
Logarithmic Regret for Online Control

Naman Agarwal1 Elad Hazan1 2 Karan Singh1 2

1 Google AI Princeton
2 Computer Science, Princeton University

namanagarwal@google.com, {ehazan,karans}@princeton.edu

Abstract

We study optimal regret bounds for control in linear dynamical systems under
adversarially changing strongly convex cost functions, given the knowledge of tran-
sition dynamics. This includes several well studied and fundamental frameworks
such as the Kalman filter and the linear quadratic regulator. State of the art methods
achieve regret which scales as O(

√
T), where T is the time horizon.

We show that the optimal regret in this setting can be significantly smaller, scaling
asO(poly(log T)). This regret bound is achieved by two different efficient iterative
methods, online gradient descent and online natural gradient.

1 Introduction

Algorithms for regret minimization typically attain one of two performance guarantees. For general
convex losses, regret scales as square root of the number of iterations, and this is tight. However, if
the loss function exhibit more curvature, such as quadratic loss functions, there exist algorithms that
attain poly-logarithmic regret. This distinction is also known as “fast rates” in statistical estimation.

Despite their ubiquitous use in online learning and statistical estimation, logarithmic regret algorithms
are almost non-existent in control of dynamical systems. This can be attributed to fundamental
challenges in computing the optimal controller in the presence of noise.

Time-varying cost functions in dynamical systems can be used to model unpredictable dynamic
resource constraints, and the tracking of a desired sequence of exogenous states. At a pinch, if we
have changing (even, strongly) convex loss functions, the optimal controller for a linear dynamical
system is not immediately computable via a convex program. For the special case of quadratic loss,
some previous works [9] remedy the situation by taking a semi-definite relaxation, and thereby obtain
a controller which has provable guarantees on regret and computational requirements. However, this
semi-definite relaxation reduces the problem to regret minimization over linear costs, and removes
the curvature which is necessary to obtain logarithmic regret.

In this paper we give the first efficient poly-logarithmic regret algorithms for controlling a linear
dynamical system with noise in the dynamics (i.e. the standard model). Our results apply to general
convex loss functions that are strongly convex, and not only to quadratics.

Reference Noise Regret loss functions
[1] none O(log2 T) quadratic (fixed hessian)
[4] adversarial O(

√
T) convex

[9] stochastic O(
√
T) quadratic

here stochastic O(log7 T) strongly convex

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

1.1 Our Results

The setting we consider is a linear dynamical system, a continuous state Markov decision process
with linear transitions, described by the following equation:

xt+1 = Axt +But + wt. (1.1)

Here xt is the state of the system, ut is the action (or control) taken by the controller, and wt is the
noise. In each round t, the learner outputs an action ut upon observing the state xt and incurs a cost
of ct(xt, ut), where ct is convex. The objective here is to choose a sequence of adaptive controls ut
so that a minimum total cost may be incurred.

The approach taken by [9] and other previous works is to use a semi-definite relaxation for the
controller. However, this removes the properties associated with the curvature of the loss functions,
by reducing the problem to an instance of online linear optimization. It is known that without
curvature, O(

√
T) regret bounds are tight (see [13]).

Therefore we take a different approach, initiated by [4]. We consider controllers that depend on the
previous noise terms, and take the form ut =

∑H
i=1Miwt−i. While this resulting convex relaxation

does not remove the curvature of the loss functions altogether, it results in an overparametrized
representation of the controller, and it is not a priori clear that the loss functions are strongly convex
with respect to the parameterization. We demonstrate the appropriate conditions on the linear
dynamical system under which the strong convexity is retained.

Henceforth we present two methods that attain poly-logarithmic regret. They differ in terms of the
regret bounds they afford and the computational cost of their execution. The online gradient descent
update (OGD) requires only gradient computation and update, whereas the online natural gradient
(ONG) update, in addition, requires the computation of the preconditioner, which is the expected
Gram matrix of the Jacobian, denoted J , and its inverse. However, the natural gradient update admits
an instance-dependent upper bound on the regret, which while being at least as good as the regret
bound on OGD, offers better guarantees on benign instances (See Corollary 4.5, for example).

Algorithm Update rule (simplified) Applicability
OGD Mt+1 ←Mt − ηt∇ft(Mt) ∃K, diag L s.t. A−BK = QLQ−1

ONG Mt+1 ←Mt − ηt(E[J>J])−1∇ft(Mt) ‖L‖ ≤ 1− δ, ‖Q‖, ‖Q‖−1 ≤ κ

1.2 Related Work

For a survey of linear dynamical systems (LDS), as well as learning, prediction and control problems,
see [17]. Recently, there has been a renewed interest in learning dynamical systems in the machine
learning literature. For fully-observable systems, sample complexity and regret bounds for control
(under Gaussian noise) were obtained in [3, 10, 2]. The technique of spectral filtering for learning and
open-loop control of partially observable systems was introduced and studied in [15, 7, 14]. Provable
control in the Gaussian noise setting via the policy gradient method was also studied in [11].

The closest work to ours is that of [1] and [9], aimed at controlling LDS with adversarial loss
functions. The authors in [3] obtain a O(log2 T) regret algorithm for changing quadratic costs (with
a fixed hessian), but for dynamical systems that are noise-free. In contrast, our results apply to the
full (noisy) LDS setting, which presents the main challenges as discussed before. Cohen et al. [9]
consider changing quadratic costs with stochastic noise to achieve a O(

√
T) regret bound.

We make extensive use of techniques from online learning [8, 16, 13]. Of particular interest to our
study is the setting of online learning with memory [5]. We also build upon the recent control work
of [4], who use online learning techniques and convex relaxation to obtain provable bounds for LDS
with adversarial perturbations.

2 Problem Setting

We consider a linear dynamical system as defined in (1.1) with costs ct(xt, ut), where ct is strongly
convex. In this paper we assume that the noise wt is a random variable generated independently at

2

every time step. For any algorithm A, we attribute a cost defined as

JT (A) = E{wt}

[
T∑
t=1

ct(xt, ut)

]
,

where xt+1 = Axt +But + wt, ut = A(x1, . . . xt) and E{wt} represents the expectation over the
entire noise sequence. For the rest of the paper we will drop the subscript {wt} from the expectation
as it will be the only source of randomness. Overloading notation, we shall use JT (K) to denote the
cost of a linear controller K which chooses the action as ut = −Kxt.

Assumptions. In the paper we assume that x1 = 0 1, as well as the following conditions.

Assumption 2.1. We assume that ‖B‖ ≤ κB . Furthermore, the perturbation introduced per time
step is bounded, i.i.d, and zero-mean with a lower bounded covariance i.e.

∀t wt ∼ Dw,E[wt] = 0,E[wtw
>
t] � σ2I and ‖wt‖ ≤W

This may be adapted to the case of sub-gaussian noise by conditioning on the event that none of the
noise vectors are ever large. Such adaptation introduces a multiplicative log(T) factor in the regret.

Assumption 2.2. The costs ct(x, u) are α-strongly convex. Wehnever ‖x‖, ‖u‖ ≤ D, it holds that

‖∇xct(x, u)‖, ‖∇uct(x, u)‖ ≤ GD.

