with HRT and Conditional Generative Models

The Holdout Randomization Test (HRT) is a principled method to produce valid p-values for each
feature, that enables the control over the false discovery of a predictive model [8]. The p-value
associated to each feature xj essentially quantifies the result of a conditional independence test with
the null hypothesis stating that xj is independent of the output y, conditioned on all the remaining
features x−j = (x1, . . . , xj−1, xj+1, . . . , xp). This in practice requires the availability of an estimate
of the complete conditional of each feature xj , i.e. of P (xj |x−j). HRT then samples the values of
xj from this conditional distribution to obtain the p-value associated to it. Taking inspiration from
neural network models for conditional generation (see e.g. [42]) we train a neural network to act
as a generator of a features xj given the remaining features x−j as inputs, as a replacement for the
conditional distributions P (xj |x−j). In all of our tasks, one three-layer neural network with 200
ReLU units and Conditional Batch Normalization (BCN) [43] applied to all hidden layers serves as
generator for all features j = 1, . . . , p. A sample from P (xj |x−j) is generated by giving as input to
the network an index j indicating the feature to generate, and a sample x−j ∼ P (x−j), represented
as a sample from the full joint distribution x ∼ P (x1, . . . , xp), with feature j being masked out.
In practice, the index j and x ∼ P (x1, . . . , xp) are given as inputs to the generator, and the neural
network model does the masking, and sends the index j to the CBN modules which normalize their
inputs using j-dependent centering and normalization parameters. The output of the generator is a
nbins-dimensional softmax over bins tessellating the range of the distribution of xj , such that the
bins are uniform quantiles of the inverse CDF of the distribution of xj estimated over the training set.
In all simulations we used a number of bins nbins = 100.

Generators are trained randomly sampling an index j = 1, . . . , p for each sample x in the
training set, and minimizing the cross-entropy loss between the output of the generator neural
network Gen(j,x) and xj using mini-batch SGD. In particular, we used the Adam optimizer [44]
with the default pytorch [45] parameters and learning rate λ = 0.003 which is halved every 20 epochs,
and batch size of 128.

15

E Discussion of SIC: Consistency, Computational Complexity and FDR
Control

SIC consistency. In order to recover the correct conditional independence we elected to use FDR
control techniques to perform those dependent hypotheses testing (btw coordinates). By combining
SIC with HRT and knockoffs we can guarantee that the correct dependency is recovered while the
FDR is under control. For the consistency of SIC in the classical sense, one needs to analyze the
solution of SIC, when the critic is not constrained to belonging to an RKHS. This can be done by
studying the solution of the equivalent PDE corresponding to this problem (which is challenging,
but we think can also be managed through the η- trick). Then one would proceed by finding 1)
conditions under which this solution exists in the RKHS, 2) generalization bounds from samples to
the population solution in the RKHS. We leave this analysis for future work.

Computational Complexity of Neural SIC. The cost of training SIC with SGD and mirror descent
has the same scaling in the size of the problem as training the base regressor neural network via
back-propagation. The only additional overhead is the gradient penalty, where the cost is that of
double back-propagation. In our experiments, this added computational cost is not an issue when
training is performed on GPU.

SIC-HRT versus SIC-Knockoffs. For a comparison between HRT and knockoffs, we refer the
reader to [8], which shows similar performance for either method in terms of controlling FDR. Each
method has its advantages. In HRT most of the computation is in 1) training the generative models,
and 2) performing the randomization test, i.e. forwarding the data through the critic and computing
p-values for each coordinate for R runs. On the other hand, if knockoff features can be modelled
as a multivariate Gaussian, controlling FDR with knockoffs can be done very cheaply, since it does
not require randomization tests. If instead knockoff features have to be generated through nonlinear
models, knockoffs can be computationally expensive as well (see for example [46]).

