- We thank the anonymous reviewers for their valuable feedback and comments. We will address all their comments and
- be sure to fix minor mistakes and typos in the revised version of our paper. In the paper, we present three algorithms.
- The first two algorithm are for minimizing the ℓ_q norm of the disagreements vector on arbitrary and complete graphs. We note that both algorithms can be implemented in practice (the algorithms are not particularly complex). Both
- algorithms require that we first solve the convex program (P). This program has a polynomial number of linear
- constraints, and its objective function is convex: This is because the objective function, $\max(\|y\|_q^q, \sum_u z_u)$, is the
- maximum of two convex functions. The first function, $||y||_q^q$ is the sum of q-th powers of the variables y_u which are positive. Thus, $||y||_q^q$ is convex and differentiable. The second function, $\sum_u z_u$ is a linear function. Therefore, we can use off-the-shelf convex solvers (quadratic solvers for ℓ_2) to get an optimal solution to (P).

- The third algorithm is for a cluster-wise local objective. The algorithm consists of solving a simple linear program for each vertex in the graph. This linear program has a $O(n^2)$ constraints and hence is relatively fast to solve.