The class of linear controllers we work with are defined as follows; see Section A for a detailed note.

Definition 2.3 (Diagonal Strong Stability). Given a dynamics (A,B), a linear controller K is (κ, γ)-
diagonal strongly stable for real numbers κ ≥ 1, γ < 1, if there exists a complex diagonal matrix L
and a non-singular complex matrix Q, such that A−BK = QLQ−1 with the following being true:

1. The spectral norm of L is strictly smaller than one, i.e., ‖L‖ ≤ 1− γ.

2. The controller and transforming matrices are bounded, i.e., ‖K‖ ≤ κ and ‖Q‖, ‖Q−1‖ ≤ κ.

Regret Formulation. Let K = {K : K is (κ, γ)-diagonal strongly stable}. For an algorithm A,
the notion of regret we consider is pseudo-regret, i.e. the sub-optimality of its cost with respect to the
cost for the best linear controller i.e.,

Regret = JT (A)− min
K∈K

JT (K).

3 Preliminaries

Notation. We reserve the letters x, y for states and u, v for actions. We denote by dx, du to be the
dimensionality of the state and the control space respectively. Let d = max(dx, du). We reserve
capital letters A,B,K,M for matrices associated with the system and the policy. Other capital letters
are reserved for universal constants in the paper. We use the shorthand Mi:j to denote a subsequence
{Mi, . . . ,Mj}. For any matrix U , define Uvec to be a flattening of the matrix where we stack the
columns upon each other. Further for a collection of matrices M = {M [i]}, let Mvec be the flattening
defined by stacking the flattenings of M [i] upon each other. We use ‖x‖2U = x>Ux to denote the
matrix induced norm. The rest of this section provides a recap of the relevant definitions and concepts
introduced in [4].

3.1 Reference Policy Class

For the rest of the paper, we fix a (κ, γ)-diagonally strongly stable matrix K (The bold notation is to
stress that we treat this matrix as fixed and not a parameter). Note that this can be any such matrix and
it can be computed via a semi-definite feasibility program [9] given the knowledge of the dynamics,
before the start of the game. We work with following the class of policies.

1This is only for convenience of presentation. The case with a bounded x1 can be handled similarly.

3

Definition 3.1 (Disturbance-Action Policy). A disturbance-action policy M = (M [0], . . . ,M [H−1]),
for horizon H ≥ 1 is defined as the policy which at every time t, chooses the recommended action ut
at a state xt, defined 2 as

ut(M) , −Kxt +

H∑
i=1

M [i−1]wt−i.

For notational convenience, here it may be considered that wi = 0 for all i < 0.

The policy applies a linear transformation to the disturbances observed in the past H steps. Since
(x, u) is a linear function of the disturbances in the past under a linear controller K, formulating the
policy this way can be seen as a relaxation of the class of linear policies. Note that K is a fixed matrix
and is not part of the parameterization of the policy. As was established in [4] (and we include the
proof for completeness), with the appropriate choice of parameters, superimposing such a K, to the
policy class allows it to approximate any linear policy in terms of the total cost suffered with a finite
horizon parameter H .

We refer to the policy played at time t as Mt = {M [i]
t } where the subscript t refers to the time index

and the superscript [i− 1] refers to the action of Mt on wt−i. Note that such a policy can be executed
because wt−1 is perfectly determined on the specification of xt as wt−1 = xt −Axt−1 −But−1.

3.2 Evolution of State

This section describes the evolution of the state of the linear dynamical system under a non-stationary
policy composed of a sequence of T policies, where at each time the policy is specified by Mt =

(M
[0]
t , . . . ,M

[H−1]
t). We will use M0:T−1 to denote such a non-stationary policy. The following

definitions ease the burden of notation.

1. Define Ã = A−BK. Ã shall be helpful in describing the evolution of state starting from a
non-zero state in the absence of disturbances.

2. For any sequence of matrices M0:H , define Ψi as a linear function that describes the effect
of wt−i on the state xt, formally defined below.

Definition 3.2. For any sequence of matrices M0:H , define the disturbance-state transfer matrix Ψi

for i ∈ {0, 1, . . . H}, to be a function with h+ 1 inputs defined as

Ψi(M0:H) , Ãi1i≤H +

H∑
j=0

ÃjBM
[i−j−1]
H−j 1i−j∈[1,H].

It will be important to note that ψi is a linear function of its argument.

3.3 Surrogate State and Surrogate Cost

This section introduces a couple of definitions required to describe our main algorithm. In essence
they describe a notion of state, its derivative and the expected cost if the system evolved solely under
the past H steps of a non-stationary policy.
Definition 3.3 (Surrogate State & Surrogate Action). Given a sequence of matrices M0:H+1 and 2H
independent invocations of the random variable w given by {wj ∼ Dw}2H−1j=0 , define the following
random variables denoting the surrogate state and the surrogate action:

y(M0:H) =

2H∑
i=0

Ψi(M0:H)w2H−i−i,

v(M0:H+1) = −Ky(M0:H) +

H∑
i=1

M
[i−1]
H+1w2H−i.

When M is the same across all arguments we compress the notation to y(M) and v(M) respectively.
2xt is completely determined given w0 . . . wt−1. Hence, the use of xt only serves to ease the burden of

presentation.

4

Algorithm 1 Online Control Algorithm
1: Input: Step size schedule ηt, Parameters κB , κ, γ, T .
2: Define H = γ−1 log(Tκ2)
3: DefineM = {M = {M [0] . . .M [H−1]} : ‖M [i−1]‖ ≤ κ3κB(1− γ)i}.
4: Initialize M0 ∈M arbitrarily.
5: for t = 0, . . . , T − 1 do
6: Choose the action:

ut = −Kxt +

H∑
i=1

M
[i−1]
t wt−i.

7: Observe the new state xt+1 and record wt = xt+1 −Axt −But.
8: Online Gradient Update:

Mt+1 = ΠM(Mt − ηt∇ft(Mt))

9: Online Natural Gradient Update:

Mvec,t+1 = ΠM(Mvec,t − ηt(E[JTJ])−1∇Mvec,tft(Mt))

10: end for

Definition 3.4 (Surrogate Cost). Define the surrogate cost function ft to be the cost associated with
the surrogate state-action pair defined above, i.e.,ft(M0:H+1) = E [ct(y(M0:H), v(M0:H+1))] .
When M is the same across all arguments we compress the notation to ft(M).

Definition 3.5 (Jacobian). Let z(M) =

[
y(M)
v(M)

]
. Since y(M), v(M) are random linear functions

of M , z(M) can be reparameterized as z(M) = JMvec =

[
Jy
Jv

]
Mvec, where J is a random matrix,

which derives its randomness from the random perturbations wi.