F Experimental details

F.1 Synthetic Datasets

F.1.1 Complex Multivariate Synthetic Dataset (SinExp)

The SinExp dataset is generated from a complex multivariate model proposed in [33] Sec 5.3, where
6 features xi out of 50 generate the output y through a non-linearity involving the product and
composition of the cos, sin and exp functions, as follows:

y = sin(x1(x1 + x2)) cos(x3 + x4x5) sin(ex5 + ex6 − x2).

We increase the difficulty even further by introducing a pairwise correlation between all features
of 0.5. We perform experiments using datasets of 125 and 500 samples. For each sample size, 100
independent datasets are generated.

F.1.2 Liang Dataset

Liang Dataset is a variant of the synthetic dataset proposed by [34]. The dataset prescribes a
regression model with 500-dimensional correlated input features x, where the 1-D regression target y
depends on the first 40 features only (the last 460 correlated features are ignored). In the original
dataset proposed by [34], y depends on 4 features only, this more complex version of the dataset that
uses 40 features was proposed by [8]. The target y is computed as follows:

y =

9∑
j=0

[w4jx4j + w4j+1x4j+1 + tanh(w4j+2x4j+2 + w4j+3x4j+3)] + σε , (2)

with σ = 0.5 and ε ∼ N (0, 1). As in [8], the 500 features are generated to have 0.5 correlation
coefficient with each other,

xj = (ρ+ zj)/2 , j = 1, . . . , 500 , (3)

16

where ρ and zj are independently generated from N (0, 1).

Our experimental results are the average over 100 generated datasets, each consisting of 500
train and 500 heldout samples.

TPR
top 40

FDR
top 40

TPR
HRT

FDR
HRT

0.0

0.2

0.4

0.6

0.8

1.0

Po
we

r a
nd

 F
DR

Elastic Net

TPR
top 40

FDR
top 40

TPR
HRT

FDR
HRT

TPR
top 40

FDR
top 40

TPR
HRT

FDR
HRT

0.0

0.2

0.4

0.6

0.8

1.0

MSE + Sobolev Penalty SIC

Dataset LIANG

Figure 2: Liang synthetic dataset. TPR and FDR of Elastic Net baseline models (left panels) are
compared against our methods, analogously to Fig. 1. Differently from Fig. 1, however, TPR and
FDR are computed by selecting the top 40 features in order of importance (since this dataset was
generated with 40 ground truth features). Moreover, HRT is used to select features among the top
100 most important features.

F.2 CCLE Dataset

The Cancer Cell Line Encyclopedia (CCLE) dataset [36] provides data about of anti-cancer drug
response in cancer cell lines. The dataset contains the phenotypic response measured as the area
under the dose-response curve (AUC) for a variety of drugs that were tested against hundreds of cell
lines. [36] analyzed each cell to obtain gene mutation and expression features. The total number of
data points (cells) is 479. We followed the preprocessing steps by [8] and first screened the genomic
features to filter out features with less than 0.1 magnitude Pearson correlation to the AUC. This
resulted in a final set of about 7K features. The main goal in this task is to discover the genomic
features associated with drug response. Following [8], we perform experiments for the drug PLX4720.
Table 3 presents the top-10 genomic features selected by SIC according to ηj values. In Sec. 8,
we also present quantitative results that show the effectiveness of these features when used to train
regression models.

Genomic Feature ηj

0 BRAF.V600E_MUT * 0.011837
1 ACKR3 0.011712
2 RP11-349I1.2 0.010534
3 BRAF_MUT † 0.010449
4 UBE2V1P5 0.010420
5 EPB41L3 0.010163
6 C11orf85 † 0.009622
7 RP11-395F4.1 0.009449
8 SERPINA9 0.009387
9 RN7SKP281 0.009369

Table 3: Top-10 Genomic Features selected by SIC according to ηj values. These are the most
important features for high mutual information with PLX4720 response variable, on the CCLE
dataset. * indicates feature also discovered by Elastic Net and HRT [8]. † indicates feature also
discovered by Elastic Net in original CCLE paper [36].