3.4 OCO with Memory

We now describe the setting of online convex optimization with memory introduced in [5]. In
this setting, at every step t, an online player chooses some point xt ∈ K ⊂ Rd, a loss function
ft : KH+1 7→ R is then revealed, and the learner suffers a loss of ft(xt−H:t). We assume a certain
coordinate-wise Lipschitz regularity on ft of the form such that, for any j ∈ {0, . . . ,H}, for any
x0:H , x̃j ∈ K,

|ft(x0:j−1, xj , xj+1:H)− ft(x0:j−1, x̃j , xj+1:H)| ≤ L‖xj − x̃j‖. (3.1)
In addition, we define ft(x) = ft(x, . . . , x), and we let

Gf = sup
t∈{0,...,T},x∈K

‖∇ft(x)‖, D = sup
x,y∈K

‖x− y‖. (3.2)

The resulting goal is to minimize the policy regret [6], which is defined as

PolicyRegret =

T∑
t=H

ft(xt−H:t)−min
x∈K

T∑
t=H

ft(x).

4 Algorithms & Statement of Results

The two variants of our method are spelled out in Algorithm 1. Theorems 4.1 and 4.3 provide the
main guarantees for the two algorithms.

Online Gradient Update
Theorem 4.1 (Online Gradient Update). Suppose Algorithm 1 (Online Gradient Update) is executed
with K being any (κ, γ)-diagonal strongly stable matrix and ηt = Θ

(
ασ2t

)−1
, on an LDS satisfying

Assumption 2.1 with control costs satisfying Assumption 2.2. Then, it holds true that

JT (A)− min
K∈K

JT (K) ≤ Õ
(
G2W 4

ασ2
log7(T)

)
.

5

The above result leverages the following lemma which shows that the function ft(·) is strongly
convex with respect to its argument M . Note that strong convexity of the cost functions ct over
the state-action space does not by itself imply the strong convexity of the surrogate cost ft over the
space of controllers M . This is because, in the surrogate cost ft, ct is applied to y(M), v(M) which
themselves are linear functions of M ; the linear map M is necessarily column-rank-deficient. To
observe this, note that M maps from a space of dimensionality H × dim(x) × dim(u) to that of
dim(x) + dim(u). The next theorem, which forms the core of our analysis, shows that this is not the
case using the inherent stochastic nature of the dynamical system.

Lemma 4.2. If the cost functions ct(·, ·) are α-strongly convex, K is a (κ, γ) diagonal strongly stable
matrix and Assumption 2.1 is met then the idealized functions ft(M) are λ-strongly convex with
respect to M where

λ =
ασ2γ2

36κ10

We present the proof for simple cases in Section 6, deferring the general proof to Section F.

Online Natural Gradient Update
Theorem 4.3 (Online Natural Gradient Update). Suppose Algorithm 1 (Online Natural Gradient
Update) is executed with ηt = Θ (αt)

−1, on an LDS satisfying Assumptions 2.1 and with control
costs satisfying Assumption 2.2. Then, it holds true that

JT (A)−min
K∈K

JT (K) ≤ Õ
(
GW 2

αµ
log7(T)

)
where µ−1 , max

M∈M
‖(E[JTJ])−1∇Mvecft(M)‖.

In Theorem 4.3, the regret guarantee depends on an instance-dependent parameter µ, which is a
measure of hardness of the problem. First, we note that the proof of Lemma 4.2 establishes that the
Gram matrix of the Jacobian (Defintion 3.5) is strictly positive definite and hence we recover the
logarithmic regret guarantee achieved by the Online Gradient Descent Update, with the constants
preserved.

Corollary 4.4. In addition to the assumptions in Theorem 4.3, if K is a (κ, γ)-diagonal strongly
stable matrix, then for the natural gradient update

JT (A)− min
K∈K

JT (K) ≤ Õ
(
G2W 4

ασ2
log7(T)

)
,

Proof. The conclusion follows from Lemma 5.2 and Lemma 6.1 which is the core component in the
proof of Lemma 4.2 showing that E[JTJ] ≥ γ2σ2

36κ10 · I .

Secondly, we note that, being instance-dependent, the guarantee the Natural Gradient update offers
can potentially be stronger than that of the Online Gradient method. A case in point is the following
corollary involving spherically symmetric quadratic costs, in which case the Natural Gradient update
yields a regret guarantee under demonstrably more general conditions, in that the bound does not
depend on the minimum eigenvalue of the covariance of the disturbances σ2, unlike OGD.

Corollary 4.5. Under the assumptions on Theorem 4.3, if the cost functions are of the form ct(x, u) =
rt(‖x‖2 + ‖u‖2), where rt ∈ [α, β] is an adversarially chosen sequence of numbers and K is chosen
to be a (κ, γ)-diagonal strongly stable matrix, then the natural gradient update guarantees

JT (A)− min
K∈K

JT (K) ≤ Õ
(
β2W 2

α
log7(T)

)
,

Proof. Note ‖∇Mvecft(M)‖(E[JT J])−2 = ‖E[JT (rt · I)JMvec]‖(E[JT J])−2 ≤ β‖Mvec‖.

5 Regret Analysis

The next section is a condensation of the results from [4] which we present in this form to highlight
the reduction to OCO with memory.

6

5.1 Reduction to Low Regret with Memory

The next lemma shows that achieving low policy regret on the memory based function ft is sufficient
to ensure low regret on the overall dynamical system. Since the proof is essentially provided by [4],
we provide it in the Appendix for completeness. Define,

M , {M = {M [0] . . .M [H−1]} : ‖M [i−1]‖ ≤ κ3κB(1− γ)i}.
Lemma 5.1. Let the dynamical system satisfy Assumption 2.1 and let K be any (κ, γ)-diagonal
strongly stable matrix. Consider a sequence of loss functions ct(x, u) satisfying Assumption 2.2 and
a sequence of policies M0 . . .MT satisfying

PolicyRegret =

T∑
t=0

ft(Mt−H−1:t)− min
M∈M

T∑
t=0

ft(M) ≤ R(T)

for some function R(T) and ft as defined in Definition 3.4. Let A be an online algorithm that plays
the non-stationary controller sequence {M0, . . .MT }. Then as long as H is chosen to be larger than
γ−1 log(Tκ2) we have that

J(A)− min
K∗∈K

J(K∗) ≤ R(T) +O(GW 2 log(T)),

Here O(·), Θ(·) contain polynomial factors in γ−1, κB , κ, d.
Lemma 5.2. The function ft as defined in Definition 3.4 is coordinate-wise L-lipschitz and the norm
of the gradient is bounded by Gf , where

L =
2DGWκBκ

3

γ
, Gf ≤ GDWHd

(
H +

2κBκ
3

γ

)
where D ,

Wκ2(1 +Hκ2Bκ
3)

γ(1− κ2(1− γ)H+1)
+
κBκ

3W

γ
.

The proof of this lemma is identical to the analogous lemma in [4] and hence is omitted.

5.2 Analysis for Online Gradient Descent

In the setting of Online Convex Optimization with Memory, as shown by [5], by running a memory-
based OGD, we can bound the policy regret by the following theorem, proven in the appendix.

Theorem 5.3. Consider the OCO with memory setting defined in Section 3.4. Let {ft}Tt=H be
Lipschitz loss functions with memory such that ft(x) are λ-strongly convex, and let L and Gf be as
defined in (3.1) and (3.2). Then, there exists an algorithm which generates a sequence {xt}Tt=0 such

T∑
t=H

ft(xt−H:t)−min
x∈K

T∑
t=H

f̃t(x) ≤
G2
f + LH2Gf

λ
(1 + log(T)).

Proof of Theorem 4.1. Setting H = γ−1 log(Tκ2), Theorem 5.3, in conjunction with Lemma 5.2,
implies that policy regret is bounded by Õ

(
G2W 4H6

ασ2 log T
)

. An invocation of Lemma 5.1 now
suffices to conclude the proof of the claim.

5.3 Analysis for Online Natural Gradient Descent

Consider structured loss functions of the form ft(M0:H+1) = E[ct(z)], where z =
∑H+1
i=0 Ji[Mi]vec.

Ji is a random matrix, and ct’s are adversarially chosen strongly convex loss functions. In a similar
vein, define ft(M) to be the specialization of ft when input the same argument, i.e. M , H + 1 times.
Define J =

∑H+1
i=0 Ji. The proof of the following theorem may be found in the appendix.

Theorem 5.4. In the setting desribed in this subsection, let ct be α-strongly convex, and fT be such
that it satisfies equation (3.1) with constant L, and Gf = maxM∈M ‖(E[JTJ])−1∇Mvecft(M)‖.
Then, the online natural gradient update generates a sequence {Mt}Tt=0 such that
T∑
t=H

ft(Mt−H:t)− min
M∈M

T∑
t=H

f̃t(M) ≤
maxM∈M ‖∇Mvecft(M)‖2(E[JT J])−1 + LH2Gf

α
(1+log(T)).

7

Proof of Theorem 4.3. First observe that ‖∇Mvecft(M)‖2(E[JT J])−1 ≤ µ−1‖∇Mvecft(M)‖. Setting
H = γ−1 log(Tκ2), Theorem 5.4, in conjunction with Lemma 5.2, imply the stated bound on policy
regret. An invocation of Lemma 5.1 suffices to conclude the proof of the claim.

6 Proof of Strong Convexity in Simpler Cases

We will need some definitions and preliminaries that are outlined below. By definition we have that
ft(M) = E[ct(yt(M), vt(M))]. Since we know that ct is strongly convex we have that

∇2ft(M) = E{wk}2H−1
k=0

[∇2ct(y(M), v(M))] � αE{wk}2H−1
k=0

[J>y Jy + J>v Jv].

Jy, Jv are random matrices dependent on the noise {wk}2H−1k=0 . The next lemma implies Lemma 4.2.
Lemma 6.1. If Assumption 2.1 is satisfied and K is chosen to be a (κ, γ)-diagonal strongly stable
matrix, then the following holds,

E{wk}2H−1
k=0

[J>y Jy + J>v Jv] �
γ2σ2

36κ10
· I.

To analyze Jy, Jv , we will need to rearrange the definition of y(M) to make the dependence on each
individual M [i] explicit. To this end consider the following definition for all k ∈ [H + 1].

ṽk(M) ,
H∑
i=1

M [i−1]w2H−i−k

Under this definition it follows that

y(M) =

H∑
k=1

(A−BK)k−1Bṽk(M) +

H∑
k=1

(A−BK)k−1w2H−k

v(M) = −Ky(M) + ṽ0(M)

From the above definitions, (Jy, Jv) may be characterized in terms of the Jacobian of ṽk with respect
to M , which we define for the rest of the section as Jṽk . Defining Mvec as the stacking of rows of
each M [i] vertically, i.e. stacking the columns of (M [i])>, it can be observed that for all k,

Jṽk =
∂ṽk(M)

∂M
=
[
Idu ⊗ w>2H−k−1 Idu ⊗ w>2H−k−2 . . . Idu ⊗ w>H−k

]
where du is the dimension of the controls. We are now ready to analyze the two simpler cases. Further
on in the section we drop the subscripts {wk}2H−1k=0 from the expectations for brevity.

6.1 Proof of Lemma 6.1: K = 0

In this section we assume that K = 0 is a (κ, γ)-diagonal strongly stable policy for (A,B). Be
definition, we have v(M) = ṽ0(M). One may conclude the proof with the following observation.

E[J>y Jy + J>v Jv] � E[J>v Jv] = E[J>ṽ0Jṽ0] = Idu ⊗ Σ � σ2I.

6.2 Proof of Lemma 6.1: 1-dimensional case

Here, we specialize Lemma 4.2 to one-dimensional state and one-dimensional control. This case
highlights the difficulty caused in the proof due to a choosing a non-zero K and presents the main
ideas of the proof in a simplified notation.

Note that in the one dimensional case, the policy given by M = {M [i]}H−1i=0 is an H dimensional
vector with M [i] being a scalar. Furthermore y(M), v(M), ṽk(M) are scalars and hence their
Jacobians Jy, Jv, Jṽk with respect to M are 1×H vectors. In particular we have that,

Jṽk =
∂ṽk(M)

∂M
= [w2H−k−1 w2H−k−2 . . . wH−k]

8

Therefore using the fact that E[wiwj] = 0 for i 6= j and E[w2
i] = σ2, it can be observed that for any

k1, k2, we have that
E[J>˜vk1

J ˜vk2
] = Tk1−k2 · σ2 (6.1)

where Tm is defined as an H ×H matrix with [Tm]ij = 1 if and only if i− j = m and 0 otherwise.
This in particular immediately gives us that,

E[J>y Jy] =

(
H∑

k1=1

H∑
k2=1

Tk1−k2 · (A−BK)k1−1+k2−1

)
︸ ︷︷ ︸

,G

·B2 · σ2 (6.2)

E[J>ṽ0Jy] =

(
H∑
k=1

T−k(A−BK)k−1

)
︸ ︷︷ ︸

,Y

·B · σ2 (6.3)

First, we prove a few spectral properties of the matrices G and Y defined above. From Gershgorin’s
circle theorem, and the fact that K is (κ, γ)-diagonal strongly stable, we have

‖Y + Y>‖ ≤ ‖
H∑
k=1

(T−k + Tk)(A−BK)k−1‖ ≤ 2γ−1 (6.4)

The spectral properties of G summarized in the lemma below form the core of our analysis.
Lemma 6.2. G is a symmetric positive definite matrix. In particular G � 1

4 · I .

Now consider the statements which follow by the respective definitions.

E[J>v Jv] = K2 · E[J>y Jy]−K · E[J>y Jṽ0]−K · E[J>ṽ0Jy] + E[J>ṽ0Jṽ0]

= σ2 ·
(
B2K2 ·G−BK · (Y + Y>) + I

)︸ ︷︷ ︸
,F

.

Now F � 0. We finish the proof by considering two cases. The first case is when 3|B|γ−1κ ≥ 1.
Noting κ ≥ 1, in this case Lemma 6.2 immediately implies that

m>
(
F +B2 ·G

)
m ≥ m>

(
B2 ·G

)
m ≥

1
4‖m‖

2

9γ−2κ2
≥ γ2‖m‖2

36κ10
,

In the second case (when 3|B|γ−1κ ≤ 1), (6.4) implies that

m>
(
F +B2 ·G

)
m ≥ m>

(
I −BK · (Y + Y>)

)
m ≥ (1/3)‖m‖2 ≥ γ2‖m‖2

36κ10
.