F.3 SIC Neural Network descriptions and training details

The first critic network used in the experiments (with SinExp and HIV-1 datasets) is a standard
three-layer ReLU dropout network with no biases, i.e. small_critic. When using this network, the

17

inputs X and Y are first concatenated then given as input to the network. The two first layers
have size 100, while the last layer has size 1. We train the network using Adam optimizer with
β1 = 0.5, β2 = 0.999, weight_decay=1e-4 learning rate αη = 1e-3 and αη = 0.1, and perform 4000
training iterations/updates, computed with batches of size 100. All NNs used in our experiments
were implemented using PyTorch [45].

small_critic(
(branchxy): Sequential(

(0): Linear(in_features=51, out_features=100, bias=False)
(1): ReLU()
(2): Dropout(p=0.3)
(3): Linear(in_features=100, out_features=100, bias=False)
(4): ReLU()
(5): Dropout(p=0.3)
(6): Linear(in_features=100, out_features=1, bias=False)

)
)

The critic network used in the experiments with Liang and CCLE datasets contains two different
branches that separately process the inputs X (branchx) and Y (branchy), then the output of these
two branches are concatenated and processed by a final branch that contains three-layer LeakyReLU
network (branchxy). We name this network big_critic (see figure bellow for details about layer sizes).
This network is trained with the same Adam settings as above for 4000 updates (Liang) and 8000
updates (CCLE).

big_critic(
(branchx): Sequential(

(0): Linear(in_features=500, out_features=100, bias=True)
(1): LeakyReLU(negative_slope=0.01)
(2): Linear(in_features=100, out_features=100, bias=True)
(3): LeakyReLU(negative_slope=0.01)

)
(branchy): Sequential(

(0): Linear(in_features=1, out_features=100, bias=True)
(1): LeakyReLU(negative_slope=0.01)
(2): Linear(in_features=100, out_features=100, bias=True)
(3): LeakyReLU(negative_slope=0.01)

)
(branchxy): Sequential(

(0): Linear(in_features=200, out_features=100, bias=True)
(1): LeakyReLU(negative_slope=0.01)
(2): Linear(in_features=100, out_features=100, bias=True)
(3): LeakyReLU(negative_slope=0.01)
(4): Linear(in_features=100, out_features=1, bias=True)

)
)

The regressor NN used for the downstream regression task in Section 8 is a standard three-layer
ReLU dropout network. This regressor NN was trained with the same Adam settings as above for
1000 updates with a batchSize of 16. We did not perform any hyperparameter tuning or model
selection on heldout MSE performance.

regressor_NN(
(net): Sequential(

(0): Linear(in_features=7251, out_features=100, bias=True)
(1): ReLU()
(2): Dropout(p=0.3)
(3): Linear(in_features=100, out_features=100, bias=True)
(4): ReLU()
(5): Dropout(p=0.3)

18

(6): Linear(in_features=100, out_features=1, bias=True)
)

)

19

	Introduction
	Sobolev Independence Criterion: Interpretable Dependency Measure
	Equivalent Forms of SIC with -trick
	Convex Sobolev Independence Criterion in Fixed Feature Spaces
	Non Convex Neural SIC with Deep ReLU Networks
	FDR Control and the Holdout Randomization Test/ Knockoffs.
	Relation to Previous Work
	Experiments
	Conclusion
	Algorithms for Convex SIC
	Algorithms for Neural SIC, HRT-SIC and Model-X Knockoff SIC
	Proofs
	FDR Control with HRT and Conditional Generative Models
	Discussion of SIC: Consistency, Computational Complexity and FDR Control
	Experimental details
	Synthetic Datasets
	Complex Multivariate Synthetic Dataset (SinExp)
	Liang Dataset

	CCLE Dataset
	SIC Neural Network descriptions and training details