6.2.1 Proof of Lemma 6.2

Recall Tm is defined as an H ×H matrix with [Tm]ij = 1 if and only if i− j = m and 0 otherwise.
Define the following matrix for any complex number |ψ| < 1.

G(ψ) =

H∑
k1=1

H∑
k2=1

Tk1−k2
(
ψ†
)k1−1

ψk2−1

Note that G in Lemma 6.2 is equal to G(A − BK). The following lemma, proven in Section E,
provides a lower bound on the spectrum of the matrix G(ψ). The lemma presents the proof of a more
general case (φ is complex) that aids the multi-dimensional case. A special case when φ = 1 was
proven in [12], and we follow a similar approach relying on the inverse.
Lemma 6.3. Let ψ be a complex number such that |ψ| ≤ 1. We have that G(ψ) � (1/4) · IH .

7 Conclusion

We presented two algorithms for controlling linear dynamical systems with strongly convex costs
with regret that scales poly-logarithmically with time. This improves state-of-the-art known regret
bounds that scale as O(

√
T). It remains open to extend the poly-log regret guarantees to more general

systems and loss functions, such as exp-concave losses, or alternatively, show that this is impossible.

9

Acknowledgements

The authors thank Sham Kakade and Cyril Zhang for various thoughtful discussions. Elad Hazan
acknowledges funding from NSF grant # CCF-1704860.

References
[1] Yasin Abbasi-Yadkori, Peter Bartlett, and Varun Kanade. Tracking adversarial targets. In

International Conference on Machine Learning, pages 369–377, 2014.

[2] Yasin Abbasi-Yadkori, Nevena Lazic, and Csaba Szepesvári. Model-free linear quadratic
control via reduction to expert prediction. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 3108–3117, 2019.

[3] Yasin Abbasi-Yadkori and Csaba Szepesvári. Regret bounds for the adaptive control of linear
quadratic systems. In Proceedings of the 24th Annual Conference on Learning Theory, pages
1–26, 2011.

[4] Naman Agarwal, Brian Bullins, Elad Hazan, Sham Kakade, and Karan Singh. Online control
with adversarial disturbances. In Proceedings of the 36th International Conference on Machine
Learning, pages 111–119, 2019.

[5] Oren Anava, Elad Hazan, and Shie Mannor. Online learning for adversaries with memory: price
of past mistakes. In Advances in Neural Information Processing Systems, pages 784–792, 2015.

[6] Raman Arora, Ofer Dekel, and Ambuj Tewari. Online bandit learning against an adaptive
adversary: from regret to policy regret. In Proceedings of the 29th International Conference on
Machine Learning, pages 1503–1510, 2012.

[7] Sanjeev Arora, Elad Hazan, Holden Lee, Karan Singh, Cyril Zhang, and Yi Zhang. Towards
provable control for unknown linear dynamical systems. 2018.

[8] Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

[9] Alon Cohen, Avinatan Hasidim, Tomer Koren, Nevena Lazic, Yishay Mansour, and Kunal
Talwar. Online linear quadratic control. In International Conference on Machine Learning,
pages 1028–1037, 2018.

[10] Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. Regret bounds for
robust adaptive control of the linear quadratic regulator. In Advances in Neural Information
Processing Systems, pages 4188–4197, 2018.

[11] Maryam Fazel, Rong Ge, Sham M Kakade, and Mehran Mesbahi. Global convergence of policy
gradient methods for the linear quadratic regulator. In International Conference on Machine
Learning, pages 1466–1475, 2018.

[12] Surbhi Goel, Adam Klivans, and Raghu Meka. Learning one convolutional layer with overlap-
ping patches. In Proceedings of the 35th International Conference on Machine Learning, pages
1783–1791, 2018.

[13] Elad Hazan. Introduction to online convex optimization. Foundations and Trends in Optimiza-
tion, 2(3-4):157–325, 2016.

[14] Elad Hazan, Holden Lee, Karan Singh, Cyril Zhang, and Yi Zhang. Spectral filtering for
general linear dynamical systems. In Advances in Neural Information Processing Systems,
pages 4634–4643, 2018.

[15] Elad Hazan, Karan Singh, and Cyril Zhang. Learning linear dynamical systems via spectral
filtering. In Advances in Neural Information Processing Systems, pages 6702–6712, 2017.

[16] Shai Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and
Trends R© in Machine Learning, 4(2):107–194, 2012.

[17] Robert F Stengel. Optimal control and estimation. Courier Corporation, 1994.

[18] Gilbert Strang. Introduction to linear algebra, volume 3.

10

Appendix

A Discussion on Diagonal Strong Stability

Classically, a controller K is stabilizing [17] if the spectral radius of A−BK ≤ 1− δ. The notion
of strong stability was introduced by [9] – being the same as Definition 2.3, but not requiring L to be
diagonal. Both strong stability and diagonal strong stability are quantitative measures of the classical
notion of stabilizing controllers that permit a discussion on non-asymptotic regret bounds. We note
that an analogous notion for quantification of open-loop stability appears in the work of [14].

On the generality of the diagonal strong stability notion, the following comment may be made:
while not all matrices are complex diagonalizable, an exhaustive characterization of m×m complex
diagonal matrices is the existence of m linearly independent eigenvectors; for the later, it suffices,
but is not necessary, that a matrix has m distinct eigenvalues (See [18]). It may be observed that
almost all matrices admit distinct eigenvalues, and hence, are complex diagonalizable insofar the
complement set admits a zero-measure. By this discussion, almost all stabilizing controllers are
diagonal strongly stable for some κ, γ. The astute reader may note the departure here from the more
general notion – strongly stability – in that all stabilizing controllers are strongly stable for some
choice of parameters.

B Proof of the Reductions to OCO with Memory

Since the proof of Lemma will borrow heavily from the definitions introduced by [4], we restate those
definitions here for convenience. Please note that some of these definitions overload our previous
definitions but it will be clear from the context.

B.1 Definitions

1. Let xKt (M0:t−1) is the state attained by the system upon execution of a non-stationary policy
π(M0:t−1,K). We similarly define uKt (M0:t−1) to be the action executed at time t. If the
same policy M is used across all time steps, we compress the notation to xKt (M), uKt (M).
Note that xKt (0), uKt (0) refers to running the linear policy K.

2. ΨK,h
t,i (Mt−h:t) is a transfer matrix that describes the effect of wt−i with respect to the past

h + 1 policies on the state xt+1, formally defined below. When M is the same across all
arguments we compress the notation to ΨK,h

t,i (M).

Definition B.1. For any t, h ≤ t, i ≤ H + h, define the disturbance-state transfer matrix ΨK,h
t,i to

be a function with h+ 1 inputs defined as

ΨK,h
t,i (Mt−h:t) = ÃiK1i≤h +

h∑
j=0

ÃjKBM
[i−j−1]
t−j 1i−j∈[1,H].

Definition B.2 (Surrogate State & Surrogate Action). Define,

yKt+1(Mt−H:t) =

2H∑
i=0

ΨK,H
t,i (Mt−H:t)wt−i,

vKt+1(Mt−H:t+1) = −KyKt+1(Mt−H:t) +

H∑
i=1

M
[i−1]
t+1 wt+1−i.

When M is the same across all arguments we compress the notation to yKt+1(M), vKt+1(M).
Definition B.3 (Surrogate Cost). Define the surrogate cost function ft to be the cost associated with
the surrogate state and surrogate action, i.e.,

ft(Mt−H−1:t) = E
[
ct(y

K
t (Mt−H−1:t−1), vKt (Mt−H−1:t))

]
.

When M is the same across all arguments we compress the notation to ft(M).

Note that this definition coincides exactly with Definition 3.4 in the main text.

11

B.2 Prerequisites

In this section we state some lemmas and theorems which were proved in [4]. Due to consistency of
definitions the proofs of these are omitted and can be found in [4].

Lemma B.4 (Sufficiency). For any two (κ, γ)-diagonal strongly stable matrices K∗,K, there exists
M∗ = (M

[0]
∗ , . . . ,M

[H−1]
∗) ∈M defined as

M
[i]
∗ = (K −K∗)(A−BK∗)i

such that

T∑
t=0

(
ct(x

K
t (M∗), u

K
t (M∗))− ct(xK

∗

t (0), uK
∗

t (0))
)
≤ T · 2GDWHκ2Bκ

5(1− γ)H

γ
.

Theorem B.5. For any (κ, γ)-diagonal strongly stable K, any τ > 0, and any sequence of policies
M1 . . .MT satisfying ‖M [i]

t ‖ ≤ τ(1− γ)i, if the perturbations are bounded by W , we have that

T∑
t=1

ft(Mt−H−1:t)−
T∑
t=1

ct(x
K
t (M0:t−1), uKt (M0:t)) ≤ 2TGD2κ3(1− γ)H+1,

where

D ,
Wκ3(1 +HκBτ)

γ(1− κ2(1− γ)H+1)
+
τW

γ
.

B.3 Proof of Lemma 5.1

Proof of Lemma 5.1. Let D be defined as

D ,
Wκ3(1 +HκBτ)

γ(1− κ2(1− γ)H+1)
+
κBκ

3W

γ
.

Let K∗ be the optimal linear policy in hindsight. By definition K∗ is a (κ, γ)-diagonal strongly
stable matrix. Using Lemma B.4 and Theorem B.5, we have that

min
M∗∈M

(
T∑
t=0

ft(M∗)

)
−

T∑
t=0

ct(x
K∗

t (0), uK
∗

t (0))

≤ min
M∗∈M

(
T∑
t=0

ct(x
K
t (M∗), u

K
t (M∗))

)
−

T∑
t=0

ct(x
K∗

t (0), uK
∗

t (0)) + 2TGD2κ3(1− γ)H+1

≤ 2TGD(1− γ)H+1

(
WHκ2Bκ

5

γ
+Dκ3

)
. (B.1)

Note that by definition ofM, we have that

∀t ∈ [T],∀i ∈ [H] ‖M [i]
t ‖ ≤ κBκ3(1− γ)i.

Using Theorem B.5 we have that

T∑
t=0

ct(x
K
t (M0:t−1), uKt (M0:t−1))−

T∑
t=0

ft(Mt−H−1:t) ≤ 2TGD2κ3(1− γ)H+1. (B.2)

Summing up (B.1) and (B.2) and using the condition that H ≥ 1
γ log(Tκ2), we get the result.

12

Algorithm 2 OGD with Memory (OGD-M).

1: Input: Step size η, functions {ft}Tt=m
2: Initialize x0, . . . , xH−1 ∈ K arbitrarily.
3: for t = H, . . . , T do
4: Play xt, suffer loss ft(xt−H , . . . , xt)
5: Set xt+1 = ΠK

(
xt − η∇f̃t(x)

)
6: end for

C Policy Regret for Online Gradient Descent

Proof of Theorem 5.3. By the standard OGD strong convexity analysis, if ηt = (λ · (t−H))−1, we
have that

T∑
t=H

f̃t(xt)−min
x∈K

T∑
t=H

f̃t(x) ≤ G2

2λ
(1 + log(T)).

In addition, we know by (3.1) that, for any t ≥ H ,

|ft(xt−H , . . . , xt)− ft(xt, . . . , xt)| ≤ L
H∑
j=1

‖xt − xt−j‖ ≤ L
H∑
j=1

j∑
l=1

‖xt−l+1 − xt−l‖

≤ L
H∑
j=1

j∑
l=1

ηt−l‖∇f̃t−l(xt−l)‖ ≤ LH2ηt−HG,

and so we have that∣∣∣∣∣
T∑
t=H

ft(xt−H , . . . , xt)−
T∑
t=H

ft(xt, . . . , xt)

∣∣∣∣∣ ≤ LH2G

λ
(1 + log(T)).

It follows that
T∑
t=H

ft(xt−H , . . . , xt)−min
x∈K

T∑
t=H

ft(x, . . . , x) ≤ G2 + LH2G

λ
(1 + log(T)).

D Policy Regret for Online Natural Gradient Descent

Recall the setting involving structured loss functions of the form ft(M0:H+1) = E[ct(z)], where
z =

∑H+1
i=0 Ji[Mi]vec. Ji is a random matrix, and ct’s are adversarially chosen strongly convex

loss functions. In a similar vein, define ft(M) to be the specialization of ft when input the same
argument, i.e. M , H + 1 times. Define J =

∑H+1
i=0 Ji. The following lemma provides upper bounds

on the regret bound as well as the norm of the movement of iterate at every round for the Online
Natural Gradient Update (Algorithm 1).
Lemma D.1. For α-strongly convex ct, if the iterates Mt are chosen as per the update rule:

[Mt+1]vec = ΠM
(
[Mt]vec − ηt(E[JTJ])−1∇[Mt]vecft(Mt)

)
with a decreasing step size of nt = 1

αt , it holds that

T∑
t=1

ft(Mt)− min
M∗∈M

T∑
t=1

ft(M
∗) ≤ (2α)−1 max

M∈M
‖∇Mvecft(M)‖2(E[JT J])−1 log T.

Moreover, the norm of the movement of consecutive iterates is bounded for all t as

‖[Mt+1]vec − [Mt]vec‖ ≤ (αt)−1 max
M∈M

‖(E[JTJ])−1∇Mvecft(M)‖.

13

Proof. Let M∗ = arg minM∈M
∑T
t=1 ft(M), zt = JMvec,t and z∗ = JM∗vec. Now, we have, as

consequence of strong convexity of ct, that
T∑
t=1

ft(Mt)−
T∑
t=1

ft(M
∗) ≤ E

[
〈∇zct(zt), zt − z∗〉 −

α

2
‖zt − z∗‖2

]
.

With P = E[JTJ], the choice of the update rule ensures that

‖[Mt+1]vec −M∗vec‖2P
=‖[Mt]vec −M∗vec‖2P − 2ηt〈∇[Mt]vecft(Mt), [Mt]vec −M∗vec〉+ η2t ‖∇[Mt]vecft(Mt)‖P−1 .

Observe by the application of chain rule and linearity of expectation that

E[〈∇zct(zt), zt − z∗〉] = E[〈∇zct(zt), J([Mt]vec −M∗vec)〉]
= 〈∇[Mt]vecft(Mt), [Mt]vec −M∗vec〉,

E[‖zt − z∗‖2] = ‖[Mt]vec −M∗vec‖2P .
Combining these (in)equalities, we have

T∑
t=1

ft(Mt)−
T∑
t=1

ft(M
∗)

≤
T∑
t=1

(
‖[Mt]vec −M∗vec‖2P − ‖[Mt+1]vec −M∗vec‖2P

2ηt
+
ηt
2
‖∇[Mt]vecft(Mt)‖2P−1

)
− α

2
‖[Mt]vec −M∗vec‖2P

≤(2α)−1 max
M∈M

‖∇Mvecft(M)‖2P−1 log T

Proof of Theorem 5.4. We know by (3.1) that, for any t ≥ H ,

|ft(Mt−H:t)− ft(M)| ≤ L
H∑
j=1

‖[Mt]vec − [Mt−j]vec‖ ≤ L
H∑
j=1

j∑
l=1

‖[Mt−l+1]vec − [Mt−l]vec‖

≤ L
H∑
j=1

j∑
l=1

ηt−l max
M∈M

‖(E[JTJ])−1∇Mvecft(M)‖

≤ LH2ηt−H max
M∈M

‖(E[JTJ])−1∇Mvecft(M)‖,

and so we have that ∣∣∣∣∣
T∑
t=H

ft(Mt−H:t)−
T∑
t=H

ft(Mt)

∣∣∣∣∣ ≤ LH2Gf
α

(1 + log(T)).

The result follows by invoking Lemma D.1.

E Spectral Lower Bound on G

Proof of Lemma 6.3. The following definitions help us express the matrix G in a more convenient
form. For any number ψ ∈ C, such that |ψ| < 1 and any h define,

Sψ(h) =

h∑
i=1

|ψ|2(i−1) =
1− |ψ|2h

1− |ψ|2
.

With the above definition it can be seen that the entries G(ψ) can be expressed in the following
manner,

[G(ψ)]ij = Sψ(H − |i− j|) · ψi−j if j ≥ i

14

[G(ψ)]ij = (ψ†)j−i · Sψ(H − |i− j|) if i ≥ j
Schematically the matrix G(ψ) looks like

Sψ(H) Sψ(H − 1)ψ Sψ(H − 2)ψ2 . . S(2)ψH−2 S(1)ψH−1

ψ†Sψ(H − 1) Sψ(H) Sψ(H − 1)ψ . . S(3)ψH−3 S(2)ψH−2

(ψ†)2Sψ(H − 2) ψ†Sψ(H − 1) Sψ(H) . . S(4)ψH−4 S(3)ψH−3

.

.
(ψ†)H−1Sψ(1) (ψ†)H−2Sψ(2) (ψ†)H−3Sψ(3) . . ψ†Sψ(H − 1) Sψ(H)

 .

We analytically compute the inverse of the matrix G(ψ) below and bound its spectral norm.

Claim E.1. The inverse of G(ψ) has the following form.

[G(ψ)]−1 =

α b 0 . . 0 0 β†

b† a b . . 0 0 0
0 b† a . . 0 0 .
. 0 b† . . b 0 .
. 0 0 . . a b 0
0 0 0 . . b† a b
β 0 0 . . 0 b† α

,

where the relevant quantities above are given by the following formula

b =
−ψ

1 + |ψ|2H
a = −b(ψ† + ψ−1) =

1 + |ψ|2

1 + |ψ|2H

β =
(1− |ψ|2)

(1− (|ψ|2)H+1)

(ψ†)Hψ

(1 + |ψ|2H)
α =

1− (|ψ|2)H+2

(1− (|ψ|2)H+1)(1 + (|ψ|2H))
.

Since |ψ| < 1, it is easy to see that |α|, |a| ≤ 2 and |β|, |b| ≤ 1. This immediately implies that
‖(G(ψ))−1‖ ≤ 4 and therefore the lemma follows.

To prove the remnant claim, the following may be verified, implying G(ψ)[G(ψ)]−1 = I .

Case A: Let’s first consider the diagonal entries and in particular i = j ∈ [1, H − 2]. We have that[
G(ψ)[G(ψ)]−1

]
i,i

= b · ψ†Sψ(H − 1) + b† · ψSψ(H − 1) + aSψ(H)

=
−2|ψ|2Sψ(H − 1) + (1 + |ψ|2)Sψ(H)

1 + |ψ|2H
= 1

Case B: Lets consider the diagonal entry (0, 0). (The (H,H) entry is the complement and hence
equal to 1).[

G(ψ)[G(ψ)]−1
]
0,0

=α · Sψ(H) + b†ψSψ(H − 1) + β†(ψ†)H−1Sψ(1)

=
(1− (|ψ|2)H+2)Sψ(H)− (1− (|ψ|2)H+1)|ψ|2Sψ(H − 1) + (1− |ψ|2)(|ψ|2H)

(1− (|ψ|2)H+1)(1 + (|ψ|2H))

=1

Case C: Now lets consider non diagonal entries, in particular for j ∈ [1, H − 2] and i ∈ [0, H − 1]
and i > j. (The case with the same conditions and j > i follows by replacing ψ with ψ† in the
computation below)[

G(ψ)[G(ψ)]−1
]
i,j

= (ψ†)i−j−1
(
b(ψ†)2SH−i+j−1 + b†SH−i+j+1 + a(ψ†)SH−i+j

)
= (ψ†)i−j

(
−|ψ|2SH−i+j−1 − SH−i+j+1 + (|ψ|2 + 1)SH−i+j

)
= 0

15

Case D: Lastly lets consider the first column, i.e. j = 0 and i > 0. (The case of the last column
follows as it is the complement and hence equal to 0.)[

G(ψ)[G(ψ)]−1
]
i,j

=α · (ψ†)iSψ(H − i) + b · (ψ†)i−1Sψ(H − i+ 1) + βψH−i−1Sψ(i+ 1)

=0.

F Proof of Strong Convexity(Lemma 4.2): Multi-dimensional

Proof of Lemma 6.1. Building on Section 6, we prove Lemma 6.1 for multi-dimensional systems.
Using the fact that E[wiw

>
j] = 0 for different i, j and E[wiw

>
i] = Σ, it can be observed that for any

k1, k2 and any du × du matrix P , we have that

E[J>˜vk1
PJ ˜vk2

] = Tk1−k2 ⊗ P ⊗ Σ (F.1)

where Tm is defined as an H ×H matrix with [Tm]ij = 1 if and only if i− j = m and 0 otherwise.
This in particular immediately gives us that for any matrix P ,

E[J>y PJy] =

(
H∑

k1=1

H∑
k2=1

Tk1−k2 ⊗
((
B>(A−BK)>

)k1−1
P (A−BK)k2−1B

))
⊗ Σ

=

(
IH ⊗B>

)(H∑
k1=1

H∑
k2=1

Tk1−k2 ⊗
((

(A−BK)>
)k1−1

P (A−BK)k2−1
))

︸ ︷︷ ︸
,GP

(IH ⊗B)

⊗ Σ

(F.2)

Furthermore consider the following calculation

E[J>ṽ0KJy] =

(
H∑
k=1

T−k ⊗K(A−BK)k−1B

)
⊗ Σ (F.3)

=

(IH ⊗K)

(
H∑
k=1

T−k ⊗ (A−BK)k−1

)
︸ ︷︷ ︸

,Y

(IH ⊗B)

⊗ Σ (F.4)

As before, we state the following bounds on the spectral properties of the matrices G and Y defined
above.

Lemma F.1.

‖Y‖ ≤ ‖
H∑
k=1

T−k(A−BK)k−1‖ ≤ γ−1κ2 (F.5)

Lemma F.2. GI (where I represents the Identity matrix) is a symmetric positive definite matrix with

GI �
1

4κ4
· IHdx

Consider the following calculations which follows by definitions.

E[J>v Jv] = E[J>y K>KJy]− E[J>y K>Jṽ0]− E[J>ṽ0KJy] + E[J>ṽ0Jṽ0]

=
(
(IH ⊗B>)GK>K(IH ⊗B)− Y(IH ⊗B)− (IH ⊗B>)Y> + IHdu

)︸ ︷︷ ︸
,F

⊗Σ

16

Since we know that Σ � 0 we immediately get that F � 0. Using the above calculations it is
enough to show that the following matrix has lower bounded eigenvalues, i.e. for every vector m of
appropriate dimensions, we have that

m>
(
F + (IH ⊗B>)GI(IH ⊗B)

)
m ≥ γ2‖m‖2

36κ10

To prove the above we will consider two cases. The first case is when ‖(IH ⊗ B)m‖ ≥ γ‖m‖
3κ3 . In

this case note that

m>
(
F + (IH ⊗B>)GI(IH ⊗B)

)
m ≥ m>

(
(IH ⊗B>)GI(IH ⊗B)

)
m ≥

1
4κ4 γ

2‖m‖2

9κ6

In the second case (when ‖(IH ⊗B)m‖ ≤ γ‖m‖
3κ3), we have that

m>
(
F + (IH ⊗B>)GI(IH ⊗B)

)
m

≥ m>
(
IHdu − (IH ⊗K)Y(IH ⊗B)− (IH ⊗B>)Y>(IH ⊗K>)

)
m

≥ (1/3)‖m‖2 ≥ γ2‖m‖2

36κ10
.

We now finish the proof with the proof of Lemmas F.1 and F.2.

Proof of Lemma F.1. Since K is (κ, γ)-diagonal strongly stable, we can diagonalize the matrix
A−BK as A−BK = QLQ−1 with ‖Q‖, ‖Q‖−1 ≤ κ. Therefore,

Y =

(
H∑
k=1

T−k ⊗QLk−1Q−1
)

= (IH ⊗Q)

(
H∑
k=1

T−k ⊗ Lk−1
)

(IH ⊗Q−1).

Now consider the matrix P for any complex number φ with |φ| < 1.

P =

H∑
k=1

T−kφk−1

We wish to bound ‖P‖. To this end consider PP> and consider the `1 norm of any row. It can easily
be seen that the `1 norm of any row of PP> is bounded by 1

1−|φ| ·
1

1−|φ|2 , and therefore

‖P‖ =
√
‖PP>‖ ≤

√
1

(1− |φ|)(1− |φ|2)
.

Using that L is diagonal with entries bounded in magnitude by 1− γ, we get that ‖Y‖ ≤ γ−1κ2.

Proof of Lemma F.2. We need to consider the following matrix

GI =

H∑
k1=1

H∑
k2=1

Tk1−k2 ⊗
((

(A−BK)>
)k1−1

(A−BK)k2−1
)

Since K is (κ, γ)-diagonal strongly stable, we can diagonalize the matrix A − BK as A − BK =
QLQ−1 with ‖Q‖, ‖Q‖−1 ≤ κ. Further since A − BK is a real valued matrix we have that
(A−BK)> = (Q−1)†L†Q†. Therefore we have that

GI =

H∑
k1=1

H∑
k2=1

Tk1−k2 ⊗
(

(Q−1)†
(
L†
)k1−1

Q†QLk2−1Q−1
)

17

Further consider the following matrix Ĝ.

Ĝ =

0 0 . . I
0 . . . L
. . . . L2

. 0 . . .
0 I . . .
I L . . LH−1

L L2 . . 0
L2 . . . 0
.
. LH−1 . . .

LH−1 0 . . 0

It can be seen that,(

(I2H−1 ⊗Q)Ĝ(I2H−1 ⊗Q−1)
)† (

(I2H−1 ⊗Q)Ĝ(I2H−1 ⊗Q−1)
)

= GI . (F.6)

Furthermore note that since ‖Q‖, ‖Q−1‖ ≤ κ, therefore all singular values of Q lie in the range
[κ−1, κ]. Therefore it follows that

Q†Q � κ−2I (Q−1)†Q−1 � κ−2I (F.7)

Using (F.6),(F.7) it follows that

GI � κ−4 ·
(
Ĝ
)† (

Ĝ
)

(F.8)

Therefore we only need to show that
(
Ĝ
)† (

Ĝ
)

has a lower bounded eigenvalue. To that end notice
that since L is a diagonal matrix with diagonal values whose magnitude is upper bounded by 1.
Therefore, it sufficient to consider the case when L is a scalar complex number with magnitude upper
bounded by 1. To this end we can consider the following simplification of GI defined for a complex
number ψ with |ψ| < 1 as defined earlier.

G(ψ) =

H∑
k1=1

H∑
k2=1

Tk1−k2
(
ψ†
)k1−1

ψk2−1

Invoking Lemma 6.3 we immediately get that

GI � κ−4 ·
(
Ĝ
)† (

Ĝ
)
� 1

4κ4
· IHdx .

18

	Introduction
	Our Results
	Related Work

	Problem Setting
	Preliminaries
	Reference Policy Class
	Evolution of State
	Surrogate State and Surrogate Cost
	OCO with Memory

	Algorithms & Statement of Results
	Regret Analysis
	Reduction to Low Regret with Memory
	Analysis for Online Gradient Descent
	Analysis for Online Natural Gradient Descent

	Proof of Strong Convexity in Simpler Cases
	Proof of Lemma 6.1: K=0
	Proof of Lemma 6.1: 1-dimensional case
	Proof of Lemma 6.2

	Conclusion
	Discussion on Diagonal Strong Stability
	Proof of the Reductions to OCO with Memory
	Definitions
	Prerequisites
	Proof of Lemma 5.1

	Policy Regret for Online Gradient Descent
	Policy Regret for Online Natural Gradient Descent
	Spectral Lower Bound on G
	Proof of Strong Convexity(Lemma 4.2): Multi-dimensional

